JPH013046A - Dielectric ceramic composition with high dielectric constant - Google Patents

Dielectric ceramic composition with high dielectric constant

Info

Publication number
JPH013046A
JPH013046A JP63-90445A JP9044588A JPH013046A JP H013046 A JPH013046 A JP H013046A JP 9044588 A JP9044588 A JP 9044588A JP H013046 A JPH013046 A JP H013046A
Authority
JP
Japan
Prior art keywords
weight
oxide
composition
ceramic
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63-90445A
Other languages
Japanese (ja)
Other versions
JPS643046A (en
Inventor
マイケル エス エイチ チュー
ダニエル シー ローズ
Original Assignee
タム セラミックス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タム セラミックス インコーポレイテッド filed Critical タム セラミックス インコーポレイテッド
Publication of JPH013046A publication Critical patent/JPH013046A/en
Publication of JPS643046A publication Critical patent/JPS643046A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の概要〕 誘電率100以上、誘電正接0.1パーセント以下でか
つ温度係数特性が150ppm/℃より少ないセラミッ
ク誘電体組成物、誘電体組成物はまた。1140℃以下
の温度で焼結が可能である。
Detailed Description of the Invention [Summary of the Invention] A ceramic dielectric composition or a dielectric composition having a dielectric constant of 100 or more, a dielectric loss tangent of 0.1% or less, and a temperature coefficient characteristic of less than 150 ppm/°C. Sintering is possible at temperatures below 1140°C.

〔産業上の利用分野〕[Industrial application field]

本発明は誘電率(K)が100以上、誘電正接(DF)
が0.1%以下で、温度係数特性(TCC)が150p
pm/”C以下のセラミック誘電体組成物に関する。こ
の誘電体組成物は1140℃以下の温度で焼結が可能で
ある。
The present invention has a dielectric constant (K) of 100 or more and a dielectric loss tangent (DF).
is 0.1% or less, and the temperature coefficient characteristic (TCC) is 150p.
pm/''C or less. This dielectric composition can be sintered at a temperature of 1140° C. or less.

〔従来の技術〕[Conventional technology]

積層セラミックコンデンサは一般に誘電体セラミック粉
末の絶縁体層をキャスト法とかその他の方法でつくり、
その上に通常パラジウム/銀の合金を金属ペーストの形
で導電性金属電極層としたものを置き、それぞれを交互
に多数積重ねて一体化した後、焼結して高密度化、積層
コンデンサとしている。積層セラミックコンデンサは非
常に安定な温度係数特性を持たせているため、その誘電
体セラミック組成物の誘電率は約80を越えることがな
い。
Multilayer ceramic capacitors are generally made by using an insulating layer of dielectric ceramic powder by casting or other methods.
On top of this, a conductive metal electrode layer made of a palladium/silver alloy is usually placed in the form of a metal paste, and after stacking a large number of layers alternately and integrating them, they are sintered to increase the density and form a multilayer capacitor. . Since a multilayer ceramic capacitor has very stable temperature coefficient characteristics, the dielectric constant of its dielectric ceramic composition does not exceed about 80.

しかしこの誘電体セラミック組成物は低い誘電正接と非
常に安定な温度係数特性の両面を持つコンデンサを必要
とする電気回路への使用には充分ではない、このような
面での使用が可能な組成物は25℃(室温)での基準数
値から1℃につき、その温度変化(TCC)が+/−約
150ppm/”Cを越えない誘電率を持つものである
。この組成物の絶縁抵抗時間容量積(Insulati
on Re5istance TimeCapacit
ance Prodnct )は25℃で約100オー
ムフアラツドより大きく、また鰻高使用温度(通常12
5℃)でも約100オームフアラツドより大きいことが
必要である。誘電率(K)についてもまた可能なかぎり
高く、誘電正接(DF)は可能なかぎり低いことが必要
である。
However, this dielectric ceramic composition is not sufficient for use in electrical circuits that require capacitors with both a low dissipation factor and very stable temperature coefficient characteristics. The material has a dielectric constant whose temperature change (TCC) does not exceed +/- about 150 ppm/''C per 1°C from the reference value at 25°C (room temperature).The insulation resistance time capacity of this composition Insulati
on Re5istance Time Capacit
ance product) is greater than about 100 ohm farads at 25°C, and the high operating temperature (usually 12
5° C.) is required to be greater than about 100 ohm farad. It is also necessary that the dielectric constant (K) be as high as possible and the dielectric loss tangent (DF) as low as possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は誘電率が約100以上、誘電正接が約0
.1%以下でかつ25°Cで約1000オームフアラツ
ド以上、125℃で約100オームフアラツド以上の絶
縁抵抗(R)時間静電容量(C)積(RC)の積層セラ
ミックコンデンサの製造に適するセラミック誘電体組成
物を提供するにある。
The purpose of the present invention is to have a dielectric constant of about 100 or more and a dielectric loss tangent of about 0.
.. A ceramic dielectric composition suitable for manufacturing a multilayer ceramic capacitor with an insulation resistance (R) time capacitance (C) product (RC) of 1% or less and about 1000 ohm Farad or more at 25°C and about 100 ohm Farad or more at 125°C. It's about providing things.

さらにまた、本発明の目的は安定なTCC特性を持つセ
ラミック誘電体組成物の提供にある。その特性は25℃
での基準値に対して、温度1℃につき+/ −150p
 pm/’Cを越えない誘電率または静電容量変化を持
つものである。
Furthermore, it is an object of the present invention to provide a ceramic dielectric composition with stable TCC characteristics. Its characteristics are 25℃
+/-150p per 1°C of temperature relative to the reference value at
It has a dielectric constant or capacitance change not exceeding pm/'C.

本発明はさらに、次の諸特性を持つセラミック誘電体組
成物の提供にある。すなわち、W70重量%とパラジウ
ム30重量%からなる電極用材料で、1140°C以下
の温度で焼結ができ、積層コンデンサの製造に使用でき
ることに加えて、前記の緒特性を持っているということ
である。
The present invention further provides a ceramic dielectric composition having the following properties. In other words, it is an electrode material consisting of 70% W and 30% palladium, can be sintered at temperatures below 1140°C, can be used for manufacturing multilayer capacitors, and has the above characteristics. It is.

本発明の他の目的は、一部は自明であり、一部は待に後
記する。
Other objects of the invention are partly self-evident and partly hereinafter described.

上述の目的から、本発明の誘電体組成物は次のものから
なっていることを示している。
The above objectives indicate that the dielectric composition of the present invention consists of the following:

すなわち、酸化ストロンチウム約0〜 0.68重量%、酸化バリウム約6.61〜8.69重
量%、酸化鉛約8632〜 1、15重量%、酸化ネオジム約 52.08〜55.03重量%、酸化チタン約28.7
6〜29.88重量%、酸化マンガン約0〜0.06重
量%を主要構成物とする先駆体材料の約84.7〜86
.4重量%と次ものが主要構成物となっている熔融組成
物の約13.61〜15.3重量%からなっている。な
お、熔融組成物はチタン酸ビスマス約10.00〜10
.20重量%、炭酸マンガン約0.10重量%、五酸化
ニオブ約0.25〜0.26重量%、酸化鉛2.35〜
4.35重量%、酸化ホウ素約0.09〜0.50重量
%および酸化ケイ素約0.28〜0,70重量%で構成
されている。
That is, about 0 to 0.68% by weight of strontium oxide, about 6.61 to 8.69% by weight of barium oxide, about 8632 to 1.15% by weight of lead oxide, about 52.08 to 55.03% by weight of neodymium oxide, Titanium oxide approx. 28.7
6 to 29.88% by weight, about 84.7 to 86% by weight of the precursor material having a major constituent of about 0 to 0.06% by weight of manganese oxide.
.. 4% by weight and about 13.61-15.3% by weight of the molten composition with the following being the major constituents: In addition, the melt composition contains about 10.00 to 10 bismuth titanate.
.. 20% by weight, about 0.10% by weight of manganese carbonate, about 0.25-0.26% by weight of niobium pentoxide, 2.35% by weight of lead oxide
4.35% by weight, about 0.09-0.50% boron oxide and about 0.28-0.70% silicon oxide.

本発明は誘電率が約100以上で、温度係数特性(TC
C)が+/ −150p pm/’C以下で、誘電正接
が0.1%以下の誘電体セラミック組成物を提供する。
The present invention has a dielectric constant of about 100 or more and a temperature coefficient characteristic (TC
The present invention provides a dielectric ceramic composition having C) of +/-150 p pm/'C or less and a dielectric loss tangent of 0.1% or less.

このようなセラミック組成物は1140°C以下の温度
で構成酸化物あるいは先駆体材料を焼成することによっ
てつくられる。
Such ceramic compositions are made by firing the constituent oxides or precursor materials at temperatures below 1140°C.

本発明による積層コンデンサは、誘電率が高く、誘電正
接が低く、加えて温度係数特性が安定している等の特性
を持っていることがら安定な温度係数特性と損失の低い
特性を持つ積層コンデンサを必要とする電子装置に使用
ができる。この特定例としてはTVチューナーとか共振
回路とかがある。
The multilayer capacitor according to the present invention has characteristics such as high dielectric constant, low dielectric loss tangent, and stable temperature coefficient characteristics, so that it has stable temperature coefficient characteristics and low loss characteristics. Can be used in electronic devices that require Specific examples of this include TV tuners and resonant circuits.

C課題を解決するための手段〕 発明の具体化に当り、セラミック誘電体組成物は次の主
要構成混合物からつくられる。
Means for Solving Problem C] In embodying the invention, a ceramic dielectric composition is made from the following main constituent mixture.

すなわち、約to、oo重量%チタン酸ビスマス、約0
.1重量%の炭酸マンガン、約0.25重量%の酸化ニ
オブ、約4.23重量%の酸化鉛、約0.21重量%の
酸化ホウ素、約0.51重量%の酸化ケイ素と約84.
702i量%の次の主要構成物からなる先駆体材料であ
る。なお、先駆体材料は約8.47重量%の酸化バリウ
ム、約 10.38重量%の酸化鉛、約52.05重量%の酸化
ネオジムおよび約29.13重量%の酸化チタンで構成
されている。本発明による焼成セラミックボディはセラ
ミック製造における構成誘電体酸化物を同時に反応させ
、焼成することによりつくられる。この構成誘電体酸化
物は酸(ヒバリウム、酸化ストロンチウム、酸化ネオジ
ム、酸化鉛、酸化チタンおよび酸化マンガンを主要構成
物とセラミック先駆体材料とチタン酸ビスマス、炭酸マ
ンガン、五酸化ニオブ、酸化鉛、酸化ホウ素および酸化
ケイ素を主要構成物とする熔融組成物からなっている。
That is, about to, oo weight percent bismuth titanate, about 0
.. 1% by weight manganese carbonate, about 0.25% by weight niobium oxide, about 4.23% by weight lead oxide, about 0.21% by weight boron oxide, about 0.51% by weight silicon oxide and about 84% by weight.
702i is a precursor material consisting of the following main constituents: Note that the precursor material is comprised of about 8.47% by weight barium oxide, about 10.38% by weight lead oxide, about 52.05% by weight neodymium oxide, and about 29.13% by weight titanium oxide. . Fired ceramic bodies according to the invention are made by simultaneously reacting and firing the constituent dielectric oxides in ceramic manufacturing. This dielectric oxide consists of acids (hybarium, strontium oxide, neodymium oxide, lead oxide, titanium oxide and manganese oxide as the main constituents and ceramic precursor materials and bismuth titanate, manganese carbonate, niobium pentoxide, lead oxide, It consists of a molten composition whose main constituents are boron and silicon oxide.

セラミック組成物の調製において、酸化ストロンチウム
、酸化バリウム、酸化ネオジム、酸化鉛、酸化チタンお
よび酸化マグネシウムは水でスラリするか、物理的にブ
レンドし、焼成する。焼成物は先駆体組成物を形成する
ため微細粒子サイズに粉砕する。先駆体組成物はチタン
酸ビスマス、炭酸マンガン、五酸化ニオブ、酸化鉛、酸
化ホウ素および酸化ケイ素と共に水でスラリ化されるか
または物理的にブレンドされる。
In preparing the ceramic composition, strontium oxide, barium oxide, neodymium oxide, lead oxide, titanium oxide, and magnesium oxide are slurried in water or physically blended and fired. The calcined product is ground to fine particle size to form the precursor composition. The precursor composition is slurried in water or physically blended with bismuth titanate, manganese carbonate, niobium pentoxide, lead oxide, boron oxide, and silicon oxide.

セラミック調製のための混合物は標準的な方法で、シー
ト状に成形する。その後、銀70%とパラジウム30%
の合金による内部電極と共に、積層コンデンサ横道に成
形し、1140°C以下の温度で1〜4時間焼成する。
The mixture for ceramic preparation is shaped into sheets using standard methods. After that, 70% silver and 30% palladium
The multilayer capacitor is molded into a multilayer capacitor along with internal electrodes made of the alloy, and fired at a temperature of 1140° C. or less for 1 to 4 hours.

本発明による焼成誘電体組成物は誘電率(K)100以
上、誘電正接(DF)011%以下で、かつ温度係数特
性(TCC)は+/ −150p pm/”C以下とい
う特性を持っている。
The fired dielectric composition according to the present invention has a dielectric constant (K) of 100 or more, a dielectric loss tangent (DF) of 0.11% or less, and a temperature coefficient characteristic (TCC) of +/-150p pm/''C or less. .

本発明については次の実施例により具体的に例示する。The present invention will be specifically illustrated by the following examples.

〔実施例〕〔Example〕

K麹%I 1 セラミック先駆体組成物の各50gは第1表に示した重
量%で秤取し、脱イオン水中に入れ、(スペック イン
タストリーズ インコーホレイテッド)製の高速スペッ
ク モデル 800−2ペイント ミキサで均一に混合
してつくる。この先駆体組成物は酸化ストロンチウム(
SrO)、酸化バリウム (Bad)、酸化鉛(PbO) 、酸化ネオジム(Nb
20s ) 、酸化チタン(TiO2)および酸化マン
ガン(MnO□)である。
50 g of each of the K-koji % I 1 ceramic precursor compositions in the weight percentages shown in Table 1 were weighed out and placed in deionized water using a high speed spec model 800-2 manufactured by Spec Industries Inc. (Speck Industries, Inc.). Mix it evenly with a paint mixer. This precursor composition consists of strontium oxide (
SrO), barium oxide (Bad), lead oxide (PbO), neodymium oxide (Nb
20s), titanium oxide (TiO2) and manganese oxide (MnO□).

本発明で使用した酸化ネオジムは最近、99.5重量%
の純度を持ち、その中の主要不純物は酸化ランタン(L
azOi)のような希土類元素であった。その他この発
明で使用した全ての材料はいずれも99.9重量%以上
の純度のものである。
The neodymium oxide used in the present invention has recently been found to be 99.5% by weight.
The main impurity is lanthanum oxide (L
azOi). All other materials used in this invention have a purity of 99.9% by weight or higher.

実際的にいって、炭酸塩、硝酸塩および水酸化物のよう
な他の形態のものも次の条件で使用が可能となる。すな
わち、個々の酸化物が分解された後の最終組成物が第1
表に記載されたものと同等であればよい、上記材料を均
一に混合した後、スラリを乾燥し、その後約1100〜
1150℃で1〜4時間焼成する。焼成物は乳鉢中で粉
砕し、325メツシユの篩でふるい分ける。
In practice, other forms such as carbonates, nitrates and hydroxides can also be used provided that: That is, the final composition after the individual oxides are decomposed is the first
After uniformly mixing the above materials, which may be equivalent to those listed in the table, the slurry is dried and then
Bake at 1150°C for 1 to 4 hours. The baked product is ground in a mortar and sifted through a 325 mesh sieve.

チタン酸ビスマス(Bi、Ti207)の約65.6重
量%、五酸化ニオブ (Nb20s)の約、6重量%、酸化鉛(PbO)の約
24.4重量%、ホウ酸(H,BO,)として酸化ホウ
素(82ON >の約3.2重量%、酸化ケイ素(S 
i 02 )の約4,5重量%および酸化マンガン (MnO□)の約0.6重量%を主要構成物と熔融組成
物を先駆体組成物中に加え混合する。先駆体組成物に対
する熔融組成物の重量割合は約0.18である。このセ
ラミック粉末を乳鉢に入れ、これに水約26重量%、プ
ロピレングリコール(Propylenglycol)
約26重量%およびコーンシロップの約48重量%を含
むバインダ溶液の約2.4〜 4.00m1を加え、混練した後、40メツシユのナイ
ロンスクリーンを通して造粒する。
About 65.6% by weight of bismuth titanate (Bi, Ti207), about 6% by weight of niobium pentoxide (Nb20s), about 24.4% by weight of lead oxide (PbO), boric acid (H, BO,) About 3.2% by weight of boron oxide (82ON), silicon oxide (S
About 4.5% by weight of i 02 ) and about 0.6% by weight of manganese oxide (MnO□) are added to the main constituent and molten composition and mixed into the precursor composition. The weight ratio of melt composition to precursor composition is about 0.18. Place this ceramic powder in a mortar and add approximately 26% water by weight and propylene glycol.
About 2.4 to 4.00 ml of binder solution containing about 26% by weight and about 48% by weight of corn syrup is added, mixed, and then granulated through a 40 mesh nylon screen.

最終混練物は径約、27cm、厚さ約 0.1〜0.15cmのディスクとし、これをステンレ
ススチール製のダイ中で1平方インチ当り約38,00
0ボンドの圧力をかけてプレスする。このディスクは固
定したシルコニアセツタ上に置き、約1100〜 1140°Cで約1〜4時間焼成する。冷却後、銀電極
をディスクに塗布し、電極を焼成するなめ、約845°
Cで焼成する。焼成物の25”C(TC)における静電
容量に対する静電容量の温度変化をモデルES1211
0A静電容量ブリッジで測定する。測定条件は約20°
0間隔で、約−55℃から約+125℃までの温度範囲
に亘り、IKHz測定振動数で行う。
The final kneaded material is formed into a disk with a diameter of approximately 27 cm and a thickness of approximately 0.1 to 0.15 cm, and this is placed in a stainless steel die at a rate of approximately 38,000 per square inch.
Press with 0 bond pressure. The disk is placed on a fixed silconia setter and fired at about 1100-1140°C for about 1-4 hours. After cooling, apply a silver electrode to the disk and sinter the electrode at about 845°.
Bake at C. Model ES1211 shows the temperature change in capacitance with respect to capacitance at 25”C (TC) of the fired product.
Measure with a 0A capacitance bridge. Measurement conditions are approximately 20°
0 intervals over a temperature range of about -55°C to about +125°C with an IKHz measurement frequency.

各サンプル(K)の誘電率は次式(静電容量式)で計算
する。
The dielectric constant of each sample (K) is calculated using the following formula (capacitance formula).

K= (5,66、C3T)/(D、D)・・・(1) 但し、K=サンプルの誘電率 T=1インチディスクの厚さ D=1インチディスクの径 C=ディスクの静電容量(ピコファラ ッド) 各サンプルの温度係数特性(TCC)は次式によるTC
カーブのスロープから計算する。
K= (5,66,C3T)/(D,D)...(1) However, K=dielectric constant of sample T=thickness of 1 inch disk D=diameter of 1 inch disk C=electrostatic of disk Capacity (picofarad) The temperature coefficient characteristic (TCC) of each sample is calculated by the following formula:
Calculated from the slope of the curve.

TCC= (C(CT  C25) / C25) /
(T−25))XIO’ ・・・(2) 但し、TCCはppm/’Cにおける温度係数を示し、
CTは温度Tにおけるサンプルの静電容量を、またC2
5は25°Cの基準値に対するサンプルの静電容量を示
す。TはCTを測定した時の温度を示す。
TCC= (C(CT C25) / C25) /
(T-25))XIO'...(2) However, TCC indicates the temperature coefficient in ppm/'C,
CT is the capacitance of the sample at temperature T, and C2
5 indicates the capacitance of the sample relative to the reference value of 25°C. T indicates the temperature at which CT was measured.

第2表に要約したように、第2表の組成15のディスク
サンプルの誘電体特性は次のことを示している。すなわ
ち、本発明によるセラミック組成物の誘電率は約100
以上で、誘電正接は0.06%以下であり、またTCC
値は150ppm/℃以下である。
As summarized in Table 2, the dielectric properties of the disk sample with composition 15 in Table 2 indicate the following: That is, the dielectric constant of the ceramic composition according to the present invention is about 100.
Above, the dielectric loss tangent is 0.06% or less, and the TCC
The value is 150 ppm/°C or less.

先駆体組成物中のBaO濃度が第1表の組成10のよう
に、約1、0重量%以上の場合、あるいは先駆体組成物
中のSr濃度が組成11のように約2,0重量%以上の
場合はセラミックの焼結が困難になる。先駆体組成物中
のpbo濃度が組成12.13,14゜15のように約
1462重量%以上の場合はTCC値は低温側(約−5
5〜+25°Cまで)あるイハ高温[(約25〜125
°ctで> あるいはその両サイドでいずれも約150 ppm/’Cより大きくなる。
When the BaO concentration in the precursor composition is about 1.0% by weight or more, as in composition 10 of Table 1, or when the Sr concentration in the precursor composition is about 2.0% by weight, as in composition 11. In these cases, it becomes difficult to sinter the ceramic. When the pbo concentration in the precursor composition is about 1462% by weight or more, such as compositions 12.13 and 14.15, the TCC value is on the low temperature side (about -5
5 to +25°C).
ct > or both sides thereof are greater than about 150 ppm/'C.

火1口[ セラミック先駆体組成物の約280Kgは酸化バリウム
(Bad)の約8.47重量%、酸化鉛(PbO)の約
10.38重量%、五酸化ネオジム(Nd20i )(
’)約52.02重量%および酸化チタンの約29.1
3重量%を均一に混合してつくる。その後、スラリを乾
燥し、約1100〜1150’Cで約4時間焼成する。
One burner [approximately 280 kg of ceramic precursor composition contains approximately 8.47% by weight of barium oxide (Bad), approximately 10.38% by weight of lead oxide (PbO), neodymium pentoxide (Nd20i) (
') about 52.02% by weight and about 29.1% of titanium oxide
It is made by uniformly mixing 3% by weight. The slurry is then dried and fired at about 1100-1150'C for about 4 hours.

焼成物はその後、約、5ミクロン以下の粒子サイズまで
、ジェットミルで粉砕する。
The calcined product is then jet milled to a particle size of approximately 5 microns or less.

この粉砕物の約50gはさらに次の材料から構成されて
いる熔融組成物と第3表に示した重量%および混合比率
で混合する。この熔融組成物はチタン酸ビスマス (Bi2 Ti207 )、炭酸マンガン(MnCo3
) 、五酸化ニオブ(Nb20s >、酸化鉛(PbO
) 、酸化ホウ素(B203)、五酸化ホウ素(B2 
o、、)および酸化ケイ素で主として構成されている。
Approximately 50 g of this pulverized material is further mixed with a molten composition consisting of the following materials at the weight percentages and mixing ratios shown in Table 3. This melt composition contains bismuth titanate (Bi2Ti207), manganese carbonate (MnCo3
), niobium pentoxide (Nb20s >, lead oxide (PbO
), boron oxide (B203), boron pentoxide (B2
o, ) and silicon oxide.

焼結セラミックディスクは実施例1に記載した方法と同
一の方法でつくる。これらディスクサンプルの誘電特性
は第4表に要約して示した。この実施例はさらに次のこ
とを表わしている。すなわち、本発明によるセラミック
組成物は約0.08%以下の誘電正接で誘電率が約10
0以上であり、そしてTCC値は約60ppm/”C以
下の特性を持っていることである。
Sintered ceramic discs are made in the same manner as described in Example 1. The dielectric properties of these disk samples are summarized in Table 4. This example further illustrates the following. That is, the ceramic composition according to the present invention has a dielectric constant of about 10 with a dielectric loss tangent of about 0.08% or less.
0 or more, and the TCC value is about 60 ppm/''C or less.

セラミック組成物とバインダーとによるスラリは約16
時間混練された後、44ミクロンのスクリーンでン濾過
する。このスラリは約1500〜3000センチポアズ
の粘度を持っている。その後スラリの脱気を行い常法(
標準的な技術)によりi、5m1lsの厚さのテープに
成形する。
The slurry of ceramic composition and binder is approximately 16
After being mixed for an hour, it is filtered through a 44 micron screen. This slurry has a viscosity of approximately 1500-3000 centipoise. Afterwards, the slurry is degassed using the conventional method (
The tape is formed into a 5 ml thick tape using standard techniques).

得られたテープはパラジウム約70%と銀30%からな
る内部電極と積層にし、通常の工業的手法で積層コンデ
ンサに成形する。成形コンデンサは固定したシルコニア
セツタ上に置き、260℃で約48時間予備加熱を行っ
た後、約1080〜1140℃で約1〜4時間焼結する
。焼結しなコンデンサは約0.85から、10mmの誘
電体の厚さ範囲で、10〜25の誘電層を持っている。
The resulting tape is laminated with internal electrodes consisting of approximately 70% palladium and 30% silver and formed into a multilayer capacitor using conventional industrial techniques. The shaped capacitor is placed on a fixed silconia setter, preheated at 260°C for about 48 hours, and then sintered at about 1080-1140°C for about 1-4 hours. Sintered capacitors have 10 to 25 dielectric layers, with dielectric thicknesses ranging from about 0.85 to 10 mm.

デュポン シルバー ペイントNo、4822の端子電
極は銀とバインダー中のガラス熔融物との混合物であり
、交互に積層化した電極を結合するため、積層コンデン
サの反対側の端部に使用され、その後、トンネル炉で8
15°Cで熔融する。
DuPont Silver Paint No. 4822 terminal electrodes are a mixture of silver and glass melt in a binder and are used on opposite ends of a laminated capacitor to bond alternating laminated electrodes, then tunneled. 8 in the furnace
Melt at 15°C.

得られた積層コンデンサの25°Cと125°Cでの静
電容量(C)、誘電正接(DF)、絶縁抵抗(R)と静
電容量(C)の積(RC)と25°Cでの静電容量に対
する温度1℃(TCC)での静電容量変化は「ジェネラ
ル ラジオ 1683 オートマチック RLCブリッ
ジ ラジオ メータ I M 6  メグオーム メー
タ」と「エレクトロ サイエンティフィック インダス
トリーズ 2111OA キャパシタンス ブリッジ」
およびコンピュータ コントロールマイクロプロセッサ
を使用して測定した。
Capacitance (C), dielectric dissipation factor (DF), product (RC) of insulation resistance (R) and capacitance (C) at 25°C and 125°C of the obtained multilayer capacitor, and at 25°C The change in capacitance at a temperature of 1°C (TCC) for the capacitance of "General Radio 1683 Automatic RLC Bridge Radio Meter IM 6 Megohm Meter" and "Electro Scientific Industries 2111OA Capacitance Bridge"
and measured using a computer-controlled microprocessor.

静電容量と誘電正接はIKHzとI M Hz測定振動
数の両方で測定した。
Capacitance and dielectric loss tangent were measured at both IKHz and I MHz measurement frequencies.

絶縁抵抗は直流利用電圧量で測定し、RC積を計算した
。またDC絶縁耐力も測定しな。
The insulation resistance was measured by the amount of DC voltage used, and the RC product was calculated. Also measure the DC dielectric strength.

次に各サンプル(K)の誘電率は次式(基本静電容量式
)から計算しな。
Next, calculate the dielectric constant of each sample (K) using the following formula (basic capacitance formula).

K=(((、T)/8.854 XIO−目 L、W、N)  ・・・(3)但し、K=
サンプルの誘電率 T=各各型電層厚さ C=測測定た静電容量値(ファラッド)L=焼成した電
極の長さ(am) W=焼成した電極の幅(cm) N==性誘電層(10)の数 第6表に示したように、第5表の組成32−34の積層
セラミックコンデンサの誘電特性は次の諸事実を表わし
ている。すなわち、本発明のセラミック組成物の誘電率
は100以上で、誘電正接はIKHzにおいて 0.05%以下、TCC値は60ppm/℃以下という
特性を持ち、またIMHzにおいての誘電正接は0,1
5%以下であった、従って、本発明によるものは非常に
安定した温度特性を持つコンデンサを必要とする電子ア
プリケーション用に適している。
K=(((,T)/8.854 XIO-th L, W, N)...(3) However, K=
Dielectric constant of sample T = Thickness of each type of electric layer C = Measured capacitance value (Farad) L = Length of fired electrode (am) W = Width of fired electrode (cm) N = = Characteristic Number of dielectric layers (10) As shown in Table 6, the dielectric properties of the multilayer ceramic capacitors having compositions 32-34 in Table 5 express the following facts. That is, the ceramic composition of the present invention has a dielectric constant of 100 or more, a dielectric loss tangent of 0.05% or less at IKHz, a TCC value of 60 ppm/°C or less, and a dielectric loss tangent of 0.1 at IMHz.
5%, therefore, the present invention is suitable for electronic applications requiring capacitors with very stable temperature characteristics.

この実施例で示した数値は技術上既知の係数からの変動
を明らかにすることを目的にしている。例えば第5表組
成34についての誘電率はセラミック組成物を粉砕、混
練し、粒子を均一に分散するとか、あるいは出発原料を
非常にlia、4IIIな粒子とすることによって著し
く大きくすることができる。
The numbers shown in this example are intended to account for variations from coefficients known in the art. For example, the dielectric constant for composition 34 in Table 5 can be significantly increased by grinding and kneading the ceramic composition to uniformly disperse the particles, or by forming the starting material into highly lia, 4III particles.

実際的にはセラミックコンデンサの製造工程において、
この目的のための作業が行われる。しかし第5表組成3
4の調製においてはこの方法は充分に行われていない、
焼成条件の変化、サンプルの厚さ、調製および測定のエ
ラーは同一の組成物においても、その特性値に差異が生
じてくる。このように、製造技術やセラミック組成物の
粒子サイズ、性質等のわずかな差異により、たとえ第5
表34に示された調合割合でつくられたセラミック組成
物でも、その性質は示された数値から変化する。すなわ
ち、誘電率は10までは変化するしまた、誘電正接は±
0.02%まで変化する。さらに、25℃における静電
容量に対しては温度1℃につき±10ppm/’Cまで
変化する。
In practice, in the manufacturing process of ceramic capacitors,
Work will be carried out for this purpose. However, Table 5 Composition 3
This method has not been used sufficiently in the preparation of 4.
Changes in firing conditions, sample thickness, and errors in preparation and measurement can cause differences in characteristic values even for the same composition. In this way, due to slight differences in manufacturing technology, particle size, properties, etc. of ceramic compositions, even if the
Even for ceramic compositions made with the proportions shown in Table 34, the properties vary from the values shown. In other words, the dielectric constant changes up to 10, and the dielectric loss tangent is ±
It varies up to 0.02%. Furthermore, the capacitance at 25°C changes by ±10 ppm/'C per 1°C.

本発明はここに記載し示した説明に限定されず、これは
単に本発明を実施する最適の様式の説明のみを意図する
と理解されるべきである0本発明は、冒頭に記載した特
許請求の範囲に包含される全ゆる改変にも及ぶ。
The invention is not limited to the description set forth herein, which is to be understood as being intended only as a description of the best mode of carrying out the invention. It extends to all modifications included within the scope.

特許出願人  タム セラミックスPatent applicant Tam Ceramics

Claims (1)

【特許請求の範囲】 (1)主として酸化ストロンチウム約0〜 0.68重量%、酸化バリウム約6.61〜8.69重
量%、酸化鉛約8.32〜 11.15重量%、酸化ネオジム約 52.08〜55.03重量%、酸化チタン約28.7
6〜29.88重量%、酸化マグネシウム約0〜0.0
6重量%よりなる先駆体材料約84.7〜86.4重量
%と、主としてチタン酸ビスマス約10.00〜 10.20重量%、炭酸マンガン約0.1重量%、五酸
化ニオブ約0.25〜0.26重量%、酸化鉛約2.3
5〜4.35重量%、酸化ホウ素約0.09〜0.50
重量%および酸化ケイ素約0.28〜0.70重量%よ
りなる熔融組成物の13.61〜15.3重量%からな
るセラミック誘電体組成物。 (2)主として酸化バリウム約7.43重量%、酸化鉛
約9.46重量%、酸化ネオジム約 55.03重量%、酸化チタン約28.07重量%より
なる先駆体材料と、主としてチタン酸ビスマス約10.
00重量%、炭酸マンガン約0.10重量%、五酸化ニ
オブ約 0.25重量%、酸化鉛約3.75重量%、酸化ホウ素
約0.50重量%および酸化ケイ素約0.70重量%よ
りなるセラミック熔融組成物約15.30重量%からな
る請求項1記載のセラミック誘電体組成物。 (3)主として酸化バリウム約8,47重量%、酸化鉛
約10.38重量%、酸化ネオジム約52.02重量%
、酸化チタン約29.13重量%よりなる先駆体材料と
、主としてチタン酸ビスマス約10.0重量%、炭酸マ
ンガン約0.10重量%、五酸化ニオブ約 0.25重量%、酸化鉛約4.23重量%、酸化ホウ素
約0.21重量%および酸化ケイ素約0.51重量%よ
りなるセラミック組成物約13.61重量%からなる請
求項1記載のセラミック誘電体組成物。 (4)主として酸化バリウム約8.47重量%、酸化鉛
約10.38重量%、酸化ネオジム約52.02重量%
、酸化チタン約29.13重量%よりなる先駆体材料と
、主としてチタン酸ビスマス約10.00重量%、炭酸
マンガン約0.10重量%、五酸化ニオブ約 0.26重量%、酸化鉛約2.65重量%、酸化ホウ素
約0.13重量%および酸化ケイ素約0.32重量%よ
りなるセラミック組成物の約13.61重量%からなる
請求項1記載のセラミック誘電体組成物。 (5)内部電極を持つ請求項1〜4いずれかに記載のセ
ラミック組成物の多層からなる積層コンデンサ構造であ
つて、積層コンデンサが 1140℃以下の温度で1〜4時間焼結された積層コン
デンサ構造。 (6)内部電極が銀約70重量%とパラジウム30重量
%からなる請求項5記載の積層コンデンサ構造。
[Scope of Claims] (1) Mainly about 0 to 0.68% by weight of strontium oxide, about 6.61 to 8.69% by weight of barium oxide, about 8.32 to 11.15% by weight of lead oxide, and about about neodymium oxide. 52.08-55.03% by weight, approximately 28.7% titanium oxide
6-29.88% by weight, about 0-0.0 magnesium oxide
about 84.7-86.4% by weight of a precursor material consisting primarily of about 6% by weight of bismuth titanate, about 10.00-10.20% by weight of bismuth titanate, about 0.1% by weight of manganese carbonate, about 0.1% by weight of niobium pentoxide. 25-0.26% by weight, approximately 2.3% lead oxide
5-4.35% by weight, approximately 0.09-0.50 boron oxide
% and 13.61 to 15.3% by weight of a molten composition comprising about 0.28 to 0.70% by weight of silicon oxide. (2) a precursor material consisting mainly of about 7.43% by weight of barium oxide, about 9.46% by weight of lead oxide, about 55.03% by weight of neodymium oxide, about 28.07% by weight of titanium oxide, and mainly bismuth titanate; Approximately 10.
00% by weight, about 0.10% by weight of manganese carbonate, about 0.25% by weight of niobium pentoxide, about 3.75% by weight of lead oxide, about 0.50% by weight of boron oxide, and about 0.70% by weight of silicon oxide. The ceramic dielectric composition of claim 1 comprising about 15.30% by weight of the ceramic melt composition. (3) Mainly barium oxide about 8.47% by weight, lead oxide about 10.38% by weight, neodymium oxide about 52.02% by weight
, about 29.13% by weight of titanium oxide, and primarily about 10.0% by weight of bismuth titanate, about 0.10% by weight of manganese carbonate, about 0.25% by weight of niobium pentoxide, and about 4% by weight of lead oxide. The ceramic dielectric composition of claim 1, comprising about 13.61% by weight of a ceramic composition comprising about 0.23% by weight of boron oxide, about 0.21% by weight of boron oxide, and about 0.51% by weight of silicon oxide. (4) Mainly barium oxide about 8.47% by weight, lead oxide about 10.38% by weight, neodymium oxide about 52.02% by weight
, about 29.13% by weight of titanium oxide, and primarily about 10.00% by weight of bismuth titanate, about 0.10% by weight of manganese carbonate, about 0.26% by weight of niobium pentoxide, and about 2% by weight of lead oxide. The ceramic dielectric composition of claim 1, comprising about 13.61% by weight of the ceramic composition comprising about 0.65% by weight, about 0.13% by weight boron oxide, and about 0.32% by weight silicon oxide. (5) A multilayer capacitor structure comprising multiple layers of the ceramic composition according to any one of claims 1 to 4, having an internal electrode, the multilayer capacitor being sintered at a temperature of 1140° C. or lower for 1 to 4 hours. structure. (6) The multilayer capacitor structure according to claim 5, wherein the internal electrode comprises about 70% by weight of silver and 30% by weight of palladium.
JP63090445A 1987-04-15 1988-04-14 Dielectric ceramic composition having high dielectric constant Pending JPS643046A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3886487A 1987-04-15 1987-04-15
US038,864 1987-04-15

Publications (2)

Publication Number Publication Date
JPH013046A true JPH013046A (en) 1989-01-06
JPS643046A JPS643046A (en) 1989-01-06

Family

ID=21902345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090445A Pending JPS643046A (en) 1987-04-15 1988-04-14 Dielectric ceramic composition having high dielectric constant

Country Status (3)

Country Link
EP (1) EP0288212A1 (en)
JP (1) JPS643046A (en)
CN (1) CN88102245A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161355B2 (en) * 1997-02-28 2001-04-25 株式会社村田製作所 Insulating ceramic composition and ceramic inductor using the same
KR100362881B1 (en) * 1999-10-22 2002-11-30 엘지이노텍 주식회사 Dielectric composition and the manufacturing method
JP4983920B2 (en) 2007-06-22 2012-07-25 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
CN101775289B (en) * 2009-12-25 2012-12-19 上海师范大学 Method for synthesizing bismuth-doped calcium niobate nano luminous material
CN102115327A (en) * 2010-12-24 2011-07-06 费金华 Ceramic material for pulse power capacitor
CN102115324A (en) * 2010-12-24 2011-07-06 费金华 Doped modified SrTiO3-based high-pressure ceramic capacitor material with negative temperature coefficient
CN102115328A (en) * 2010-12-24 2011-07-06 费金华 Impact-resistance barium-titanate-based high-voltage ceramic capacitor material
DE102019111989B3 (en) 2019-05-08 2020-09-24 Tdk Electronics Ag Ceramic component and method for producing the ceramic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374298A (en) * 1976-12-13 1978-07-01 Murata Manufacturing Co High frequency dielectric ceramic composition
US4506026A (en) * 1982-12-22 1985-03-19 Tam Ceramics, Inc. Low firing ceramic dielectric for temperature compensating capacitors

Similar Documents

Publication Publication Date Title
US6270716B1 (en) Process for the production of low-temperature firing ceramic compositions
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP2000143341A (en) Dielectric ceramic composition and multilayer ceramic part
EP0169636A1 (en) Low-temperature-fired dielectric ceramic composition with a flat temperature characteristic
JP2594320B2 (en) Dielectric ceramic composition
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP3389408B2 (en) Multilayer capacitors
CN108249915B (en) Dielectric composition and electronic component
JP3471839B2 (en) Dielectric porcelain composition
JPH013046A (en) Dielectric ceramic composition with high dielectric constant
JP3638414B2 (en) Dielectric porcelain composition
JP2000223352A (en) Multilayer ceramic capacitor
EP0288212A1 (en) Dielectric ceramic compositions having high dielectric constants
JP3678073B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP2001080959A (en) Dielectric ceramic composition and laminated ceramic parts
JP2002100505A (en) Thermister/capacitor composite lamination ceramic electronic component
JP2001089234A (en) Dielectric ceramic composition and multilayer ceramic parts
CN100372802C (en) High frequency thermostable titanium barium neodymium base ceramic medium materials and multilayer sheet type ceramic capacitor
JP2536820B2 (en) LC composite parts
JP2000169221A (en) Dielectric ceramic and production thereof
JP3303453B2 (en) Dielectric porcelain composition
JP3180439B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPS6224385B2 (en)
JP3071627B2 (en) Semiconductor device