JP2002100505A - Thermister/capacitor composite lamination ceramic electronic component - Google Patents

Thermister/capacitor composite lamination ceramic electronic component

Info

Publication number
JP2002100505A
JP2002100505A JP2000287918A JP2000287918A JP2002100505A JP 2002100505 A JP2002100505 A JP 2002100505A JP 2000287918 A JP2000287918 A JP 2000287918A JP 2000287918 A JP2000287918 A JP 2000287918A JP 2002100505 A JP2002100505 A JP 2002100505A
Authority
JP
Japan
Prior art keywords
ceramic material
powder
calcined
body powder
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000287918A
Other languages
Japanese (ja)
Inventor
Naoto Kitahara
直人 北原
Koji Yagio
幸二 柳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000287918A priority Critical patent/JP2002100505A/en
Publication of JP2002100505A publication Critical patent/JP2002100505A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make an electronic component of an arbitrary semiconductor ceramic material system and an electronic component of an arbitrary dielectric ceramic material system composite by further enlarging a selection range of electric characteristics. SOLUTION: A semiconductor ceramic material layer is formed by mixing and baking calcinated powder of a semiconductor ceramic material which is formed by calcinating two or more kinds of metallic oxides such as Mn, Co, Ni, Cu or the like at a temperature lower than its sintering temperature by 100 deg.C, and calcinated powder of insulator ceramic material which is mainly composed of Ni-Zn-Cu ferrite or the like and is formed by calcinating it at 700 to 800 deg.C. The dielectric ceramic material layer is formed by mixing and baking calcinated powder of a dielectric ceramic material, which is mainly composed of PbTiO3 or the like and is formed by calcinating it at a temperature lower than its sintering temperature by 100 deg.C, and calcinated powder of an insulator ceramic material. The rate of calcinated powder of an insulator ceramic material incorporated in an insulator ceramic material layer and the rate of calcinated powder of an insulator ceramic material incorporated in a dielectric ceramic material layer are the same, and the rate is at least 40 to 80 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サーミスタに相当
する半導体磁器材料層とキャパシタに相当する誘電体磁
器材料層とを積層したセラミック電子部品に関する。更
に詳しくは、水晶等の圧電材料の温度補償用に回路基板
に実装される複合セラミック素子材料として好適な、誘
電体としての特性と、NTC(負特性)サーミスタとし
ての特性を兼備する複合積層セラミック電子部品に関す
るものである。
The present invention relates to a ceramic electronic component in which a semiconductor ceramic material layer corresponding to a thermistor and a dielectric ceramic material layer corresponding to a capacitor are laminated. More specifically, a composite multilayer ceramic having both characteristics as a dielectric and characteristics as an NTC (negative characteristic) thermistor, suitable as a composite ceramic element material mounted on a circuit board for temperature compensation of a piezoelectric material such as quartz. It relates to electronic components.

【0002】[0002]

【従来の技術】従来、発振回路の温度補償回路のよう
に、サーミスタとキャパシタ(コンデンサ)とを並列し
た回路を形成する場合には、サーミスタの単品及びキャ
パシタの単品をそれぞれ複数個用い、これらをフロー又
はリフローハンダ付けにより基板に実装することが行わ
れている。しかし、サーミスタやキャパシタを複数個用
いて回路を形成するためには、多くの部品を同一基板上
に実装するために広い実装面積を必要とすることから、
電子機器の小型化が要求されている現状に適合しない。
一方、1つのチップにサーミスタ機能とキャパシタ機能
をもたせた複合素子として、板状のサーミスタ焼結体の
板面に誘電体材料のグリーンシートを重ねて焼結し、そ
の後切断してチップ状としたものや、板状の誘電体焼結
体の板面にサーミスタ材料のグリーンシートを重ねて焼
結し、その後切断してチップ状としたものが公開されて
いる。この複合素子では、部品を積み重ねて実装するこ
とにより、実装面積を小さくすることができるが、部品
を積み重ねた場合には、積層面での密着性が十分でない
ために、所望の電気特性を得ることが困難であった。
2. Description of the Related Art Conventionally, when a circuit in which a thermistor and a capacitor (capacitor) are formed in parallel, such as a temperature compensation circuit of an oscillation circuit, a single thermistor and a single capacitor are used. Mounting on a substrate by flow or reflow soldering has been performed. However, forming a circuit using multiple thermistors and capacitors requires a large mounting area to mount many components on the same substrate.
It does not meet the current situation where electronic devices are required to be miniaturized.
On the other hand, as a composite element having a thermistor function and a capacitor function in one chip, a green sheet of a dielectric material is laminated and sintered on the plate surface of a plate-shaped thermistor sintered body, and then cut into a chip shape. There is disclosed a material or a plate-shaped dielectric sintered body in which a green sheet of a thermistor material is superposed and sintered, and then cut into chips. In this composite device, the mounting area can be reduced by stacking and mounting the components, but when the components are stacked, the desired electrical characteristics are obtained because the adhesion on the stacked surface is not sufficient. It was difficult.

【0003】これらの問題点を解決するために、本出願
人は、ペロブスカイト系誘電体10〜90重量%と金属
複合酸化物NTCサーミスタ90〜10重量%とを含む
ことを特徴とする複合セラミック、及びこの複合セラミ
ックの層と内部電極の層とが交互に積層された素体の両
端面に外部電極が形成されてなることを特徴とする複合
セラミック素子を提案した(特開2000−7254
8)。この複合セラミック素子は次の方法により作られ
る。まずペロブスカイト系誘電体と金属複合酸化物NT
Cサーミスタの各々を、原料の混合、焼成(800〜1
000℃)により作成し、これらの誘電体とサーミスタ
とを所定割合で混合及び粉砕して混合粉体とする。この
混合粉体に有機溶剤及びバインダを添加し、混練してセ
ラミックペーストとし、常法に従ってグリーンシートと
する。このグリーンシートに対し所定パターンにて内部
電極層形成用の導電材料ペーストを印刷して内部電極層
を形成する。この上にグリーンシートを重ね内部電極層
印刷する。この積層及び印刷を所要回数繰り返すことに
より積層シートとし、この積層シートに加圧処理を施し
た後、チップ状に切断する。そして、脱バインダ後、1
000〜1200℃程度で焼成して複合セラミック焼結
体チップとする。このチップにバレル研摩等の研摩処理
を施した後、チップの両端面にディップ法、メッキ法等
により一対の外部電極を形成し、必要に応じ焼成して外
部電極をチップに焼き付け、複合セラミック素子製品と
する。
In order to solve these problems, the present applicant has developed a composite ceramic comprising 10 to 90% by weight of a perovskite-based dielectric and 90 to 10% by weight of a metal composite oxide NTC thermistor. In addition, a composite ceramic element has been proposed in which external electrodes are formed on both end faces of a body in which the composite ceramic layers and the internal electrode layers are alternately laminated (Japanese Patent Laid-Open No. 2000-7254).
8). This composite ceramic element is manufactured by the following method. First, a perovskite dielectric and a metal composite oxide NT
Each of the C thermistors is mixed with raw materials and fired (800 to 1).
000 ° C.), and these dielectrics and the thermistor are mixed and pulverized at a predetermined ratio to obtain a mixed powder. An organic solvent and a binder are added to the mixed powder and kneaded to form a ceramic paste, which is formed into a green sheet according to a conventional method. A conductive material paste for forming an internal electrode layer is printed on the green sheet in a predetermined pattern to form an internal electrode layer. A green sheet is superimposed on this and the internal electrode layer is printed. This lamination and printing are repeated a required number of times to form a laminated sheet. The laminated sheet is subjected to a pressure treatment and then cut into chips. After removing the binder, 1
It is fired at about 000 to 1200 ° C. to obtain a composite ceramic sintered body chip. After subjecting the chip to a polishing process such as barrel polishing, a pair of external electrodes is formed on both end surfaces of the chip by dipping, plating, etc., and, if necessary, firing to burn the external electrodes onto the chip. Products.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開2000−72548号公報に示される複合セラミッ
ク素子製品は小型化できるものの、最終的な焼成温度が
1000〜1200℃であるため、比抵抗が小さく融点
が960℃のAgのみを内部電極として用いることがで
きない。このためAgに融点の高いPdを含有した内部
電極にしなければならず、内部電極の比抵抗が大きくな
る不具合があった。またこの複合セラミックは、誘電体
組成物とサーミスタ組成物の混合粉体の焼結体であるた
め、焼成時に粒子界面にサーミスタ又はキャパシタとし
ての本来の特性を損なう反応生成物が比較的多く生じる
欠点もあった。
However, although the composite ceramic element product disclosed in Japanese Patent Application Laid-Open No. 2000-72548 can be miniaturized, the specific resistance is low since the final firing temperature is 1000 to 1200 ° C. Only Ag having a melting point of 960 ° C. cannot be used as an internal electrode. For this reason, it is necessary to use an internal electrode containing Ag having a high melting point in Pd, and there is a problem that the specific resistance of the internal electrode becomes large. In addition, since this composite ceramic is a sintered body of a mixed powder of a dielectric composition and a thermistor composition, a relatively large amount of reaction products that impair the thermistor or capacitor characteristics at the particle interface during firing are generated. There was also.

【0005】本発明の目的は、大気中960℃以下で焼
結してAg100%の内部電極を形成でき、かつサーミ
スタ性並列抵抗を10Ω以上、25℃の10〜30MH
zにおける並列容量を5pF以上、サーミスタB定数を
2000K以上にすることができる、サーミスタ・キャ
パシタ複合積層セラミック電子部品を提供することにあ
る。本発明の別の目的は、被焼成物の粒界における反応
生成物が比較的少なく所期のサーミスタ特性及びキャパ
シタ特性が得られ、また焼成後に亀裂や反りが発生しな
い、サーミスタ・キャパシタ複合積層セラミック電子部
品を提供することにある。本発明の更に別の目的は、発
振回路の温度補償回路等のサーミスタ−キャパシタ並列
回路の実装面積を小型化し得る、サーミスタ・キャパシ
タ複合積層セラミック電子部品を提供することにある。
It is an object of the present invention to form an internal electrode of 100% Ag by sintering at 960 ° C. or lower in the atmosphere and to provide a thermistor parallel resistance of 10Ω or more and 10-30 MH at 25 ° C.
An object of the present invention is to provide a thermistor-capacitor composite multilayer ceramic electronic component capable of increasing the parallel capacitance at z to 5 pF or more and the thermistor B constant to 2000 K or more. Another object of the present invention is to provide a thermistor-capacitor composite multilayer ceramic which has relatively few reaction products at the grain boundaries of an object to be fired, provides desired thermistor characteristics and capacitor characteristics, and does not generate cracks or warpage after firing. To provide electronic components. Still another object of the present invention is to provide a thermistor-capacitor composite multilayer ceramic electronic component capable of reducing the mounting area of a thermistor-capacitor parallel circuit such as a temperature compensation circuit of an oscillation circuit.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1〜図3及び図5に示すように、半導体磁器材料層1
1と誘電体磁器材料層12とを積層して基体が形成さ
れ、この半導体磁器材料層11からなる第1積層体が一
対の第1内部電極31を有するサーミスタであり、この
誘電体磁器材料層12からなる第2積層体が互いに平行
に形成された複数の平面状の第2内部電極を有するキャ
パシタであり、半導体磁器材料層11がMnO,Co
O,NiO,CuO,Fe23及びAl23からなる群
より選ばれた2種以上の金属酸化物からなりかつその焼
結温度より100℃低い温度ないしその焼結温度で仮焼
若しくは焼成してなる第1骨材としてのスピネル構造の
半導体磁器材料の仮焼体粉末若しくは焼結体粉末と、9
60℃以下の温度で焼結可能であって700〜800℃
の温度で仮焼してなるマトリックス材としての絶縁体磁
器材料の仮焼体粉末とを混合して焼成してなり、誘電体
磁器材料層12がPbTiO3、BaTiO3及びSrT
iO3からなる群より選ばれた1種又は2種以上を主成
分としかつその焼結温度より100℃低い温度ないしそ
の焼結温度で仮焼若しくは焼成してなる第2骨材として
の誘電体磁器材料の仮焼体粉末若しくは焼結体粉末と、
マトリックス材としての上記絶縁体磁器材料とを混合し
て焼成してなり、半導体磁器材料層11に含まれる絶縁
体磁器材料の仮焼体粉末の体積割合と誘電体磁器材料層
12に含まれる絶縁体磁器材料の仮焼体粉末の体積割合
とが同一であってこの体積割合が40〜80体積%であ
ることを特徴とするサーミスタ・キャパシタ複合積層セ
ラミック電子部品である。
The invention according to claim 1 is
As shown in FIG. 1 to FIG. 3 and FIG.
1 and a dielectric ceramic material layer 12 are laminated to form a base, and a first laminate composed of the semiconductor ceramic material layer 11 is a thermistor having a pair of first internal electrodes 31. 12 is a capacitor having a plurality of planar second internal electrodes formed in parallel with each other, and the semiconductor ceramic material layer 11 is formed of MnO, Co
It consists of two or more metal oxides selected from the group consisting of O, NiO, CuO, Fe 2 O 3 and Al 2 O 3 and is calcined at a temperature 100 ° C. lower than the sintering temperature or at the sintering temperature. A calcined body powder or a sintered body powder of a semiconductor ceramic material having a spinel structure as a first aggregate obtained by firing;
Sinterable at temperatures below 60 ° C, 700-800 ° C
Is mixed with a calcined body powder of an insulating porcelain material as a matrix material calcined at the temperature described above, and the mixture is baked, and the dielectric porcelain material layer 12 is made of PbTiO 3 , BaTiO 3 and SrT.
Dielectric as a second aggregate containing one or more members selected from the group consisting of iO 3 as main components and calcined or fired at a temperature 100 ° C. lower than the sintering temperature or at the sintering temperature Calcined body powder or sintered body powder of porcelain material,
The above-mentioned insulator ceramic material as a matrix material is mixed and fired, and the volume ratio of the calcined powder of the insulator ceramic material contained in the semiconductor ceramic material layer 11 and the insulation contained in the dielectric ceramic material layer 12 are obtained. A thermistor-capacitor composite multilayer ceramic electronic component, wherein the volume ratio of the calcined body powder of the body porcelain material is the same and the volume ratio is 40 to 80 volume%.

【0007】この請求項1に記載された複合積層セラミ
ック電子部品では、半導体磁器材料及び誘電体磁器材料
は予め焼結温度又はそれに近い温度で焼成若しくは仮焼
されているため、第1及び第2積層体の焼成時に、半導
体磁器材料及び絶縁体磁器材料の粒界や、誘電体磁器材
料及び絶縁体磁器材料の粒界における反応性が抑制され
る。また絶縁体磁器材料は上記第1及び第2積層体を9
60℃以下の温度で焼成するときに上記半導体磁器材料
や誘電体磁器材料を分散状態でそれぞれ被包するので、
サーミスタ性並列抵抗を10Ω以上、25℃の10〜3
0MHzにおける並列容量を5pF以上、サーミスタB
定数を2000K以上にすることができ、かつ絶縁体磁
器材料により低温焼結を実現できる。
In the composite monolithic ceramic electronic component according to the first aspect of the present invention, the semiconductor ceramic material and the dielectric ceramic material are preliminarily fired or calcined at a sintering temperature or a temperature close to the sintering temperature. During firing of the laminate, reactivity at the grain boundaries of the semiconductor ceramic material and the insulator ceramic material and at the grain boundaries of the dielectric ceramic material and the insulator ceramic material are suppressed. Insulating porcelain material is composed of the first and second laminates as 9
When firing at a temperature of 60 ° C. or less, the semiconductor porcelain material and the dielectric porcelain material are encapsulated in a dispersed state, respectively.
Thermistor parallel resistance is 10Ω or more and 10 to 3 at 25 ° C.
Thermistor B with a parallel capacitance of 5 pF or more at 0 MHz
The constant can be 2000K or more, and low-temperature sintering can be realized by the insulator porcelain material.

【0008】請求項2に係る発明は、請求項1に係る発
明であって、更に半導体磁器材料層11に含まれる半導
体磁器材料の仮焼体粉末若しくは焼結体粉末の体積割合
と誘電体磁器材料層12に含まれる誘電体磁器材料の仮
焼体粉末若しくは焼結体粉末の体積割合が同一であるこ
とを特徴とする。請求項3に係る発明は、請求項1に係
る発明であって、更に半導体磁器材料層11に含まれる
半導体磁器材料の仮焼体粉末若しくは焼結体粉末の体積
割合が誘電体磁器材料層12に含まれる誘電体磁器材料
の仮焼体粉末若しくは焼結体粉末の体積割合と異なり、
この体積割合の異なる分だけ絶縁体磁器材料の焼結体粉
末が第3骨材として含まれることを特徴とする。この請
求項2又は3に記載された複合積層セラミック電子部品
では、第1及び第2積層体の熱膨張係数や焼成温度等を
同一にすることができるので、焼成後に亀裂や反りが発
生しない。
The invention according to claim 2 is the invention according to claim 1, wherein the volume ratio of the calcined body powder or the sintered body powder of the semiconductor ceramic material contained in the semiconductor ceramic material layer 11 is determined. The volume ratio of the calcined powder or the sintered powder of the dielectric ceramic material contained in the material layer 12 is the same. The invention according to claim 3 is the invention according to claim 1, wherein the volume ratio of the calcined body powder or the sintered body powder of the semiconductor porcelain material contained in the semiconductor porcelain material layer 11 is further reduced. Different from the volume ratio of the calcined body powder or sintered body powder of the dielectric ceramic material contained in,
It is characterized in that the sintered body powder of the insulating porcelain material is included as the third aggregate by the difference in the volume ratio. In the composite multilayer ceramic electronic component according to the second or third aspect, the first and second laminates can have the same coefficient of thermal expansion, the same sintering temperature, and the like, so that cracks and warpage do not occur after firing.

【0009】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、更に絶縁体磁器材料がN
i−Zn−Cu系フェライトを主成分とする磁器材料の
仮焼体粉末であることを特徴とする。これらの絶縁体磁
器材料は半導体磁器材料のサーミスタとしての特性、及
び誘電体磁器材料のキャパシタとしての特性を損うこと
が比較的少ない。
The invention according to claim 4 is the invention according to claims 1 to 3
The invention according to any of the above, wherein the insulator porcelain material further comprises N
It is characterized by being a calcined body powder of a porcelain material containing i-Zn-Cu-based ferrite as a main component. These insulator porcelain materials relatively little impair the characteristics of the semiconductor porcelain material as a thermistor and the characteristics of the dielectric porcelain material as a capacitor.

【0010】請求項5に係る発明は、請求項1ないし4
いずれかに係る発明であって、更に第1内部電極31及
び第2内部電極32がそれぞれAg100%からなるこ
とを特徴とする。この請求項5に記載された複合積層セ
ラミック電子部品では、絶縁体磁器材料の存在により低
温で焼結することができるので、Ag100%の内部電
極を実現できる。
[0010] The invention according to claim 5 is the invention according to claims 1 to 4.
The invention according to any one of the above, further characterized in that each of the first internal electrode 31 and the second internal electrode 32 is made of 100% Ag. In the composite multilayer ceramic electronic component according to the fifth aspect, sintering can be performed at a low temperature due to the presence of the insulator porcelain material, so that an internal electrode of 100% Ag can be realized.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。本発明の電子部品は、半導体磁器材
料及び誘電体磁器材料を用いてサーミスタとキャパシタ
とを複合化した積層セラミック型チップ部品である。図
1〜図5に示すように、積層セラミック形チップ部品1
0は半導体磁器材料層11(以下、半導体層という)と
誘電体磁器材料層12(以下、誘電体層という)とを積
層して形成された基体13を備える。半導体層11から
なる第1積層体内には積層面に沿って互いに対向するよ
うに形成された一対の内部電極31がが設けられ、誘電
体層12からなる第2積層体内には互いに平行に形成さ
れた複数の平面状の内部電極32が設けられる(図2、
図3及び図5)。
Embodiments of the present invention will now be described with reference to the drawings. The electronic component of the present invention is a multilayer ceramic chip component in which a thermistor and a capacitor are combined using a semiconductor ceramic material and a dielectric ceramic material. As shown in FIGS. 1 to 5, the multilayer ceramic chip component 1
Reference numeral 0 denotes a base 13 formed by laminating a semiconductor ceramic material layer 11 (hereinafter, referred to as a semiconductor layer) and a dielectric ceramic material layer 12 (hereinafter, referred to as a dielectric layer). A pair of internal electrodes 31 formed so as to face each other along the lamination surface is provided in the first laminate made of the semiconductor layer 11, and formed in parallel with each other in the second laminate made of the dielectric layer 12. A plurality of planar internal electrodes 32 are provided as shown in FIG.
3 and 5).

【0012】半導体層11はMnO,CoO,NiO,
CuO,Fe23及びAl23からなる群より選ばれた
2種以上の金属酸化物からなりかつその焼結温度より1
00℃低い温度ないしその焼結温度で仮焼若しくは焼成
してなるスピネル構造の半導体磁器材料(第1骨材)の
仮焼体粉末若しくは焼結体粉末と、960℃以下の温度
で焼結可能であって700〜800℃の温度で仮焼して
なる絶縁体磁器材料(マトリックス材)の仮焼体粉末と
を混合して焼成してなる(図4)。誘電体層12はPb
TiO3、BaTiO3及びSrTiO3からなる群より
選ばれた1種又は2種以上を主成分としかつその焼結温
度より100℃低い温度ないしその焼結温度で仮焼若し
くは焼成してなる誘電体磁器材料(第2骨材)の仮焼体
粉末若しくは焼結体粉末と、上記マトリックス材の仮焼
体粉末とを混合して焼成してなる(図4)。また半導体
層11に含まれるマトリックス材の仮焼体粉末の体積割
合と誘電体層12に含まれるマトリックス材の仮焼体粉
末の体積割合とは同一であって、その体積割合は40〜
80体積%の範囲内にある。
The semiconductor layer 11 is made of MnO, CoO, NiO,
It is composed of two or more metal oxides selected from the group consisting of CuO, Fe 2 O 3 and Al 2 O 3 and has a sintering temperature of 1 or more.
Sintered at a temperature of 960 ° C or lower with a calcined or sintered powder of a semiconductor ceramic material (first aggregate) having a spinel structure which is calcined or fired at a temperature as low as 00 ° C or its sintering temperature. This is obtained by mixing and calcining a calcined body powder of an insulating ceramic material (matrix material) calcined at a temperature of 700 to 800 ° C. (FIG. 4). The dielectric layer 12 is made of Pb
A dielectric material containing one or more members selected from the group consisting of TiO 3 , BaTiO 3 and SrTiO 3 as main components and calcined or fired at a temperature 100 ° C. lower than the sintering temperature or at the sintering temperature. The calcined body powder or sintered body powder of the porcelain material (second aggregate) and the calcined body powder of the matrix material are mixed and fired (FIG. 4). The volume ratio of the calcined body powder of the matrix material contained in the semiconductor layer 11 and the volume ratio of the calcined body powder of the matrix material contained in the dielectric layer 12 are the same, and the volume ratio is 40 to
It is in the range of 80% by volume.

【0013】また半導体層11に含まれる第1骨材の仮
焼体粉末若しくは焼結体粉末の体積割合は誘電体層12
に含まれる第2骨材の仮焼体粉末若しくは焼結体粉末の
体積割合と同一であっても、或いは異なってもよい。半
導体層11に含まれる第1骨材の仮焼体粉末若しくは焼
結体粉末の体積割合が誘電体層12に含まれる第2骨材
の仮焼体粉末若しくは焼結体粉末の体積割合と異なる場
合には、その体積割合の異なる分だけマトリックス材の
焼結体粉末を第3骨材として含ませる。更に基体13の
両端にはそれぞれ第1及び第2外部電極41,42が形
成される(図1,図2及び図5)。第1及び第2外部電
極41,42は内部電極31及び内部電極32に電気的
に接続される。上記内部電極31及び内部電極32はA
g100%によりそれぞれ形成されることが好ましい。
The volume ratio of the calcined powder or sintered powder of the first aggregate contained in the semiconductor layer 11 is determined by the dielectric layer 12.
May be the same as or different from the volume ratio of the calcined body powder or the sintered body powder of the second aggregate contained in the second aggregate. The volume ratio of the calcined body powder or the sintered body powder of the first aggregate contained in the semiconductor layer 11 is different from the volume ratio of the calcined body powder or the sintered body powder of the second aggregate contained in the dielectric layer 12. In this case, the sintered body powder of the matrix material is included as the third aggregate by an amount different from the volume ratio. Further, first and second external electrodes 41 and 42 are formed on both ends of the base 13, respectively (FIGS. 1, 2 and 5). The first and second external electrodes 41 and 42 are electrically connected to the internal electrodes 31 and 32. The internal electrodes 31 and 32 are A
g is preferably formed by 100%.

【0014】本発明の電子部品の製造方法を図3及び図
4に基づいて説明する。 (a) 半導体磁器材料(第1骨材)の製造方法 半導体磁器材料は、Mn酸化物(MnO)粉末,Co酸
化物(CoO)粉末,Ni酸化物(NiO)粉末,Cu
酸化物(CuO)粉末、Fe酸化物(Fe23)粉末及
びAl酸化物(Al23)粉末からなる群より選ばれた
2種以上を主な原料粉末とする。原料粉末にはB定数及
び抵抗率の調整又は誘電率の減少の目的で上記金属元素
以外の他の元素(例えば、Mg、Ca、Si等)を含有
させることもできる。上記原料粉末を湿式又は乾式で所
定の割合で混合し第1混合粉末を得る。得られた第1混
合粉末にバインダを加えて混練造粒し、所定の形状に成
形する。この成形体を大気雰囲気でその焼結温度より1
00℃、好ましくは50℃低い温度で仮焼するか、或い
はその焼結温度で焼成して金属酸化物の仮焼体若しくは
焼結体を作製する。上記仮焼温度若しくは焼成温度は原
料粉末の組成に応じて変化するが、例えば1000〜1
400℃である。焼結温度より100℃低くてもよいの
は、後述する第4及び第5混合粉末で焼成するときにこ
の温度であってもこの仮焼体粉末の粒界での反応性を抑
えられるからである。
A method for manufacturing an electronic component according to the present invention will be described with reference to FIGS. (a) Manufacturing method of semiconductor porcelain material (first aggregate) Semiconductor porcelain materials include Mn oxide (MnO) powder, Co oxide (CoO) powder, Ni oxide (NiO) powder, Cu
Two or more selected from the group consisting of oxide (CuO) powder, Fe oxide (Fe 2 O 3 ) powder, and Al oxide (Al 2 O 3 ) powder are used as main raw material powders. The raw material powder may contain other elements (eg, Mg, Ca, Si, etc.) other than the above metal elements for the purpose of adjusting the B constant and the resistivity or decreasing the dielectric constant. The above raw material powders are mixed at a predetermined ratio by a wet or dry method to obtain a first mixed powder. A binder is added to the obtained first mixed powder, and the mixture is kneaded and granulated to form a predetermined shape. The molded body is heated in an air atmosphere at a temperature lower than its sintering temperature by one.
It is calcined at a temperature lower by 00 ° C., preferably 50 ° C., or calcined at the sintering temperature to produce a calcined or sintered body of a metal oxide. The calcination temperature or the calcination temperature varies depending on the composition of the raw material powder.
400 ° C. The reason why the temperature may be lower by 100 ° C. than the sintering temperature is that the reactivity at the grain boundary of the calcined body powder can be suppressed even at this temperature when firing with the fourth and fifth mixed powders described below. is there.

【0015】次いで得られた金属酸化物の仮焼体若しく
は焼結体をボールミル等で粉砕して篩い分けし平均粒径
が10μm以下、好ましくは1〜6μmの第1骨材とす
る。これは、積層サーミスタでは通常一層の厚さは20
μm以下であり、第1骨材の平均粒径が10μmを越え
ると第1骨材とマトリックス材を含んだ層を形成できな
いからである。この第1骨材の粒径は次に述べるマトリ
ックス材の絶縁体磁器材料粉末の粒径より大きくする。
好ましくはマトリックス材より1桁程度大きくする。こ
れは半導体磁器材料の粒径を絶縁体磁器材料の粒径より
同等若しくは小さくすると、半導体磁器材料及び絶縁体
磁器材料を混合して焼成したときに、半導体磁器材料層
内に空隙が発生し、半導体磁器材料層のクラック、歪み
の原因となるからである。
Next, the calcined or sintered body of the obtained metal oxide is pulverized by a ball mill or the like and sieved to obtain a first aggregate having an average particle diameter of 10 μm or less, preferably 1 to 6 μm. This is usually the case for a laminated thermistor with a single layer thickness of 20
If the average particle size of the first aggregate exceeds 10 μm, a layer containing the first aggregate and the matrix material cannot be formed. The particle size of the first aggregate is made larger than the particle size of the insulating ceramic material powder of the matrix material described below.
Preferably, it is about one digit larger than the matrix material. This is because if the particle size of the semiconductor porcelain material is equal to or smaller than the particle size of the insulator porcelain material, when the semiconductor porcelain material and the insulator porcelain material are mixed and fired, voids are generated in the semiconductor porcelain material layer, This is because it causes cracks and distortion of the semiconductor ceramic material layer.

【0016】(b) 誘電体磁器材料(第2骨材)の製造方
法 誘電体磁器材料は、PbTiO3、BaTiO3及びSr
TiO3からなる群より選ばれた1種又は2種以上を主
成分とする。即ち第2骨材はPb2O粉末,BaO粉末
及びSrO粉末からなる群より選ばれた1種又は2種以
上の粉末と、TiO2粉末とを主な原料粉末とする。上
記原料粉末には高誘電率化又は温度特性の安定化等の目
的で他の元素(例えば、Mo、W、Ag等)を含有させ
ることもできる。上記原料粉末を湿式又は乾式で所定の
割合で混合し第2混合粉末を得る。得られた第2混合粉
末にバインダを加えて混練造粒し、所定の形状に成形す
る。この成形体を大気中でその焼結温度より100℃、
好ましくは50℃低い温度で仮焼するか、或いはその焼
結温度で焼成して仮焼体若しくは焼結体を作製する。上
記仮焼温度若しくは焼成温度は、原料粉末の組成に応じ
て変化するが、例えば1100〜1300℃である。焼
結温度より100℃低くてもよいのは、上記(a)で述べ
た理由と同じである。
(B) Manufacturing method of dielectric porcelain material (second aggregate) PbTiO 3 , BaTiO 3 and Sr
One or more selected from the group consisting of TiO 3 is used as a main component. That is, the second aggregate has one or more powders selected from the group consisting of Pb 2 O powder, BaO powder and SrO powder, and TiO 2 powder as main raw material powders. The raw material powder may contain other elements (for example, Mo, W, Ag, etc.) for the purpose of increasing the dielectric constant or stabilizing the temperature characteristics. The above raw material powders are mixed at a predetermined ratio in a wet or dry system to obtain a second mixed powder. A binder is added to the obtained second mixed powder, and the mixture is kneaded and granulated to form a predetermined shape. This molded body is heated at 100 ° C.
Preferably, it is calcined at a temperature lower by 50 ° C. or calcined at the sintering temperature to produce a calcined body or a sintered body. The calcination temperature or the calcination temperature varies depending on the composition of the raw material powder, and is, for example, 1100 to 1300 ° C. The reason why the temperature may be lower by 100 ° C. than the sintering temperature is the same as the reason described in the above (a).

【0017】次いで得られた金属酸化物の仮焼体若しく
は焼結体をボールミル等で粉砕して篩い分けし平均粒径
が10μm以下、好ましくは1〜6μmの第2骨材とす
る。これは、積層キャパシタ(コンデンサ)では通常一
層の厚さは10〜20μmであり、第2骨材の平均粒径
が10μmを越えると第2骨材とマトリックス材を含ん
だ層を形成できないからである。この第2骨材の粒径
は、次に述べるマトリックス材の絶縁体磁器材料粉末の
粒径より大きくする。好ましくはマトリックス材より1
桁程度大きくする。この理由は上記(a)で述べた理由と
同じであって、誘電体磁器材料層のクラック、歪みの原
因となるからである。
Next, the calcined or sintered body of the obtained metal oxide is pulverized by a ball mill or the like and sieved to obtain a second aggregate having an average particle diameter of 10 μm or less, preferably 1 to 6 μm. This is because a multilayer capacitor (capacitor) generally has a thickness of 10 to 20 μm, and if the average particle size of the second aggregate exceeds 10 μm, a layer containing the second aggregate and the matrix material cannot be formed. is there. The particle size of the second aggregate is made larger than the particle size of the insulating ceramic material powder of the matrix material described below. Preferably one more than the matrix material
Increase by about an order of magnitude. The reason for this is the same as the reason described in the above (a), because it causes cracks and distortion of the dielectric ceramic material layer.

【0018】(c) 絶縁体磁器材料(マトリックス材)の
製造方法 絶縁体磁器材料は、960℃以下の温度で焼結可能であ
って700〜800℃の温度で仮焼してなる、Ni−Z
n−Cu系フェライトを主成分とする磁器材料の仮焼体
粉末である。このNi−Zn−Cu系フェライトを主成
分とする磁性体磁器材料は、Fe酸化物(Fe23)粉
末、Ni酸化物(NiO)粉末、Zn酸化物(ZnO)
粉末及びCu酸化物(CuO)を主な原料粉末とする。
原料粉末には焼結性の向上の目的で上記金属元素以外の
他の元素(例えば、Mg、Ca等)を含有させることも
できる。上記原料粉末を湿式又は乾式で所定の割合で混
合し第3混合粉末を得る。Fe23は48〜52モル
%、NiOは10〜40モル%、ZnOは10〜40モ
ル%及びCuOは10〜30モル%の割合で秤量され
る。得られた第3混合粉末を700〜800℃の温度で
仮焼して仮焼体を得て、このNi−Zn−Cu系フェラ
イト仮焼体をボールミル等で粉砕して篩い分けし、上記
(a)及び(b)で述べた第1及び第2骨材より小さい粒径の
マトリックス材となる粉末状の絶縁体磁器材料の仮焼体
粉末を得る。第1及び第2骨材の平均粒径を1〜10μ
mにするときには、上述した理由により、絶縁体磁器材
料のマトリックス材の平均粒径を1μm未満、好ましく
は0.1〜0.5μmにする。
(C) Manufacturing method of insulator porcelain material (matrix material) The insulator porcelain material can be sintered at a temperature of 960 ° C. or less and calcined at a temperature of 700 to 800 ° C. Z
It is a calcined body powder of a porcelain material containing n-Cu-based ferrite as a main component. The magnetic porcelain material containing Ni-Zn-Cu ferrite as a main component includes Fe oxide (Fe 2 O 3 ) powder, Ni oxide (NiO) powder, and Zn oxide (ZnO).
Powder and Cu oxide (CuO) are the main raw material powders.
The raw material powder may contain other elements (for example, Mg, Ca, etc.) other than the above metal elements for the purpose of improving sinterability. The raw material powder is mixed at a predetermined ratio by a wet or dry method to obtain a third mixed powder. Fe 2 O 3 is 48 to 52 mol%, NiO is 10 to 40 mol%, ZnO 10 to 40 mol% and CuO are weighed at a ratio of 10 to 30 mol%. The obtained third mixed powder is calcined at a temperature of 700 to 800 ° C. to obtain a calcined body, and this Ni—Zn—Cu ferrite calcined body is pulverized by a ball mill or the like and sieved.
A calcined powder of a powdery insulating porcelain material to be a matrix material having a smaller particle size than the first and second aggregates described in (a) and (b) is obtained. The average particle size of the first and second aggregates is 1 to 10 μm
When it is set to m, the average particle size of the matrix material of the insulating porcelain material is set to less than 1 μm, preferably 0.1 to 0.5 μm for the above-described reason.

【0019】(d) 内部電極31を含む第1積層体の製造
方法 上記(a)の第1骨材の仮焼体粉末等(第1混合粉末)と
上記(c)のマトリックス材の仮焼体粉末(第3混合粉
末)とを湿式又は乾式で混合して第4混合粉末を得る。
その混合割合はマトリックス材が40〜80体積%であ
り、残部が第1骨材である。マトリックス材が40体積
%未満では焼成後の第1積層体が多孔質になり実用上の
強度が得られない上、第1積層体をめっきしたときにめ
っき液が第1積層体内部に侵入するおそれがある。また
80体積%を越えると第1骨材の割合が減少し過ぎて、
サーミスタ特性に優れた第1積層体が得られない。第1
骨材及びマトリックス材の混合割合は、必要とするサー
ミスタ特性に応じて上記範囲内から決定される。
(D) Method for manufacturing first laminate including internal electrode 31 The calcined body powder (first mixed powder) of the first aggregate of (a) and the matrix material of (c) above The body powder (third mixed powder) is mixed in a wet or dry manner to obtain a fourth mixed powder.
The mixing ratio of the matrix material is 40 to 80% by volume, and the balance is the first aggregate. If the matrix material is less than 40% by volume, the fired first laminate becomes porous and practical strength cannot be obtained. In addition, when the first laminate is plated, a plating solution enters the inside of the first laminate. There is a risk. If it exceeds 80% by volume, the ratio of the first aggregate will decrease too much,
A first laminate having excellent thermistor characteristics cannot be obtained. First
The mixing ratio of the aggregate and the matrix material is determined from the above range according to the required thermistor characteristics.

【0020】図3に示すように、グリーンの状態の第1
積層体は複数の半導体層11a,11bを積層し、これ
らの半導体層11a,11bの表面に第1内部電極31
を形成して作られる。半導体層11a,11b形成する
には、第4混合粉末に分散剤、バインダ、可塑剤、溶剤
等を添加して混合し、印刷用材料ペースト(以下、第1
印刷ペーストという)又はグリーンシート形成用ペイン
ト(以下、第1シート用ペイントという)のいずれか一
方又は双方を調製した後、印刷積層又はシート積層のい
ずれか一方又は双方によりグリーンの状態の第1積層体
21を作製する。内部電極31は上記第1印刷ペースト
又は第1シート用ペイントの積層の間にAg100%の
導電ペーストを印刷し形成する。
As shown in FIG. 3, the first state of the green state
The stacked body is formed by stacking a plurality of semiconductor layers 11a and 11b, and a first internal electrode 31 is formed on the surface of these semiconductor layers 11a and 11b.
Formed. In order to form the semiconductor layers 11a and 11b, a dispersing agent, a binder, a plasticizer, a solvent, and the like are added to the fourth mixed powder and mixed, and then a printing material paste (hereinafter, referred to as a first paste) is used.
After preparing one or both of a paint for forming a green sheet (hereinafter referred to as paint for a first sheet) and a paint for forming a green sheet (hereinafter referred to as a paint for a first sheet), the first laminate in a green state is formed by one or both of a print laminate and a sheet laminate. The body 21 is manufactured. The internal electrode 31 is formed by printing a conductive paste of 100% Ag during lamination of the first printing paste or the first sheet paint.

【0021】(e) 内部電極32を含む第2積層体の第1
積層体への積層方法 上記(b)の第2骨材の仮焼体粉末等(第2混合粉末)と
上記(c)のマトリックス材の仮焼体粉末(第3混合粉
末)とを湿式又は乾式で混合して第5混合粉末を得る。
その混合割合はマトリックス材が40〜80体積%であ
り、残部が第2骨材である。マトリックス材が40体積
%未満では焼成後の第2積層体が多孔質になり実用上の
強度が得られない上、第2積層体をめっきしたときにめ
っき液が第2積層体内部に侵入するおそれがある。また
80体積%を越えると第2骨材の割合が減少し過ぎて、
高誘電率の第2積層体が得られない。第2骨材及びマト
リックス材の混合割合は、必要とする誘電率に応じて上
記範囲内から決定される。
(E) The first of the second laminate including the internal electrode 32
Laminating Method to Laminate The calcined body powder of the second aggregate (b) (the second mixed powder) and the calcined body powder of the matrix material (c) of the above (c) (the third mixed powder) are wet or The fifth mixed powder is obtained by dry mixing.
The mixing ratio of the matrix material is 40 to 80% by volume, and the balance is the second aggregate. If the amount of the matrix material is less than 40% by volume, the second laminate after firing becomes porous, and practical strength cannot be obtained. In addition, when the second laminate is plated, a plating solution enters the inside of the second laminate. There is a risk. If it exceeds 80% by volume, the ratio of the second aggregate will be too low,
A second laminate having a high dielectric constant cannot be obtained. The mixing ratio of the second aggregate and the matrix material is determined from the above range according to the required dielectric constant.

【0022】図3に示すように、グリーンの状態の第2
積層体の誘電体層12は第1グリーン積層体22上に積
層される。第2積層体は複数の誘電体層12a,12
b,12cを積層し、これらの誘電体層12a,12b
の表面に第2内部電極32を形成して作られる。誘電体
層12a〜12cを形成するには、第5混合粉末に分散
剤、バインダ、可塑剤、溶剤等を添加して混合し、第2
印刷ペースト又は第2シート用ペイントのいずれか一方
又は双方を調製した後、印刷積層又はシート積層のいず
れか一方又は双方によりグリーンの状態の第1積層体2
1上に積層する。内部電極32は上記第2印刷ペースト
又は第2シート用ペイントの積層の間にAg100%の
導電ペーストを印刷し形成する。
As shown in FIG. 3, the second green state
The dielectric layer 12 of the laminate is laminated on the first green laminate 22. The second stacked body includes a plurality of dielectric layers 12a and 12a.
b, 12c, and these dielectric layers 12a, 12b
Is formed by forming a second internal electrode 32 on the surface of the substrate. In order to form the dielectric layers 12a to 12c, a dispersant, a binder, a plasticizer, a solvent, and the like are added to the fifth mixed powder and mixed.
After preparing one or both of the printing paste and the paint for the second sheet, the first laminate 2 in a green state is formed by one or both of the printing lamination and the sheet lamination.
1 on top of each other. The internal electrode 32 is formed by printing a conductive paste of 100% Ag between layers of the second printing paste or the second sheet paint.

【0023】なお、誘電体層12に含まれる第2骨材の
仮焼体粉末の体積割合は半導体層11に含まれる第1骨
材の仮焼体粉末等の体積割合と同一であっても、或いは
異なっていてもよい。但し、誘電体層12に含まれる第
2骨材の体積割合が半導体層11に含まれる第1骨材の
割合と異なる場合には、その体積割合の異なる分だけマ
トリックス材の焼結体粉末を第3骨材として含有させ
る。例えば、半導体層11中の第1骨材の割合が60体
積%で、誘電体層12中の第2骨材の割合が40体積%
である場合、誘電体層12中の20体積%(60体積%
−40体積%)は第1骨材と同一粒径のマトリックス材
を大気中でその焼結温度で4時間程度保持して得られた
焼結体粉末を第3骨材として用いる。
The volume ratio of the calcined powder of the second aggregate contained in the dielectric layer 12 is the same as the volume ratio of the calcined powder of the first aggregate contained in the semiconductor layer 11. Alternatively, they may be different. However, when the volume ratio of the second aggregate contained in the dielectric layer 12 is different from the ratio of the first aggregate contained in the semiconductor layer 11, the sintered body powder of the matrix material is reduced by the difference in the volume ratio. It is contained as a third aggregate. For example, the ratio of the first aggregate in the semiconductor layer 11 is 60% by volume, and the ratio of the second aggregate in the dielectric layer 12 is 40% by volume.
In this case, 20% by volume (60% by volume) in the dielectric layer 12
-40% by volume) uses a sintered body powder obtained by holding a matrix material having the same particle size as the first aggregate at the sintering temperature in the atmosphere for about 4 hours as the third aggregate.

【0024】積層された第1及び第2積層体であるグリ
ーン状態の積層体23を所定の寸法に切断し、大気中で
200〜400℃で24時間以上保持して脱バインダ処
理を行った後に、960℃以下の温度の大気雰囲気で焼
成する。この焼成により半導体層11中の上記(c)のマ
トリックス材が焼結体となり、この焼結体の内部に予め
焼結若しくはほぼ焼結していた第1骨材が分散し、誘電
体層12中の上記(c)のマトリックス材が焼結体とな
り、この焼結体の内部に予め焼結若しくはほぼ焼結して
いた第2骨材及び予め焼結していたマトリックス材(第
2骨材と同一粒径のもの)が分散する。960℃以下の
焼成温度はAgの融点より低いため内部電極31及び内
部電極32は焼成により損われず、かつAg100%の
内部電極31及び内部電極32はその比抵抗を小さくす
ることができる。更に上記焼成体の両端にAgを主成分
とする導電ペーストを焼付ける。これにより内部電極3
1及び内部電極32に電気的に接続された第1及び第2
外部電極41,42が形成されて、積層セラミック型チ
ップ部品10が製造される。
After the green laminate 23, which is the laminated first and second laminates, is cut to a predetermined size and held in the atmosphere at 200 to 400 ° C. for 24 hours or more to perform a binder removal process. Baking in an air atmosphere at a temperature of 960 ° C. or less. By this firing, the matrix material (c) in the semiconductor layer 11 becomes a sintered body, and the first aggregate that has been sintered or almost sintered is dispersed in the sintered body, and the dielectric layer 12 The matrix material of (c) above becomes a sintered body, and the second aggregate that has been sintered or almost sintered and the matrix material that has been sintered (the second aggregate) Having the same particle size as above) is dispersed. Since the firing temperature of 960 ° C. or lower is lower than the melting point of Ag, the internal electrodes 31 and 32 are not damaged by the firing, and the specific resistance of the internal electrodes 31 and 32 of 100% Ag can be reduced. Further, a conductive paste containing Ag as a main component is baked on both ends of the fired body. This allows the internal electrode 3
First and second electrically connected to the first and internal electrodes 32
The external electrodes 41 and 42 are formed, and the multilayer ceramic chip component 10 is manufactured.

【0025】[0025]

【実施例】次に本発明の実施例を詳しく説明する。 <実施例1>図4に示すように、先ずMnO3粉末を4
5モル%、CoOを46モル%及びCuOを9モル%そ
れぞれ秤量し、湿式ミルにより混合した。この混合粉末
にバインダを加えて混練造粒し、所定の形状に成形した
後、この成形体を1300℃で4時間、大気雰囲気で焼
成して焼結体を得た。この焼結体をボールミルで粉砕し
て篩い分けし平均粒径が6μmの第1骨材(半導体磁器
材料)の焼結体粉末を製造した。
Next, embodiments of the present invention will be described in detail. As shown in <Embodiment 1> FIG. 4, first, MnO 3 powder 4
5 mol%, 46 mol% of CoO and 9 mol% of CuO were weighed and mixed by a wet mill. A binder was added to the mixed powder, kneaded and granulated, and molded into a predetermined shape. The molded body was fired at 1300 ° C. for 4 hours in an air atmosphere to obtain a sintered body. This sintered body was pulverized by a ball mill and sieved to produce a sintered body powder of a first aggregate (semiconductor porcelain material) having an average particle diameter of 6 μm.

【0026】またFe23粉末を50モル%、NiOを
15モル%、ZnOを25モル%及びCuOを10モル
%それぞれ秤量し、湿式ミルにより混合した。この混合
粉末を800℃で4時間、大気雰囲気で仮焼してNi−
Zn−Cuフェライト仮焼体を得た。この仮焼体をボー
ルミルで粉砕して篩い分けし、平均粒径が0.3μmの
マトリックス材(絶縁体磁器材料)の仮焼体粉末を製造
した。
Also, 50 mol% of Fe 2 O 3 powder, 15 mol% of NiO, 25 mol% of ZnO and 10 mol% of CuO were weighed and mixed by a wet mill. This mixed powder was calcined at 800 ° C. for 4 hours in an air atmosphere to obtain Ni-
A Zn-Cu ferrite calcined body was obtained. This calcined body was pulverized with a ball mill and sieved to produce a calcined body powder of a matrix material (insulating porcelain material) having an average particle size of 0.3 μm.

【0027】一方、SrO粉末を50モル%及びTiO
2粉末を50モル%それぞれ秤量し、湿式ミルにより混
合した。この混合粉末にバインダを加えて混練造粒し、
所定の形状に成形した後、この成形体を1250℃で4
時間、大気雰囲気で焼成してSrTiO3の焼結体を得
た。この焼結体をボールミルで粉砕して篩い分けし平均
粒径が6μmの第2骨材(誘電体磁器材料)の焼結体粉
末を製造した。また上記マトリックス材と同様にFe2
3粉末を50モル%、NiOを15モル%、ZnOを
25モル%及びCuOを10モル%それぞれ秤量し、湿
式ミルにより混合した後に、この混合粉末を800℃で
4時間、大気雰囲気で仮焼してNi−Zn−Cuフェラ
イト仮焼体を得た。この仮焼体をボールミルで粉砕して
篩い分けし、平均粒径が0.3μmのマトリックス材の
焼結体粉末を製造した。
On the other hand, 50 mol% of SrO powder and TiO
The two powders were each weighed at 50 mol% and mixed by a wet mill. A binder is added to this mixed powder and kneaded and granulated,
After molding into a predetermined shape, the molded body is heated at 1250 ° C. for 4 hours.
After sintering in the atmosphere for a time, a sintered body of SrTiO 3 was obtained. The sintered body was pulverized by a ball mill and sieved to produce a sintered body powder of a second aggregate (dielectric ceramic material) having an average particle size of 6 μm. Further, similarly to the above matrix material, Fe 2
50 mol% of O 3 powder, 15 mol% of NiO, 25 mol% of ZnO and 10 mol% of CuO were weighed and mixed by a wet mill, and the mixed powder was temporarily baked at 800 ° C. for 4 hours in an air atmosphere. By baking, a Ni-Zn-Cu ferrite calcined body was obtained. The calcined body was pulverized with a ball mill and sieved to produce a sintered body powder of a matrix material having an average particle diameter of 0.3 μm.

【0028】次いで得られた第1骨材の焼結体粉末とマ
トリックス材の仮焼体粉末を、第1骨材の焼結体粉末/
マトリックス材の仮焼体粉末=60体積%/40体積%
の比率で湿式混合して第3混合粉末を作製し、この混合
粉末に分散剤、バインダ、可塑剤、溶剤等をそれぞれ添
加して混合し、第1印刷ペーストを調製した。この第1
印刷ペーストと、Ag100%の導電ペーストと交互に
スクリーン印刷することによりグリーン状態の第1積層
体を作製した。次に第2骨材の焼結体粉末とマトリック
ス材の仮焼体粉末を、第2骨材の焼結体粉末/マトリッ
クス材の仮焼体粉末=60体積%/40体積%の比率で
湿式混合して第5混合粉末を作製し、この混合粉末に分
散剤、バインダ、可塑剤、溶剤等をそれぞれ添加して混
合し、第2印刷ペーストを調製した。この第2印刷ペー
ストと、Ag100%の導電ペーストとを第1グリーン
積層体上に交互にスクリーン印刷することにより第2グ
リーン積層体を作製した。第1及び第2積層体によりグ
リーン状態の積層体が形成される。
Next, the obtained sintered powder of the first aggregate and the calcined powder of the matrix material were combined with the sintered powder of the first aggregate /
Matrix material calcined powder = 60% by volume / 40% by volume
To produce a third mixed powder, and a dispersant, a binder, a plasticizer, a solvent, and the like were added to the mixed powder and mixed to prepare a first printing paste. This first
A first laminate in a green state was prepared by alternately screen printing a printing paste and a 100% Ag conductive paste. Next, the sintered powder of the second aggregate and the calcined powder of the matrix material were wet-mixed at a ratio of sintered powder of the second aggregate / calcined powder of the matrix material = 60% by volume / 40% by volume. The mixture was mixed to prepare a fifth mixed powder, and a dispersant, a binder, a plasticizer, a solvent, and the like were added to the mixed powder and mixed to prepare a second printing paste. This second printing paste and a 100% Ag conductive paste were alternately screen-printed on the first green laminate to produce a second green laminate. A green laminate is formed by the first and second laminates.

【0029】このグリーン状態の積層体の形成方法を図
3に基づいて説明する。図3(a-1)〜(i-1)は積層過程の
上面図であり、図3(a-2)〜(i-2)は積層過程の図3(a-
1)〜(i-1)におけるA−A線断面図である。
A method for forming the green laminate will be described with reference to FIG. 3 (a-1) to (i-1) are top views of the lamination process, and FIGS. 3 (a-2) to (i-2) are FIGS.
FIG. 2 is a sectional view taken along line AA in (1) to (i-1).

【0030】先ず図3(a-1)〜(a-2)に示すように上記の
ように調製された第1印刷ペーストからなるグリーン状
態の第1積層体21の第1ベース部11aを用意した。
次いで第1ベース部11a上に導電ペーストにより電極
膜11cを第1ベース部11aより一回り小さく形成し
た(図3(b-1)〜(b-2))。その上に第1印刷ペーストを
スクリーン印刷して第1積層体21の第1中間部11b
を形成した(図3(c-1)〜(c-2))。この中間部11b上
に導電ペーストにより電極膜11dを第1中間部11b
より一回り小さく形成した(図3(d-1)〜(d-2))。
First, as shown in FIGS. 3 (a-1) to 3 (a-2), the first base portion 11a of the first laminate 21 in the green state made of the first print paste prepared as described above is prepared. did.
Next, an electrode film 11c was formed on the first base portion 11a using a conductive paste to be slightly smaller than the first base portion 11a (FIGS. 3B-1 to B-2). The first printing paste is screen-printed thereon to form the first intermediate portion 11b of the first laminate 21.
(FIGS. 3 (c-1) to (c-2)). An electrode film 11d is formed on the intermediate portion 11b with a conductive paste by the first intermediate portion 11b.
It was formed one size smaller (FIGS. 3 (d-1) to (d-2)).

【0031】この電極膜11dを形成した中間部11b
の上に第2印刷ペーストを全面にスクリーン印刷して第
2積層体の第2ベース部12aを形成した(図3(e-1)
〜(e-2))。次に第2ベース部12a上に導電ペースト
により電極膜12dを第2ベース部12aより一回り小
さく形成した(図3(f-1)〜(f-2))。その上に第2印刷
ペーストをスクリーン印刷してグリーン状態の第2積層
体22の第2中間部12bを形成した(図3(g-1)〜(g-
2))。この第2中間部12bの上に導電ペーストにより
電極膜12eを第2中間部12bより一回り小さく形成
した(図3(h-1)〜(h-2))。これにより、電極膜12d
及び電極膜12eは第2中間部12bを挟んで平行にな
るように形成された。その上に第2印刷ペーストを全面
にスクリーン印刷して第2積層体22の第2アッパ部1
2cを形成した(図3(i-1)〜(i-2))。
The intermediate portion 11b on which the electrode film 11d is formed
The second printing paste was screen-printed on the entire surface to form a second base portion 12a of the second laminate (FIG. 3 (e-1)).
~ (E-2)). Next, an electrode film 12d was formed on the second base portion 12a using a conductive paste to be slightly smaller than the second base portion 12a (FIGS. 3 (f-1) to (f-2)). The second printing paste was screen-printed thereon to form the second intermediate portion 12b of the second laminate 22 in a green state (FIGS. 3 (g-1) to (g-).
2)). An electrode film 12e was formed on the second intermediate portion 12b with a conductive paste to be slightly smaller than the second intermediate portion 12b (FIGS. 3 (h-1) to (h-2)). Thereby, the electrode film 12d
The electrode film 12e is formed so as to be parallel to the second intermediate portion 12b. A second printing paste is screen-printed on the entire surface thereof, and the second upper portion 1 of the second stacked body 22 is printed.
2c was formed (FIGS. 3 (i-1) to (i-2)).

【0032】第1及び第2積層体21,22を積層して
得られたグリーン状態の積層体23を大気中、200〜
400℃の温度で24時間保持して脱バインダ処理した
後、大気中で900℃に4時間保持して焼成し、内部電
極31及び32を有する焼結体を得た。焼結体の両端に
は内部電極31である導体膜11c,11dと内部電極
32である導体膜12d,12eの一部がそれぞれ露出
した。図1及び図5に示すように、この焼結体の両端に
Agを主成分とする導電ペーストを焼付けて第1及び第
2外部電極41,42を形成し、これにより図1及び図
5に示すような積層セラミック型チップ部品10を得
た。このチップ部品10の等価回路を図2に示す。
The green laminate 23 obtained by laminating the first and second laminates 21 and 22 is placed in air at 200 to 200 μm.
After the binder was removed at a temperature of 400 ° C. for 24 hours to perform a binder removal treatment, it was held at 900 ° C. for 4 hours in the air and fired to obtain a sintered body having internal electrodes 31 and 32. At both ends of the sintered body, part of the conductor films 11c and 11d as the internal electrodes 31 and part of the conductor films 12d and 12e as the internal electrodes 32 were exposed. As shown in FIGS. 1 and 5, a conductive paste containing Ag as a main component is baked at both ends of the sintered body to form first and second external electrodes 41 and 42. A multilayer ceramic chip component 10 as shown was obtained. FIG. 2 shows an equivalent circuit of the chip component 10.

【0033】<実施例2>第1骨材としてMnO3粉末
を29モル%、CoOを44モル%及びAl23粉末を
AlO3/2換算で27モル%それぞれ秤量し、湿式ミル
により混合した。この混合粉末にバインダを加えて混練
造粒し、所定の形状に成形した後、この成形体を130
0℃で4時間、大気雰囲気で焼成して焼結体を得た。こ
の焼結体をボールミルで粉砕して篩い分けし平均粒径が
6μmの第1骨材(半導体磁器材料)の焼結体粉末を製
造した。第2骨材としてPbO粉末及びTiO2粉末を
それぞれ50モル%及び50モル%ずつ秤量し、湿式ミ
ルにより混合した。この混合粉末にバインダを加えて混
練造粒し、所定の形状に成形した後、この成形体を12
50℃で4時間、大気雰囲気で焼成してPbTiO3
焼結体を得た。この焼結体をボールミルで粉砕して篩い
分けし平均粒径が6μmの第2骨材(誘電体磁器材料)
の焼結体粉末を製造した。上記以外は実施例1と同様に
して積層セラミック型チップ部品を作製した。この積層
セラミック型チップ部品を実施例2とした。
<Example 2> As a first aggregate, 29 mol% of MnO 3 powder, 44 mol% of CoO and 27 mol% of Al 2 O 3 powder were converted into AlO 3/2 and weighed, and mixed by a wet mill. did. A binder was added to the mixed powder, and the mixture was kneaded and granulated to form a predetermined shape.
It was fired at 0 ° C. for 4 hours in an air atmosphere to obtain a sintered body. This sintered body was pulverized by a ball mill and sieved to produce a sintered body powder of a first aggregate (semiconductor porcelain material) having an average particle diameter of 6 μm. PbO powder and TiO 2 powder were weighed at 50 mol% and 50 mol%, respectively, as a second aggregate, and mixed by a wet mill. A binder is added to the mixed powder, and the mixture is kneaded and granulated to form a predetermined shape.
The sintered body was fired at 50 ° C. for 4 hours in an air atmosphere to obtain a sintered body of PbTiO 3 . This sintered body is pulverized with a ball mill and sieved, and the second aggregate having an average particle size of 6 μm (dielectric ceramic material)
Was produced. Except for the above, a multilayer ceramic chip component was produced in the same manner as in Example 1. This multilayer ceramic chip component was designated as Example 2.

【0034】<実施例3>第1骨材の焼結体粉末がMn
3粉末を45モル%、CoOを46モル%及びCuO
を9モル%を混合・造粒・成形・焼成・粉砕して作製さ
れ、マトリックス材の仮焼体粉末がFe23粉末を50
モル%、NiOを15モル%,ZnOを25モル%及び
CuOを10モル%を混合・造粒・成形・焼成・粉砕し
て作製される。また第2骨材の焼結体粉末がPbO粉末
及びTiO2粉末をそれぞれ50モル%及び50モル%
ずつ秤量し、湿式ミルにより混合した。更に第1骨材の
焼結体粉末とマトリックス材の仮焼体粉末を、第1骨材
の焼結体粉末/マトリックス材の仮焼体粉末=60体積
%/40体積%の比率で混合して第4混合粉末を作製し
た。また第2骨材の焼結体粉末とマトリックス材の仮焼
体粉末を、第2骨材の焼結体粉末/マトリックス材の仮
焼体粉末/マトリックス材の焼結体粉末=40体積%/
40体積%/20体積%の比率で混合して第5混合粉末
を作製した。上記以外は第1の実施の形態と同様にして
積層セラミック型チップ部品を得た。この積層セラミッ
ク型チップ部品を実施例3とした。
Example 3 The sintered powder of the first aggregate was Mn.
45 mol% of O 3 powder, 46 mol% of CoO and CuO
Is mixed, granulated, molded, calcined, and pulverized, and the calcined body powder of the matrix material is made of 50% Fe 2 O 3 powder.
It is prepared by mixing, granulating, molding, firing and pulverizing 15 mol% of NiO, 15 mol% of NiO, 25 mol% of ZnO and 10 mol% of CuO. Also, the sintered powder of the second aggregate is composed of 50 mol% and 50 mol% of PbO powder and TiO 2 powder, respectively.
Each was weighed and mixed by a wet mill. Further, the sintered powder of the first aggregate and the calcined powder of the matrix material are mixed in a ratio of sintered powder of the first aggregate / calcined powder of the matrix material = 60% by volume / 40% by volume. Thus, a fourth mixed powder was prepared. Also, the sintered powder of the second aggregate and the calcined powder of the matrix material were obtained by mixing the sintered powder of the second aggregate / the calcined powder of the matrix material / the sintered powder of the matrix material = 40% by volume /
A fifth mixed powder was prepared by mixing at a ratio of 40% by volume / 20% by volume. Except for the above, a multilayer ceramic chip component was obtained in the same manner as in the first embodiment. This multilayer ceramic type chip component was used as Example 3.

【0035】<比較評価及び評価>実施例1〜3の積層
セラミック型チップ部品の第1積層体内の直流抵抗値を
測定し、この結果に基づいてB定数を計算した。また第
2積層体内のキャパシタの静電容量を測定した。その結
果を骨材組成,マトリックス材組成,これらの混合比及
び焼成温度とともに表1に示す。
<Comparative Evaluation and Evaluation> The DC resistance value in the first laminate of the multilayer ceramic chip components of Examples 1 to 3 was measured, and the B constant was calculated based on the results. Further, the capacitance of the capacitor in the second laminate was measured. The results are shown in Table 1 together with the aggregate composition, the matrix material composition, their mixing ratio and the firing temperature.

【0036】[0036]

【表1】 [Table 1]

【0037】表1において、実施例3の誘電体層の混合
比の中で()内はマトリックス材の焼結粉末の比率を表
す。表1から明らかなように、サーミスタ素子とキャパ
シタ素子を単一素子内部に並列に形成した複合素子が9
00℃程度の大気雰囲気焼成にて得られた。またここで
は特に記載していないが、骨材の材料組成及び骨材とマ
トリックス材の混合比を変更することにより広い範囲の
回路定数を持つ素子を得ることもできた。また実施例3
の積層セラミック型チップ部品は上記のように第2骨材
の組成比を第1骨材の組成比と変えても、実施例1及び
2の積層セラミック型チップ部品(磁性体層中の第1骨
材の割合と誘電体層中の第2骨材の割合とを同一にし
た。)と同様に、亀裂や反りが発生することはなかっ
た。
In Table 1, of the mixing ratios of the dielectric layers of Example 3, the parentheses indicate the ratio of the sintered powder of the matrix material. As is clear from Table 1, a composite element in which a thermistor element and a capacitor element are formed in parallel in a single element is 9
It was obtained by baking in an air atmosphere at about 00 ° C. Although not specifically described herein, an element having a wide range of circuit constants could be obtained by changing the material composition of the aggregate and the mixing ratio of the aggregate and the matrix material. Example 3
As described above, the multilayer ceramic chip component of Example 1 and the multilayer ceramic chip component of Examples 1 and 2 (the first material in the magnetic layer) can be changed even if the composition ratio of the second aggregate is changed from the composition ratio of the first aggregate. As in the case of (1) the ratio of the aggregate and the ratio of the second aggregate in the dielectric layer were the same, no cracking or warpage occurred.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、半
導体層がMnO,CoO,NiO,CuO,Fe23
びAl23からなる群より選ばれた2種以上の金属酸化
物からなる第1骨材の仮焼体粉末等とNi−Zn−Cu
系フェライト等を主成分とするマトリックス材の仮焼体
粉末とを混合・焼成してなり、誘電体層がPbTiO3
等を主成分とする第2骨材の仮焼体粉末等と上記マトリ
ックス材の仮焼体粉末とを混合・焼成してなり、半導体
層中及び誘電体層中のマトリックス材の仮焼体粉末の体
積割合が同一であってその割合が少なくとも40〜80
重量%としたので、第1及び第2積層体の焼成時に第1
骨材及びマトリックス材の粒界や、マトリックス材及び
第2骨材の粒界における反応性が抑制される。またマト
リックス材は第1及び第2積層体を960℃以下の温度
で焼成するときに第1及び第2骨材を分散状態でそれぞ
れ被包するので、サーミスタ性並列抵抗を10Ω以上、
25℃の10〜30MHzにおける並列容量を5pF以
上、サーミスタB定数を2000K以上にすることがで
き、かつマトリックス材により低温焼結を実現できる。
As described above, according to the present invention, two or more metal oxides selected from the group consisting of MnO, CoO, NiO, CuO, Fe 2 O 3 and Al 2 O 3 are used for the semiconductor layer. Calcined powder of the first aggregate made of material and Ni-Zn-Cu
Be by mixing and firing the calcined body powder of matrix material mainly composed of system ferrite, the dielectric layer is PbTiO 3
The calcined body powder of the matrix material in the semiconductor layer and the dielectric layer is obtained by mixing and calcining the calcined body powder of the second aggregate and the like and the calcined body powder of the matrix material having the above as a main component. Have the same volume ratio, and the ratio is at least 40 to 80.
Wt%, the first and second laminates are fired at the first
The reactivity at the grain boundaries of the aggregate and the matrix material and the grain boundaries of the matrix material and the second aggregate are suppressed. In addition, since the matrix material encapsulates the first and second aggregates in a dispersed state when the first and second laminates are fired at a temperature of 960 ° C. or less, the thermistor parallel resistance is 10Ω or more,
The parallel capacitance at 10 ° C. to 30 MHz at 25 ° C. can be 5 pF or more, the thermistor B constant can be 2000 K or more, and low-temperature sintering can be realized by the matrix material.

【0039】また半導体層中の第1骨材の仮焼体粉末等
の体積割合が誘電体層中の第2骨材の仮焼体粉末等の体
積割合と同一とすれば、第1及び第2積層体の熱膨張係
数や焼成温度を同一にすることができるので、焼成後に
亀裂や反りが発生することはない。また半導体層中の第
1骨材の仮焼体粉末等の体積割合が誘電体層中の第2骨
材の仮焼体粉末等の体積割合と異なっても、その体積割
合の異なる分だけマトリックス材の焼結体粉末とすれ
ば、上記と同様に第1及び第2積層体の熱膨張係数や焼
成温度を同一にすることができるので、焼成後に亀裂や
反りが発生することはない。更にマトリックス材の存在
により低温で焼成することができるので、Ag100%
の内部導体及び内部電極を実現できる。
If the volume ratio of the calcined body powder of the first aggregate in the semiconductor layer is the same as the volume ratio of the calcined body powder of the second aggregate in the dielectric layer, the first and second aggregates are obtained. Since the thermal expansion coefficient and the sintering temperature of the two laminates can be the same, cracks and warpage do not occur after sintering. Further, even if the volume ratio of the calcined body powder of the first aggregate in the semiconductor layer is different from the volume ratio of the calcined body powder of the second aggregate in the dielectric layer, the difference in the volume ratio between the matrix and the matrix If the material is a sintered body powder, the thermal expansion coefficient and the sintering temperature of the first and second laminates can be made the same as in the above, so that cracks and warpage do not occur after sintering. Furthermore, since it can be fired at a low temperature due to the presence of the matrix material, Ag 100%
Internal conductors and internal electrodes can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態及び実施例1の積層セラミック
型チップ部品の外観斜視図。
FIG. 1 is an external perspective view of a multilayer ceramic chip component according to an embodiment of the present invention and Example 1.

【図2】その等価回路図。FIG. 2 is an equivalent circuit diagram thereof.

【図3】本発明実施形態及び実施例1の積層セラミック
型チップ部品を製造する工程を示す図。
FIG. 3 is a view showing a process of manufacturing the multilayer ceramic chip component according to the embodiment of the present invention and Example 1.

【図4】本発明実施形態及び実施例1の積層セラミック
型チップ部品を製造工程を示すブロック線図。
FIG. 4 is a block diagram showing a manufacturing process of the multilayer ceramic chip component of the embodiment of the present invention and Example 1.

【図5】本発明実施形態及び実施例1の積層セラミック
型チップ部品の縦断面図。
FIG. 5 is a longitudinal sectional view of the multilayer ceramic chip component according to the embodiment of the present invention and Example 1.

【符号の説明】[Explanation of symbols]

10 積層セラミック型チップ部品(電子部品) 11 半導体層(半導体磁器材料層) 12 誘電体層(誘電体磁器材料層) 13 基体 31 第1内部電極 32 第2内部電極 DESCRIPTION OF SYMBOLS 10 Multilayer ceramic type chip component (electronic component) 11 Semiconductor layer (semiconductor ceramic material layer) 12 Dielectric layer (dielectric ceramic material layer) 13 Base | substrate 31 1st internal electrode 32 2nd internal electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G018 AA01 AA21 AA22 AA23 AA24 AA25 AA28 AB02 AC01 5E034 AC02 BA10 BB01 BC02 DA02 DB15 DB20 DC05 DD04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G018 AA01 AA21 AA22 AA23 AA24 AA25 AA28 AB02 AC01 5E034 AC02 BA10 BB01 BC02 DA02 DB15 DB20 DC05 DD04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体磁器材料層(11)と誘電体磁器材料
層(12)とを積層して基体が形成され、前記半導体磁器材
料層(11)からなる第1積層体が一対の第1内部電極(31)
を有するサーミスタであり、前記誘電体磁器材料層(12)
からなる第2積層体が互いに平行に形成された複数の平
面状の第2内部電極(32)を有するキャパシタであり、 前記半導体磁器材料層(11)がMnO,CoO,NiO,
CuO,Fe23及びAl23からなる群より選ばれた
2種以上の金属酸化物からなりかつその焼結温度より1
00℃低い温度ないしその焼結温度で仮焼若しくは焼成
してなる第1骨材としてのスピネル構造の半導体磁器材
料の仮焼体粉末若しくは焼結体粉末と、960℃以下の
温度で焼結可能であって700〜800℃の温度で仮焼
してなるマトリックス材としての絶縁体磁器材料の仮焼
体粉末とを混合して焼成してなり、 前記誘電体磁器材料層(12)がPbTiO3、BaTiO3
及びSrTiO3からなる群より選ばれた1種又は2種
以上を主成分としかつその焼結温度より100℃低い温
度ないしその焼結温度で仮焼若しくは焼成してなる第2
骨材としての誘電体磁器材料の仮焼体粉末若しくは焼結
体粉末と、マトリックス材としての前記絶縁体磁器材料
とを混合して焼成してなり、 前記半導体磁器材料層(11)に含まれる絶縁体磁器材料の
仮焼体粉末の体積割合と前記誘電体磁器材料層(12)に含
まれる絶縁体磁器材料の仮焼体粉末の体積割合とが同一
であって前記体積割合が40〜80体積%であることを
特徴とするサーミスタ・キャパシタ複合積層セラミック
電子部品。
A base is formed by laminating a semiconductor ceramic material layer (11) and a dielectric ceramic material layer (12), and a first laminate comprising the semiconductor ceramic material layer (11) is a pair of first ceramics. Internal electrode (31)
A thermistor having the dielectric ceramic material layer (12)
A capacitor having a plurality of planar second internal electrodes (32) formed in parallel with each other, wherein the semiconductor ceramic material layer (11) is made of MnO, CoO, NiO,
It is composed of two or more metal oxides selected from the group consisting of CuO, Fe 2 O 3 and Al 2 O 3 and has a sintering temperature of 1 or more.
Sintered at a temperature of 960 ° C or lower with a calcined body powder or a sintered body powder of a semiconductor ceramic material having a spinel structure as a first aggregate which is calcined or fired at a temperature lower than 00 ° C or its sintering temperature. And calcined at a temperature of 700 to 800 ° C. by mixing and calcining a calcined body powder of an insulator ceramic material as a matrix material, wherein the dielectric ceramic material layer (12) is made of PbTiO 3. , BaTiO 3
And at least one of two or more selected from the group consisting of SrTiO 3 and SrTiO 3 and calcined or fired at a temperature 100 ° C. lower than the sintering temperature or at the sintering temperature.
A calcined body powder or sintered body powder of a dielectric ceramic material as an aggregate and the insulator ceramic material as a matrix material are mixed and fired, and are included in the semiconductor ceramic material layer (11). The volume ratio of the calcined body powder of the insulating ceramic material and the volume ratio of the calcined body powder of the insulating ceramic material contained in the dielectric ceramic material layer (12) are the same, and the volume ratio is 40 to 80. A thermistor-capacitor composite multilayer ceramic electronic component characterized by volume%.
【請求項2】 半導体磁器材料層(11)に含まれる半導体
磁器材料の仮焼体粉末若しくは焼結体粉末の体積割合と
誘電体磁器材料層(12)に含まれる誘電体磁器材料の仮焼
体粉末若しくは焼結体粉末の体積割合が同一である請求
項1記載のサーミスタ・キャパシタ複合積層セラミック
電子部品。
2. A volume ratio of a calcined body powder or a sintered body powder of a semiconductor ceramic material contained in a semiconductor ceramic material layer (11) and a calcining of a dielectric ceramic material contained in a dielectric ceramic material layer (12). 2. The thermistor-capacitor composite multilayer ceramic electronic component according to claim 1, wherein the volume ratio of the body powder or the sintered body powder is the same.
【請求項3】 半導体磁器材料層(11)に含まれる半導体
磁器材料の仮焼体粉末若しくは焼結体粉末の体積割合が
誘電体磁器材料層(12)に含まれる誘電体磁器材料の仮焼
体粉末若しくは焼結体粉末の体積割合が異なり、前記体
積割合の異なる分だけ絶縁体磁器材料の焼結体粉末が第
3骨材として含まれる請求項1記載のサーミスタ・キャ
パシタ複合積層セラミック電子部品。
The volume ratio of the calcined body powder or the sintered body powder of the semiconductor ceramic material contained in the semiconductor ceramic material layer (11) is determined by calcining the dielectric ceramic material contained in the dielectric ceramic material layer (12). 2. The thermistor-capacitor composite multilayer ceramic electronic component according to claim 1, wherein the volume ratio of the body powder or the sintered body powder is different, and the sintered body powder of the insulating porcelain material is included as the third aggregate by the difference in the volume ratio. .
【請求項4】 絶縁体磁器材料がNi−Zn−Cu系フ
ェライトを主成分とする磁器材料の仮焼体粉末である請
求項1ないし3いずれか記載のサーミスタ・キャパシタ
複合積層セラミック電子部品。
4. The thermistor-capacitor composite multilayer ceramic electronic component according to claim 1, wherein the insulator porcelain material is a calcined powder of a porcelain material containing Ni—Zn—Cu ferrite as a main component.
【請求項5】 第1内部電極(31)及び第2内部電極(32)
がそれぞれAg100%からなる請求項1ないし4いず
れか記載のサーミスタ・キャパシタ複合積層セラミック
電子部品。
5. A first internal electrode (31) and a second internal electrode (32).
The thermistor-capacitor composite multilayer ceramic electronic component according to any one of claims 1 to 4, wherein each of the components comprises 100% Ag.
JP2000287918A 2000-09-22 2000-09-22 Thermister/capacitor composite lamination ceramic electronic component Withdrawn JP2002100505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287918A JP2002100505A (en) 2000-09-22 2000-09-22 Thermister/capacitor composite lamination ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287918A JP2002100505A (en) 2000-09-22 2000-09-22 Thermister/capacitor composite lamination ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2002100505A true JP2002100505A (en) 2002-04-05

Family

ID=18771588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287918A Withdrawn JP2002100505A (en) 2000-09-22 2000-09-22 Thermister/capacitor composite lamination ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2002100505A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388923B1 (en) * 2012-12-10 2014-04-24 자동차부품연구원 Negative temperature coefficient thermistor and method of manufacturing the same
CN104478426A (en) * 2014-12-23 2015-04-01 中国科学院新疆理化技术研究所 High-stability NTC (negative temperature coefficient) thermistor suitable for medium-temperature zone and preparation method of thermistor
CN108899144A (en) * 2018-07-06 2018-11-27 句容市博远电子有限公司 A kind of preparation method of Ni-based thermistor material
WO2020144012A1 (en) * 2019-01-08 2020-07-16 Tdk Electronics Ag Thermistor and method for producing said thermistor
CN114835481A (en) * 2022-03-30 2022-08-02 电子科技大学 Preparation method of high-temperature high-frequency MnZn power ferrite material
CN115925391A (en) * 2023-01-04 2023-04-07 山东中厦电子科技有限公司 High-capacitance power type thermosensitive material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388923B1 (en) * 2012-12-10 2014-04-24 자동차부품연구원 Negative temperature coefficient thermistor and method of manufacturing the same
CN104478426A (en) * 2014-12-23 2015-04-01 中国科学院新疆理化技术研究所 High-stability NTC (negative temperature coefficient) thermistor suitable for medium-temperature zone and preparation method of thermistor
CN108899144A (en) * 2018-07-06 2018-11-27 句容市博远电子有限公司 A kind of preparation method of Ni-based thermistor material
CN108899144B (en) * 2018-07-06 2020-06-05 句容市博远电子有限公司 Preparation method of nickel-based thermistor material
WO2020144012A1 (en) * 2019-01-08 2020-07-16 Tdk Electronics Ag Thermistor and method for producing said thermistor
US11869685B2 (en) 2019-01-08 2024-01-09 Tdk Electronics Ag Thermistor and method for producing said thermistor
CN114835481A (en) * 2022-03-30 2022-08-02 电子科技大学 Preparation method of high-temperature high-frequency MnZn power ferrite material
CN114835481B (en) * 2022-03-30 2023-01-03 电子科技大学 Preparation method of high-temperature high-frequency MnZn power ferrite material
CN115925391A (en) * 2023-01-04 2023-04-07 山东中厦电子科技有限公司 High-capacitance power type thermosensitive material and preparation method thereof
CN115925391B (en) * 2023-01-04 2023-07-04 山东中厦电子科技有限公司 High-capacitance power type thermosensitive material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
JP7193918B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH1025157A (en) Dielectric ceramic composition and multilayer capacitor
JP2020141091A (en) Multilayer ceramic capacitors and manufacturing method thereof
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP2002029827A (en) Insulator porcelain composition
JP2002305125A (en) Capacitor array
JP2002100505A (en) Thermister/capacitor composite lamination ceramic electronic component
JP2000082605A (en) Temperature compensation circuit
JP3317246B2 (en) Composite ceramic and composite ceramic element
WO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
CN115403370B (en) Dielectric composition and laminated ceramic electronic component
TWI612542B (en) Composite electronic part
JP7310543B2 (en) Dielectric compositions and electronic components
CN115403369A (en) Dielectric composition and laminated ceramic electronic component
JPH013046A (en) Dielectric ceramic composition with high dielectric constant
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
JP3498200B2 (en) Multilayer ceramic composite parts
JP3457882B2 (en) Multilayer ceramic capacitors
JP2002100516A (en) Composite laminated ceramic electronic component
JP2002100504A (en) Electronic component comprising composite-type semiconductor ceramic material
JP4419487B2 (en) Oxide porcelain composition, ceramic multilayer substrate and ceramic electronic component
JP3085596B2 (en) Multilayer ceramic capacitors
JP2002100510A (en) Low dielectric constant magnetic substance ceramic material and its manufacturing method
JP2002097070A (en) Composite semiconducting ceramic material and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204