JPH0130221B2 - - Google Patents

Info

Publication number
JPH0130221B2
JPH0130221B2 JP57016302A JP1630282A JPH0130221B2 JP H0130221 B2 JPH0130221 B2 JP H0130221B2 JP 57016302 A JP57016302 A JP 57016302A JP 1630282 A JP1630282 A JP 1630282A JP H0130221 B2 JPH0130221 B2 JP H0130221B2
Authority
JP
Japan
Prior art keywords
radiation
curable
parts
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57016302A
Other languages
Japanese (ja)
Other versions
JPS58146024A (en
Inventor
Ryozo Konno
Makio Sugai
Juichi Kubota
Masaharu Nishimatsu
Yukihiro Isobe
Kazuyuki Tanaka
Osamu Shinora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Artience Co Ltd
Original Assignee
TDK Corp
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Toyo Ink Mfg Co Ltd filed Critical TDK Corp
Priority to JP57016302A priority Critical patent/JPS58146024A/en
Priority to US06/463,419 priority patent/US4511629A/en
Priority to DE3303805A priority patent/DE3303805C2/en
Priority to GB8303160A priority patent/GB2116075B/en
Publication of JPS58146024A publication Critical patent/JPS58146024A/en
Publication of JPH0130221B2 publication Critical patent/JPH0130221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は耐摩耗性および表面平滑性に優れ、か
つ良好な電気的性質を有する磁気記録媒体に関す
るものである。 現在カセツトテープ、オープンリールテープ、
ビデオテープ、磁気カード、磁気デイスク等多く
の磁気記録媒体類はポリエステルフイルム、ポリ
塩化ビニルフイルム、ポリアセテートフイルム、
紙等の基材ベースフイルム上に酸化鉄等の磁気化
可能金属酸化物もしくは金属材を含む塗料、印刷
インキ等の被覆剤(以下、塗料を例として説明す
る)をコーテイングし、オリエンテーシヨン、乾
燥、必要に応じて硬化の工程を経て得られ、その
樹脂塗料バインダーとして塩化ビニル共重合体、
ポリウレタン、ポリアクリル酸エステル、時にエ
ポキシ樹脂等が使用され、目的に応じ可塑剤、ゴ
ム、分散剤、帯電防止剤、顔料等が配合されるの
が一般である。 バインダーとしては種々のものが用いられる
が、耐摩耗性、耐熱性、耐溶剤性等の物性のた
め、硬化型のバインダー例えば熱硬化型樹脂がよ
り好ましいとされている。 この磁気記録テープ等の磁気記録媒体にとつて
は、基材であるポリエステルフイルム等とその上
に塗布される磁性塗膜との接着は非常に重要な特
性の1つである。この接着力が弱い場合には、磁
気記録テープに何らかの力がかかつた時、例えば
テープに瞬間的に強い応力が作用すると、磁性塗
膜がはがれることも起り得る。その結果、はがれ
た部分は記録ができなくなつたり、またさらに記
録されている情報が欠落してしまうことにもな
る。このポリエステルフイルム等との接着力を高
めるため、従来からポリエステルフイルム等の化
学処理、粗面化、また一般的にはコロナ放電等
様々の処理が考案されてきた。しかしながら、磁
気記録テープに使用されるポリエステルフイルム
等は結晶性高分子であり、かつ極性が小さいので
ポリエステルフイルム等への接着は難しいという
のが現状である。さらに塗布される磁性塗料は塗
料中の顔料濃度が高く、ポリエステルフイルム等
の表面をよく濡らすことができないことが、より
接着力を低下させる原因となつている。 一方、接着力を高めることに対して効果の高い
方法として、ポリエステルフイルム上に樹脂溶液
を塗布し、さらにその上に磁性塗膜を設けるいわ
ゆる下塗り処理(アンダーコート処理)が考えら
れている。しかし、この場合には、磁性層の塗布
時に、既にフイルム上に形成されているアンダー
コート層が、磁性塗料に用いられている有機溶剤
により膨潤を受け、それが塗りムラとなつて塗膜
表面に現われるため、磁性層の平滑性が失なわ
れ、感度が低下してしまうような不都合があつ
た。また、これをなくすため、アンダーコート樹
脂として熱硬化型樹脂を用いると、硬化の際の熱
処理によつてアンダーコート樹脂、あるいは硬化
剤の未反応物が熱硬化を起し、巻取り(重ね合さ
る)のとき、アンダーコート層がベースフイルム
にくつついてしまうため実用化はなかなか難しか
つた。しかも、熱硬化の場合には、ラツカーのポ
ツトライフの問題や、熱硬化に時間がかかるた
め、連続的に上層の磁性層を形成することができ
ないという欠点があつた。 この様な欠点をなくすため、本発明者らは各ア
ンダーコート層を設けるにあたり、アンダーコー
ト樹脂に放射線硬化性樹脂を用い、アンダーコー
ト層を塗布後、必要に応じて適当な乾燥処理を施
した後、放射線照射を行い、放射線による三次元
架橋を生ぜしめた後、その上に磁性層を塗布する
ことにより、非常に好適な結果を得ることができ
たものである。この方法によれば、アンダーコー
ト層は、磁性層が設けられる時点においては既に
架橋がなされているので、有機溶剤による膨潤を
受けることもなく、さらには、そのまま直ちに磁
性塗料を塗布できるので、工程の連続化、簡略化
がはかれることになる。又放射線照射後、巻取ら
れても、既にアンダーコート層は硬化が進んでい
るので、粘着を起すことなく保存できる利点があ
る。この様にアンダーコート樹脂として、放射線
硬化性樹脂を使用すれば、従来アンダーコート処
理が抱えていた不都合は全てなくすことができ
る。 本発明で用いる放射線硬化性樹脂とは、放射線
照射によりラジカルを発生し、架橋、あるいは重
することにより硬化するような、分子鎖中に不飽
和2重結合を1個以上含む樹脂をいう。 本発明者らは、磁気記録媒体のプライマー処理
の上記問題の解決を計るべく鋭意研究の結果、放
射線硬化性樹脂によるプライマー処理を計ること
により、短時間に極めて良好な耐溶剤性、接着性
を有するプライマーを形成し、表面平滑性、電気
特性の優れた磁気記録媒体が得られることを見出
し、本発明を完成した。 即ち、この発明は支持体に非磁性下塗り層を施
した後、磁性層を形成してなる磁気記録媒体にお
いて、該下塗り層が、 (A) 放射線により硬化性をもつ不飽和二重結合を
2個以上有する分子量5000以上、好ましくは
8000以上の化合物、 (B) 放射線により硬化性をもつ不飽和二重結合を
1個以上有する分子量400以上で、かつ5000末
満、好ましくは600〜3000の化合物、 (C) 放射線により硬化性をもつ不飽和二重結合を
1個以上有する分子量400未満の化合物、 上記(A)、(B)、(C)から選ばれる少なくとも2種以
上を含有する放射線硬化性塗料を用い、放射線照
射により形成されてなる磁気記録媒体である。さ
らに、放射線硬化性塗料が(A)、(B)、(C)から選ばれ
る少なくとも2種以上を含有し、かつ(A)が0〜90
重量%、(B)が0〜80重量%(C)が0〜50重量%の配
合比率である磁気記録媒体である。また、放射線
硬化性塗料が(A)および(B)を含有し、(A)が20〜95重
量%、(B)が5〜80重量%の配合比率である。放射
線照射を電子線を用いて行なう磁気記録媒体であ
る。さらに、放射線硬化性塗料がさらに樹脂固形
分に対し0.1〜10重量%の効重合増感剤を含有し、
紫外線照射により下塗り層が形成されてなる磁気
記録媒体である。 以下本発明の方法を詳細に述べると、先ず本発
明を実施する際に用いる放射線硬化性塗料を構成
する化合物は分子の末端ないしは側鎖に(メタ)
アクリロイル基等の放射線により硬化性をもつ不
飽和二重結合を1個以上を有する化合物であり、
通常は分子量、官能基数の異なるものを2種以上
配合して用いられる。その適切な例を以下に示
す。 分子中に水酸基を1個以上有する化合物1分
子に1分子以上のポリイソシアネート化合物の
ひとつのイソシアネート基を反応させ、次にイ
ソシアネート基と反応する基及び放射線硬化性
を有する不飽和二重結合を有する単量体1分子
以上との反応物、例えばプロピレングリコール
にプロピレンオキサイドを付加した二官能性の
ポリエーテル(アデカポリエーテルP―1000旭
電化社製)1モルにトルエンジイソシアネート
2モルを反応させ、その後2モルの2―ヒドロ
キシエチルメタクリレートを反応させて得た分
子末端にアクリル系二重結合を2個有する樹
脂、プレポリマー、オリゴマーもしくはテロマ
ーを挙げることができる。 ここで使用される水酸基を1個以上含有する
化合物としては、アデカポリエーテルP―700、
アデカポリエーテルP―1000、アデカポリエー
テルG―1500(以上旭電化社製)、ポリメグ
1000、ポリメグ650(以上クオーカー・オーツ社
製)等の多官能性ポリエーテル類;ニトロセル
ローズ、アセチルセルローズ、エチルセルロー
ズの様な繊維素誘導体;ビニライトVAGH(米
国ユニオンカーバイド社製)の様な水酸基を有
する一部ケン化された塩化ビニル―酢酸ビニル
共重合体;ポリビニルアルコール;ポリビニル
ホルマール;ポリビニルブチラール;ポリカプ
ロラクトンPCP―0200、ポリカプロラクトン
PCP―0240、ポリカプロラクトンPCP―0300
(以上チツソ社製)等の多官能性ポリエステル
類;フタル酸、イソフタル酸、テレフタル酸、
アジピン酸、コハク酸、セバチン酸のような飽
和多塩基酸とエチレングリコール、ジエチレン
グリコール、1,4―ブタンジオール、1,3
―ブタンジオール、1,2―プロピレングリコ
ール、ジプロピレングリコール、1,6―ヘキ
サングリコール、ネオペンチルグリコール、グ
リセリン、トリメチロールプロパンペンタエリ
スリツトのような多価アルコールとのエステル
結合により得られる飽和ポリエステル樹脂;水
酸基を含有するアクリルエステルおよびメタク
リルエステルを少なくとも一種以上重合成分と
して含むアクリル系重合体を挙げることができ
る。 また、ここで使用されるポリイソシアネート
化合物としては、2,4―トルエンジイソシア
ネート、2,6―トルエンジイソシアネート、
1,4―キシレンジイソシアネート、m―フエ
ニレンジイソシアネート、p―フエニレンジイ
ソシアネート、ヘキサメチレンジイソシアネー
ト、イソホロンジイソシアネートやデスモジユ
ールL、デスモジユールIL(西ドイツ バイエ
ル社製)等がある。 イソシアネート基と反応する基および放射線
硬化性不飽和二重結合を有する単量体として
は、アクリル酸あるいはメタクリル酸の2―ヒ
ドロキシエチルエステル、2―ヒドロキシプロ
ピルエステル、2―ヒドロキシオクチルエステ
ル等水酸基を有するエステル類;アクリルアマ
イド、メタクリルアマイド、N―メチロールア
クリルアマイド等;アリルアルコール、マレイ
ン酸多価アルコールエステル化合物、不飽和二
重結合を有する長鎖脂肪酸のモノあるいはジグ
リセリド等イソシアネート基と反応する活性水
素を持ちかつ放射線硬化性を有する不飽和二重
結合を含有するこれらの単量体も含まれる。 分子中にエポキシ基を1個以上含む化合物1
分子と、エポキシ基と反応する基および電子線
硬化性不飽和二重結合を有する単量体1分子以
上との反応物、例えばグリシジルメタクリレー
トをラジカル重合させて得たエポキシ基を含有
する熱可塑性樹脂にアクリル酸を反応させ、カ
ルボキシル基とエポキシ基との開環反応より、
分子中にアクリル系二重結合をペンダントさせ
た樹脂、プレポリマーもしくはオリゴマー、ま
た、マレイン酸を反応させカルボキシル基とエ
ポキシ基との開環反応により分子骨格中に放射
線硬化性不飽和二重結合を有する樹脂、プレポ
リマー、オリゴマーを挙げることができる。 ここで分子中にエポキシ基を1個以上含む化
合物としては、グリシジルアクリレート、グリ
シジルメタクリレートの如きエポキシ基を含む
アクリルエステルあるいはメタクリルエステル
のホモポリマーあるいは他の重合性モノマーと
の共重合体;エピコート828、エピコート1001、
エピコート1007、エピコート1009(以上シエル
化学社製)等その他種々のタイプのエポキシ樹
脂等がある。 エポキシ基と反応する基および放射線硬化性
不飽和二重結合を有する単量体としてはアクリ
ル酸、メタクリル酸等のカルボキシル基を含有
するアクリル系単量体、メチルアミノエチルア
クリレート、メチルアミノメタクリレート等の
第1級もしくは第2級アミノ基を有するアクリ
ル単量体に加えマレイン酸、フマル酸やクロト
ン酸、ウンデシレン酸等放射線硬化性不飽和二
重結合を有する多塩基酸単量体も使用できる。 分子中にカルボキシル基を1個以上含む化合
物1分子とカルボキシル基と反応する基および
放射線硬化性不飽和二重結合を有する単量体1
分子以上との反応物、例えばメタクリル酸を溶
液重合させて得たカルボキシル基を含有する熱
可塑性樹脂にグリシジルメタクリレートを反応
させ、第項と同様にカルボキシル基とエポキ
シ基の開環反応により分子中にアクリル系二重
結合を導入させた樹脂、プレポリマー、オリゴ
マーを挙げることができる。 分子中にカルボキシル基を1個以上含む化合
物としては、分子鎖中または分子末端にカルボ
キシル基を含むポリエステル類、アクリル酸、
メタクリル酸、無水マレイン酸、フマル酸等の
ラジカル重合性を持ち、かつカルボキシル基を
有する単量体のホモポリマーあるいは他の重合
性モノマーとの共重合体等である。 カルボキシル基と反応する基および放射線硬
化性不飽和二重結合を有する単量体としてはグ
リシジルアクリレート、グリシジルメタクリレ
ート等がある。 分子鎖中に放射線硬化性不飽和二重結合を含
有するポリエステル化合物、例えば第項に記
載の多塩基酸と多価アルコールのエステル結合
から成る飽和ポリエステル樹脂で多塩基酸の一
部をマレイン酸とした放射線硬化性不飽和二重
結合を含有する不飽和ポリエステル樹脂、プレ
ポリマー、オリゴマーを挙げることができる。 飽和ポリエステル樹脂の多塩基酸および多価
アルコール成分は第項に記載した各化合物を
挙げることができ、放射線硬化性不飽和二重結
合としてはマレイン酸、フマル酸等を挙げるこ
とができる。 放射線硬化性不飽和ポリエステル樹脂の製法
は多塩基酸成分1種以上と多価アルコール成分
1種以上にマレイン酸、フマル酸等を加え常
法、すなわち触媒存在下180〜200℃窒素雰囲気
下脱水あるいは脱アルコール反応の後、240〜
280℃まで昇温し、0.5〜1mmHgの減圧下縮合
反応によりポリエステル樹脂を得ることができ
る。マレイン酸やフマル酸等の含有量は、製造
時の架橋、放射線硬化性等から酸成分中1〜40
モル%で好ましくは10〜30モル%である。 放射線硬化性不飽和二重結合を有する低分子
量の化合物も目的に応じ使用が可能であり、そ
のような低分子量の化合物としては、スチレ
ン、エチルアクリレート、エチレングリコール
ジアクリレート、エチレングリコールジメタク
リレート、ジエチレングリコールジアクリレー
ト、ジエチレングリコールジメタクリレート、
1,6―ヘキサングリコールジアクリレート、
1,6―ヘキサングリコールジメタクリレー
ト、トリメチロールプロパントリアクリレー
ト、トリメチロールプロパントリメタクリレー
ト等が挙げられる(なお、第項の化合物は主
として(C)の化合物である)。 本発明に於ける放射線硬化性塗料としては第
項から第項に記載した化合物を使用して得られ
るが、アクリル系二重結合を含む分子量400以上
の化合物を単独に用いる場合には、分子量が大き
くなるにつれ官能基密度から電子線硬化性が低下
する傾向となり、従つて高線量が必要となり、硬
化性が低下すると耐熱性も劣る傾向にある。ま
た、接着性については硬化性が高くなると低下す
る場合がある。 一方、400未満の分子量の電子線硬化性樹脂の
場合には、電子線硬化性が良好で耐溶剤性、耐熱
性等が良好となるが、接着性に問題がある。この
ようにアクリル系二重結合を含む分子量400以上
あるいは400未満の化合物を単独で使用する場合、
磁気記録媒体に要求される多岐に渡る特性をバラ
ンス良く満足し得るアンダーコート用塗料を得る
ことが難かしい。 これに対し、本発明では分子量の異なる化合物
の2種以上を配合して成り、良好な密着性および
硬化性が得られるものである。 本発明では必要に応じ、非反応性溶剤が使用さ
れる溶剤としては特に制限はないが、バインダー
の溶解性および相溶性等を考慮して適宜選択され
る。例えばアセトン、メチルエルケトン、メチル
イソブチルケトン、シクロヘキサノン等のケトン
類、ギ酸エチル、酢酸エチル、酢酸ブチル等のエ
ステル類、メタノール、エタノール、イソプロパ
ノール、ブタノール等のアルコール類、トルエ
ン、キシレン、エチルベンゼン等の芳香族炭化水
素類、イソプロピルエーテル、エチルエーテル、
ジオキサン等のエーテル類、テトラヒドロフラ
ン、フルフラール等のフラン類等を単一溶剤また
はこれらの混合溶剤として用いられる。 本発明に係わる磁性層としては、熱可塑性樹
脂、熱硬化性樹脂をベヒクルとするものは勿論、
プライマー層に用いられているような放射線硬化
性樹脂を使用し、放射線照射により形成するもの
であつてもよく、プライマーおよび磁性層への放
射線照射を一度に行なうことも出来る。 本発明に係わるプライマー層および磁性塗料が
塗布される基体としては、現在磁気記録媒体用基
材として広く活用されているポリエチレンテレフ
タレート系フイルム、更に耐熱性を要求される用
途としてはポリイミドフイルム、ポリアミドフイ
ルム等が活用される。特にポリエステル系フイル
ムにおいては薄物ベースでは1軸延伸、2軸延伸
処理をほどこして利用するケースも多い。また紙
にコーテイングをほどこす用途も有る。 本発明に係わる放射線硬化性塗料の架橋、硬化
に使用する放射線としては、電子線加速器を線源
とした電子線、Co60を線源としたγ―線、Sr90
線源としたβ―線、X線発生器を線源としたX線
および紫外線が使用される。特に放射線源として
は吸収線量の制御、製造工程ラインへの導入、電
離放射線の遮閉等の見地から、電子線加速器によ
る電子線あるいは紫外線を使用する方法が有利で
ある。 塗膜を硬化する際に使用する電子線特性として
は、透過力の面から加速電圧100〜750KV、好ま
しくは150〜300KVの電子線加速器を用い、吸収
線量を0.5〜20メガラツドになる様に照射するの
が好都合である。 本発明の放射線硬化性塗料は光重合増感剤を加
えることにより紫外線硬化を行なうこともでき
る。該光重合増感剤としては従来公知のものでよ
く、例えばベンゾインメチルエーテル、ベンゾイ
ンエチルエーテル、α―メチルベンゾイン、α―
クロルデオキシベンゾイン等のベンゾイン系、ベ
ンゾフエノン、アセトフエノンビスジアルキルア
ミノベンゾフエノン等のケトン類、アントラキノ
ン、フエナントラキノン等のキノン類、ベンジル
ジスルフイド、テトラメチルチウラムモノスルフ
イド等のスルフイド類、等を挙げることができ
る。光重合増感剤は、樹脂固形分に対し、0.1〜
10%の範囲が望ましい。 以下、実施例および比較例により本発明を具体
的に説明する。なお、例中「部」、「%」とあるの
は重量部、重量%を示す。 実施例に先立ち、樹脂合成例を示す。 樹脂合成例 (a) 塩化ビニル/酢酸ビニル/ビニルアルコールが
93/2/5重量%の組成で分子量18000の共重合
体100部をトルエン238部、シクロヘキサノン95部
を加熱溶解後、80℃に昇温し、下記TDIアダクト
を7.5部加え、さらにオクチル酸スズ0.002部、ハ
イドロキノン0.002部加え、82℃でN2ガス気流中
イソシアネート(NCO)反応率が90%以上とな
るまで反応せしめる。反応終了後冷却しメチルエ
チルケトン238部を加え稀釈する。得られた樹脂
組成物を(a)とする。なお、この樹脂の分子量は
19200である。 TDIアダクトの合成 トリレンジイソシアネート(TDI)348部をN2
気流中1の4つ口フラスコ内80℃に加熱後、2
―ヒドロキシエチルメタクリレート(2HEMA)
260部、オクチル酸スズ0.07部、ハイドロキノン
0.05部を反応缶内の温度が80〜85℃となる様に冷
却コントロールしながら滴下し、滴下終了後80℃
で3時間撹拌し反応を完結させる。反応終了後取
り出し、冷却後、白色ペースト状のTDIの
2HEMAアダクトを得た。 樹脂合成例 (b) 飽和ポリエステル樹脂(ダイナミートノーベル
社製L―411)100部をトルエン116部、メチルエ
チルケトン116部に加熱溶解し、80℃昇温後、樹
脂合成例(a)に準じて合成したイソホロンジイソシ
アネート―アダクト2.84部を加えオクチル酸スズ
0.006部、ハイドロキノン0.006部をさらに加え、
N2 ガス気流中80℃でNCO反応率90%以上とな
るまで反応せしめる。 得られた樹脂組成物を(b)とする。この樹脂の分
子量は20600である。 樹脂合成例 (c) テレフタル酸ジメチル291.2部、イソフタル酸
ジメチル291.2部、マレイン酸ジメチル64.8部、
エチレングリコール251.2部、1,4―ブタンジ
オール364.8部、1,3―ブタンジオール81.2部
およびテトラ―n―ブチルチタネート4.0部を反
応缶に仕込みN2 ガス気流中180℃で脱メタノー
ル反応の後、240〜260℃まで昇温0.5〜1mmHgの
減圧下縮合反応により分子量8000の線状不飽和ポ
リエステル樹脂を得た。 樹脂合成例 (d) NIAXポリオールPCP―0200(チツソ社製ポリ
カプロラクトン)250部、2―ヒドロキシエチル
メタクリレート122.2部、ハイドロキノン0.024
部、オクチル酸スズ0.033部を反応缶に入れ、80
℃に加熱溶解後、TDI163.6部を反応缶内の温度
が80〜90℃となる様に冷却しながら滴下し、滴下
終了後80℃でNCO反応率95%以上となるまで反
応せしめる。得られた樹脂組成物を(d)とする。 この樹脂の分子量は1140である。 樹脂合成例 (e) 無水フタル酸148部、1,3ブタンジオール65
部、エチレングリコール30部およびパラトルエン
スルホン酸2.5部を反応缶に仕込みN2ガス気流下
に150℃で1時間次いで180℃で5時間エステル化
反応の後、100℃に冷却しハイドロキノン0.3部、
アクリル酸28部を加え15時間エステル化反応を行
い、分子量2000のオリゴエステルアクリレートを
得た。 樹脂合成例 (f) アデカポリエーテルP―1000(旭電化社製ポリ
エーテル)250部、2―ヒドロキシエチルメタク
リレート65部、ハイドロキノン0.013部、オクチ
ル酸スズ0.017部を反応缶に入れ、80℃に加熱溶
解後、TDI87.0部を反応缶内の温度が80〜90℃と
なるように冷却しながら滴下し、滴下終了後80℃
でNCO反応率95%以上となるまで反応せしめる。
得られた樹脂組成物を(f)とする。この樹脂の分子
量は1610である。 実施例 1 前記樹脂組成物(a) 40部 前記樹脂組成物(d) 4部 溶剤(トルエン/メチルエチルケトン=1/1)
56部 上記組成物の混合物を良く混合溶解させ、放射
線硬化性アンダーコート用塗料を調製した。この
塗料を、ポリエステルフイルム状に乾燥を行つた
後にESI社製、エレクトロカーテン型電子線加速
装置を用いて、加速電圧160KV、電極電流
10mA、放射線量3Mラツドの条件でN2雰囲気下
で電子線を照射し、塗膜を硬化させプライマー層
を設けた。 次いで、下記の磁性塗料をこの上に塗布し、配
向処理、乾燥後表面平滑化処理を施し、1/2イン
チ巾に裁断し、ビデオテープ(試料#1)を得
た。 磁性塗料の製法 ニトロセルロール(旭化成(株)製H1/2″) 8部 ビニライトVAGH(ユニオンカーバイト社製)
10部 ウレタンエトラストマー(グツドリツチ社、エ
ステル5703) 9部 メチルイソブチルケトン 150部 シクロヘキサノン 50部 より得られた液に 磁性粉(コバルト被着酸化鉄) 100部 α―Al2O3(0.5μ粒状) 2部 潤滑剤(高級脂肪酸変性シリコンオイル) 1部 分散剤(大豆油精製レシチン) 3部 を配合し、ボールミルにて24時間分散させ、磁性
塗料を調製した。 実施例 2 前記樹脂組成物(c) 7部 NKエステル―A―4G(新中村化学製アクリル
系モノマー、分子量198) 3部 溶剤(トルエン/メチルエチルケトン=1/1)
90部 上記組成物の混合物を良く混合溶解させ、放射
線硬化性アンダーコート用塗料を調製した。この
塗料をポリエステルフイルム上に乾燥膜厚0.2μに
なるように塗布し、乾燥を行つた後に、放射線量
5Mラツドの条件でN2雰囲気下で、電子線照射を
行い架橋硬化したプライマー層を設けた。次いで
実施例1と同様の方法で磁性層を設けビデオテー
プ(試料#2)を作製した。 実施例 3 前記樹脂組成物(b) 6部 前記樹脂組成物(e) 3部 1,6ヘキサングリコールジアクリレート 1部 溶剤(トルエン/メチルエチルケトン=1/1)
90部 上記組成物の混合物を良く混合溶解させ放射線
硬化性アンダーコート用塗料を調製した。この塗
料をポリエステルフイルム上に乾燥膜厚0.1μにな
るように塗布し、乾燥を行なつた後に、放射線量
2Mラツドの条件でN2雰囲気下で電子線照射を行
い、架橋硬化したプライマー層を設けた。次いで
実施例1と同様の方法で磁性層を設けビデオテー
プ(試料#3)を作製した。 実施例 4 前記樹脂組成物(a) 47部 前記樹脂組成物(f) 3部 ベンゾフエノン 0.3部 トリエタノールアミン 0.1部 溶剤(トルエン/メチルエチルケトン=1/1)
50部 上記組成物を混合溶解させ紫外線硬化性アンダ
ーコート用塗料を調製した。この塗料をポリエス
テルフイルム上に乾燥膜厚0.5μになるように塗布
し、乾燥を行つた後、高圧水銀ランプ(出力
80w/有効管長1cm)の下で毎分10mのラインス
ピードで紫外線を照射し、塗膜を硬化させた。 次いで実施例1の磁性塗料をこの上に塗布し、
乾燥後表面平滑化処理を施し、1/2インチ巾に裁
断し、ビデオテープ(試料#4)を得た。 実施例 5 前記樹脂組成物(d) 10部 NKエステルA4G(新中村化学製) 10部 ベンゾインエチルエーテル 0.3部 溶剤(トルエン/メチルエチルケトン=1/1)
80部 上記組成物を混合溶解させ、紫外線硬化性塗料
を調製した。この塗料をポリエステルフイルム上
に乾燥膜厚0.2μになるように塗布した他は、実施
例4と同様の方法でビデオテープ(試料#5)を
作製した。 比較例 1 塩化ビニル・酢酸ビニル共重合体 (ユニオンカーバイト社製ビニライトVAGH)
10部 溶剤(トルエン/メチルエチルケトン=1/1)
90部 上記組成物を混合溶解した塗料をポリエステル
フイルムに乾燥厚0.5μになるように塗布し、乾燥
し、アンダーコート層を形成したほかは実施例1
と同様の方法で磁性層を設けビデオテープ(試料
A)を作製した。 比較例 2 ポリエステルフイルムに、プライマー層を設け
ずに実施例1の磁性塗料を塗布し、乾燥後表面平
滑化処理を施し、1/2インチ巾に切断し、ビデオ
テープ(試料B)を得た。 比較例 3 前記樹脂組成物(a) 50部 溶剤(トルエン/メチルエチルケトン=1/1)
50部 上記組成物を混合溶解し、放射線硬化性塗料を
調製し、実施例1と同様の方法でビデオテープ
(試料C)を作製した。 比較例 4 NKエステル―A―4G(新中村化学製) 10部 溶剤(トルエン/メチルエチルケトン=1/1)
89.5部 ベンゾインエチルエーテル 0.5部 上記組成物を混合溶解し、紫外線硬化性塗料を
調製し、実施例4と同様の方法でビデオテープ
(試料D)を作製した。 実施例 6 実施例3と同様に、ポリエステルフイルム上に
プライマー層を設けた。次いで、下記の放射線硬
化性磁性塗料をこの上に塗布し、乾燥を行つた後
に、表面平滑化処理を施しESI社製、エレクトロ
カーテン型電子線加速装置を用いて、加速電圧
160KV、電極電流10mA、照射線量5Mラツドの
条件で、N2雰囲気下で電子線を照射し、硬化さ
せて、磁性層を設けた。次いで1/2インチ巾に裁
断し、ビデオテープ(試料#6)を得た。 放射線硬化性磁性塗料の製法 磁性粉(コバルト被着酸化鉄) 120部 前記樹脂組成物(a) 15部(固型分換算) 前記樹脂組成物(d) 15部(固型分換算) 潤 滑 剤 0.2部 α―Al2O3(0.5μ粒状) 2部 溶剤(メチルエチルケトン/トルエン=1/1)
200部 上記組成物の混合物をボールミルにて、24時間
分散させ放射線硬化性磁性塗料を調製した。 比較例 5 ポリエステルフイルムにプライマー層を設けず
に、実施例6の放射線硬化性磁性塗料を塗布し実
施例6と同様に、処理し、硬化させた。次いで1/
2インチ巾に裁断しビデオテープ(試料#E)を
得た。 実施例 7 実施例1と同様に、ポリエステルフイルム上に
プライマー層を設けた。次いで、下記の熱硬化性
磁性塗料をこの上に塗布し、配向処理、乾燥、平
滑化処理を施した後、60℃、48時間熱硬化させて
磁性層を形成した。(試料#7) 熱硬化性磁性塗料の製造 磁性粉(コバルト被着酸化鉄) 100部 ビニライトVAGH 15部 ウレタンエラストマー(エステル5703) 10部 メチルエチルケトン 100部 メチルイソブチルケトン 100部 トルエン 100部 以上の組成の混合物をボールミル中で48時間混
練した後、架橋剤として日本ポリウレタン社製コ
ロネートLを4部混合して磁性塗料とした。 比較例 6 比較例1において、磁性層の形成のみを実施例
7と同様にして行ない、他は比較例1と同様にし
て試料#Fを得た。 ビデオテープ試料#1〜#7および#A〜#F
について、塗膜の剥離強度(接着性)および
VHSビデオデツキでのビデオ感度(PF4MHZ)
を測定した結果を表1に示す。 接着性については適切なアンダーコート処理が
なされた試料はいずれも無処理のもの(#B)よ
り高い値が得られたが、分子量400未満の化合物
を用いたもの(#D)では低い値いとなり高分子
量成分を併用することの効果が確認された。又、
本発明による放射線硬化処理を施した試料は、従
来のもの(#A)に比較しても、高い値が得ら
れ、接着性については問題がないことがわかつ
た。 又4MHZのビデオ感度において、アンダーコー
ト層の架橋硬化処理が行なわれない(#A)は、
無処理のもの(#B)に比較して特性が低下して
おり、磁性層を塗布した際に、アンダーコート層
が膨潤を受け磁性層の表面平滑性がそこなわれた
ためと考えられる。同様の傾向は架橋密度が低い
分子量8000以上で構成した#Cでもみられた。こ
れに対し本発明の放射線硬化処理を施した試料
は、表面平滑化処理がされ易い為に、無処理のも
のに対してもむしろ特性の向上が見られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium that has excellent wear resistance and surface smoothness, and has good electrical properties. Currently, cassette tape, open reel tape,
Many magnetic recording media such as video tapes, magnetic cards, and magnetic disks are made of polyester film, polyvinyl chloride film, polyacetate film,
A base film such as paper is coated with a coating material such as a paint containing a magnetizable metal oxide or metal material such as iron oxide, or a coating agent such as printing ink (hereinafter, the paint will be explained as an example), orientation, It is obtained through a drying and optionally curing process, and the resin paint binder is vinyl chloride copolymer,
Polyurethane, polyacrylic acid ester, and sometimes epoxy resin are used, and plasticizers, rubbers, dispersants, antistatic agents, pigments, etc. are generally added depending on the purpose. Although various binders can be used, hardening binders such as thermosetting resins are considered more preferable because of their physical properties such as abrasion resistance, heat resistance, and solvent resistance. For magnetic recording media such as magnetic recording tapes, one of the very important characteristics is the adhesion between the base material, such as a polyester film, and the magnetic coating film applied thereon. If this adhesive force is weak, the magnetic coating may peel off when some force is applied to the magnetic recording tape, for example, when strong instantaneous stress is applied to the tape. As a result, it becomes impossible to record the peeled portion, and furthermore, recorded information may be lost. In order to increase the adhesive force with polyester films, various treatments have been devised, such as chemical treatment of polyester films, surface roughening, and generally corona discharge. However, the current situation is that it is difficult to adhere to polyester films and the like used in magnetic recording tapes because they are crystalline polymers and have low polarity. Furthermore, the applied magnetic paint has a high pigment concentration and cannot wet the surface of the polyester film or the like well, which further reduces the adhesive strength. On the other hand, as a highly effective method for increasing adhesive strength, a so-called undercoating process in which a resin solution is applied onto a polyester film and a magnetic coating film is further applied thereon has been considered. However, in this case, when the magnetic layer is applied, the undercoat layer that has already been formed on the film is swollen by the organic solvent used in the magnetic paint, which causes uneven coating and the surface of the coating film. As a result, the smoothness of the magnetic layer is lost, resulting in a decrease in sensitivity. In addition, in order to eliminate this problem, if a thermosetting resin is used as the undercoat resin, the undercoat resin or unreacted materials of the curing agent will be thermoset during the heat treatment during curing, and the resin will be rolled up (overlaid). However, it was difficult to put this into practical use because the undercoat layer would stick to the base film. Moreover, in the case of thermosetting, there are problems with the pot life of the lacquer and because thermosetting takes time, it is not possible to continuously form the upper magnetic layer. In order to eliminate such drawbacks, the present inventors used a radiation-curable resin as the undercoat resin when forming each undercoat layer, and after applying the undercoat layer, performed an appropriate drying treatment as necessary. After that, radiation was applied to produce three-dimensional crosslinking, and then a magnetic layer was applied thereon, thereby achieving very favorable results. According to this method, the undercoat layer is already crosslinked when the magnetic layer is provided, so it is not swollen by organic solvents, and furthermore, the magnetic paint can be applied immediately, so there is no need to worry about the process. Continuation and simplification will be attempted. Further, even if the film is wound up after irradiation with radiation, the undercoat layer has already been cured, so there is an advantage that it can be stored without causing stickiness. If a radiation-curable resin is used as the undercoat resin in this way, all the disadvantages of conventional undercoat treatments can be eliminated. The radiation-curable resin used in the present invention refers to a resin containing one or more unsaturated double bonds in its molecular chain, which generates radicals when irradiated with radiation and is cured by crosslinking or overlapping. As a result of intensive research aimed at solving the above-mentioned problems in priming of magnetic recording media, the present inventors have achieved very good solvent resistance and adhesive properties in a short time by priming with a radiation-curable resin. The present invention has been completed based on the discovery that a magnetic recording medium with excellent surface smoothness and electrical properties can be obtained by forming a primer having the following properties. That is, the present invention provides a magnetic recording medium in which a magnetic layer is formed after a nonmagnetic undercoat layer is applied to a support, in which the undercoat layer (A) has two unsaturated double bonds that are curable by radiation. with a molecular weight of 5000 or more, preferably
8,000 or more; (B) A compound with a molecular weight of 400 or more and having one or more unsaturated double bonds that is curable by radiation and less than 5,000, preferably 600 to 3,000; (C) A compound that is curable by radiation. A compound with a molecular weight of less than 400 that has one or more unsaturated double bonds, and is formed by radiation irradiation using a radiation-curable paint containing at least two or more selected from the above (A), (B), and (C). It is a magnetic recording medium made of Furthermore, the radiation-curable paint contains at least two or more selected from (A), (B), and (C), and (A) is 0 to 90
The magnetic recording medium has a blending ratio of (B) of 0 to 80% by weight and (C) of 0 to 50% by weight. Further, the radiation-curable coating material contains (A) and (B) in a blending ratio of 20 to 95% by weight of (A) and 5 to 80% by weight of (B). A magnetic recording medium that uses electron beams for radiation irradiation. Furthermore, the radiation-curable paint further contains an effective polymerization sensitizer of 0.1 to 10% by weight based on the resin solid content,
This is a magnetic recording medium in which an undercoat layer is formed by irradiation with ultraviolet rays. Describing the method of the present invention in detail below, first, the compound constituting the radiation-curable paint used in carrying out the present invention is attached to the terminal or side chain of the molecule (meta).
A compound having one or more unsaturated double bonds that is curable by radiation such as an acryloyl group,
Usually, two or more types having different molecular weights and numbers of functional groups are used in combination. A suitable example is shown below. One molecule of a compound having one or more hydroxyl groups in the molecule is reacted with one isocyanate group of one or more molecules of a polyisocyanate compound, and then the compound has a group that reacts with the isocyanate group and an unsaturated double bond that has radiation curability. 2 moles of toluene diisocyanate are reacted with 1 mole of a difunctional polyether (ADEKA Polyether P-1000 manufactured by Asahi Denka Co., Ltd.), which is a reaction product with one or more monomer molecules, such as propylene glycol with propylene oxide added thereto, and then Examples include resins, prepolymers, oligomers, and telomers having two acrylic double bonds at the molecular ends obtained by reacting 2 moles of 2-hydroxyethyl methacrylate. Compounds containing one or more hydroxyl groups used here include Adeka Polyether P-700,
ADEKA Polyether P-1000, ADEKA Polyether G-1500 (manufactured by Asahi Denka Co., Ltd.), Polymeg
Polyfunctional polyethers such as 1000 and Polymeg 650 (manufactured by Quaker Oats); cellulose derivatives such as nitrocellulose, acetylcellulose, and ethylcellulose; partially saponified vinyl chloride-vinyl acetate copolymer; polyvinyl alcohol; polyvinyl formal; polyvinyl butyral; polycaprolactone PCP-0200, polycaprolactone
PCP-0240, polycaprolactone PCP-0300
Polyfunctional polyesters such as (manufactured by Chitsuso); phthalic acid, isophthalic acid, terephthalic acid,
Saturated polybasic acids such as adipic acid, succinic acid, and sebacic acid and ethylene glycol, diethylene glycol, 1,4-butanediol, 1,3
-Saturated polyester resins obtained by ester bonding with polyhydric alcohols such as butanediol, 1,2-propylene glycol, dipropylene glycol, 1,6-hexane glycol, neopentyl glycol, glycerin, and trimethylolpropane pentaerythritol. ; Examples include acrylic polymers containing at least one kind of acrylic ester and methacrylic ester containing hydroxyl groups as a polymerization component. In addition, the polyisocyanate compounds used here include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate,
Examples include 1,4-xylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, Desmodyur L, and Desmodyur IL (manufactured by Bayer AG, West Germany). Examples of monomers having a group that reacts with an isocyanate group and a radiation-curable unsaturated double bond include 2-hydroxyethyl ester, 2-hydroxypropyl ester, and 2-hydroxyoctyl ester of acrylic acid or methacrylic acid that have a hydroxyl group. Esters: Acrylamide, methacrylamide, N-methylol acrylamide, etc.; Allyl alcohol, maleic acid polyhydric alcohol ester compounds, mono- or diglycerides of long-chain fatty acids with unsaturated double bonds, etc. Active hydrogen that reacts with isocyanate groups Also included are these monomers containing unsaturated double bonds that have a long bond and are radiation curable. Compound 1 containing one or more epoxy groups in the molecule
A thermoplastic resin containing an epoxy group obtained by radical polymerizing a molecule and a group that reacts with an epoxy group and one or more molecules of a monomer having an electron beam curable unsaturated double bond, such as glycidyl methacrylate. By reacting with acrylic acid, a ring-opening reaction between a carboxyl group and an epoxy group,
Resins, prepolymers, or oligomers with pendant acrylic double bonds in the molecule, or radiation-curable unsaturated double bonds in the molecular skeleton through a ring-opening reaction between carboxyl groups and epoxy groups by reacting with maleic acid. Examples include resins, prepolymers, and oligomers. Examples of compounds containing one or more epoxy groups in the molecule include homopolymers of acrylic esters or methacrylic esters containing epoxy groups, such as glycidyl acrylate and glycidyl methacrylate, or copolymers with other polymerizable monomers; Epicote 828, Epicote 1001,
There are various other types of epoxy resins such as Epicote 1007 and Epicote 1009 (manufactured by Ciel Chemical Co., Ltd.). Examples of monomers having groups that react with epoxy groups and radiation-curable unsaturated double bonds include acrylic monomers containing carboxyl groups such as acrylic acid and methacrylic acid, methylaminoethyl acrylate, and methylaminomethacrylate. In addition to acrylic monomers having primary or secondary amino groups, polybasic acid monomers having radiation-curable unsaturated double bonds such as maleic acid, fumaric acid, crotonic acid, and undecylenic acid can also be used. 1 molecule of a compound containing one or more carboxyl groups in the molecule, a group that reacts with the carboxyl group, and a monomer 1 having a radiation-curable unsaturated double bond
Glycidyl methacrylate is reacted with a thermoplastic resin containing a carboxyl group obtained by solution polymerizing methacrylic acid with a reaction product with more than one molecule, and in the same way as in the above section, a ring-opening reaction between the carboxyl group and the epoxy group forms a reaction product in the molecule. Examples include resins, prepolymers, and oligomers into which acrylic double bonds have been introduced. Examples of compounds containing one or more carboxyl groups in the molecule include polyesters containing carboxyl groups in the molecular chain or at the end of the molecule, acrylic acid,
These include homopolymers of radically polymerizable monomers such as methacrylic acid, maleic anhydride, and fumaric acid and having carboxyl groups, or copolymers with other polymerizable monomers. Examples of monomers having a group that reacts with a carboxyl group and a radiation-curable unsaturated double bond include glycidyl acrylate and glycidyl methacrylate. A polyester compound containing a radiation-curable unsaturated double bond in its molecular chain, for example, a saturated polyester resin consisting of an ester bond of a polybasic acid and a polyhydric alcohol as described in section 1, in which part of the polybasic acid is replaced with maleic acid. Examples include unsaturated polyester resins, prepolymers, and oligomers containing radiation-curable unsaturated double bonds. Examples of the polybasic acid and polyhydric alcohol components of the saturated polyester resin include the compounds listed in the section above, and examples of the radiation-curable unsaturated double bond include maleic acid and fumaric acid. The radiation-curable unsaturated polyester resin is produced by adding maleic acid, fumaric acid, etc. to one or more polybasic acid components and one or more polyhydric alcohol components, and dehydrating it under a nitrogen atmosphere at 180 to 200°C in the presence of a catalyst, or After dealcoholization reaction, 240~
A polyester resin can be obtained by raising the temperature to 280°C and carrying out a condensation reaction under reduced pressure of 0.5 to 1 mmHg. The content of maleic acid, fumaric acid, etc. is 1 to 40% in the acid component due to crosslinking during manufacturing, radiation curing, etc.
It is preferably 10 to 30 mol%. Low molecular weight compounds having radiation-curable unsaturated double bonds can also be used depending on the purpose; such low molecular weight compounds include styrene, ethyl acrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, and diethylene glycol. diacrylate, diethylene glycol dimethacrylate,
1,6-hexane glycol diacrylate,
Examples include 1,6-hexane glycol dimethacrylate, trimethylolpropane triacrylate, and trimethylolpropane trimethacrylate (note that the compounds in item 1 are mainly the compounds in (C)). The radiation-curable paint in the present invention can be obtained by using the compounds described in Items 1 to 3, but when a compound containing an acrylic double bond and having a molecular weight of 400 or more is used alone, the molecular weight As the size increases, the electron beam curability tends to decrease due to the functional group density, thus requiring a high dose, and as the curability decreases, the heat resistance also tends to deteriorate. In addition, the adhesiveness may decrease as the curability increases. On the other hand, in the case of an electron beam curable resin having a molecular weight of less than 400, the electron beam curability is good and the solvent resistance, heat resistance, etc. are good, but there is a problem in adhesiveness. In this way, when a compound containing an acrylic double bond with a molecular weight of 400 or more or less than 400 is used alone,
It is difficult to obtain an undercoat paint that satisfies the wide variety of properties required of magnetic recording media in a well-balanced manner. In contrast, in the present invention, two or more types of compounds having different molecular weights are blended to obtain good adhesion and curability. In the present invention, if necessary, a non-reactive solvent is used. Although there is no particular restriction on the solvent, it is appropriately selected in consideration of the solubility and compatibility of the binder. For example, ketones such as acetone, methyl ole ketone, methyl isobutyl ketone, and cyclohexanone, esters such as ethyl formate, ethyl acetate, and butyl acetate, alcohols such as methanol, ethanol, isopropanol, butanol, and aromas such as toluene, xylene, and ethylbenzene. group hydrocarbons, isopropyl ether, ethyl ether,
Ethers such as dioxane, furans such as tetrahydrofuran and furfural, etc. are used as a single solvent or a mixed solvent thereof. The magnetic layer according to the present invention may of course be one using a thermoplastic resin or a thermosetting resin as a vehicle.
It may be formed by radiation irradiation using a radiation-curable resin such as that used for the primer layer, or it is also possible to irradiate the primer and the magnetic layer with radiation at the same time. The substrate on which the primer layer and magnetic paint according to the present invention are applied is polyethylene terephthalate film, which is currently widely used as a substrate for magnetic recording media, and polyimide film and polyamide film for applications that require further heat resistance. etc. are utilized. Particularly in the case of polyester films, thin films are often subjected to uniaxial or biaxial stretching. It is also used to coat paper. The radiation used for crosslinking and curing the radiation-curable paint according to the present invention includes electron beams using an electron beam accelerator as a radiation source, γ-rays using Co 60 as a radiation source, and β-rays using Sr 90 as a radiation source. X-rays, X-rays from an X-ray generator, and ultraviolet rays are used. In particular, as a radiation source, it is advantageous to use electron beams or ultraviolet rays from an electron beam accelerator from the viewpoints of controlling the absorbed dose, introducing into the manufacturing process line, blocking ionizing radiation, etc. Regarding the characteristics of the electron beam used when curing the coating film, in terms of penetrating power, an electron beam accelerator with an accelerating voltage of 100 to 750 KV, preferably 150 to 300 KV is used, and irradiation is performed so that the absorbed dose is 0.5 to 20 megarads. It is convenient to do so. The radiation-curable coating material of the present invention can also be cured by ultraviolet rays by adding a photopolymerization sensitizer. The photopolymerization sensitizer may be a conventionally known one, such as benzoin methyl ether, benzoin ethyl ether, α-methylbenzoin, α-
Benzoin series such as chlordeoxybenzoin, ketones such as benzophenone, acetophenone, bisdialkylaminobenzophenone, quinones such as anthraquinone and phenanthraquinone, sulfides such as benzyl disulfide and tetramethylthiuram monosulfide. etc. The photopolymerization sensitizer is 0.1 to 0.1% of the resin solid content.
A range of 10% is desirable. Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. In addition, "part" and "%" in the examples indicate parts by weight and weight %. Prior to Examples, resin synthesis examples will be shown. Resin synthesis example (a) Vinyl chloride/vinyl acetate/vinyl alcohol
After heating and dissolving 100 parts of a copolymer with a composition of 93/2/5 weight % and a molecular weight of 18,000 in 238 parts of toluene and 95 parts of cyclohexanone, the temperature was raised to 80°C, 7.5 parts of the following TDI adduct was added, and tin octylate was added. Add 0.002 part of hydroquinone and 0.002 part of hydroquinone, and react at 82°C in a N 2 gas stream until the reaction rate of isocyanate (NCO) reaches 90% or more. After the reaction is completed, the mixture is cooled and diluted with 238 parts of methyl ethyl ketone. The obtained resin composition is referred to as (a). Furthermore, the molecular weight of this resin is
It is 19200. Synthesis of TDI adduct 348 parts of tolylene diisocyanate (TDI) was mixed with N2
After heating to 80℃ in a four-necked flask under air flow,
-Hydroxyethyl methacrylate (2HEMA)
260 parts, tin octylate 0.07 parts, hydroquinone
0.05 part was added dropwise while controlling the cooling so that the temperature inside the reaction vessel was 80 to 85℃, and after the dropping was completed, the temperature was increased to 80℃.
Stir for 3 hours to complete the reaction. After the reaction is complete, take it out, cool it, and remove the white paste of TDI.
Obtained 2HEMA adducts. Resin synthesis example (b) 100 parts of saturated polyester resin (L-411 manufactured by Dynamite Nobel) was heated and dissolved in 116 parts of toluene and 116 parts of methyl ethyl ketone, and after raising the temperature to 80°C, synthesized according to resin synthesis example (a). Add 2.84 parts of isophorone diisocyanate adduct to tin octylate.
Further add 0.006 parts and 0.006 parts of hydroquinone,
React at 80°C in a stream of N2 gas until the NCO reaction rate reaches 90% or more. The obtained resin composition is referred to as (b). The molecular weight of this resin is 20,600. Resin synthesis example (c) 291.2 parts of dimethyl terephthalate, 291.2 parts of dimethyl isophthalate, 64.8 parts of dimethyl maleate,
251.2 parts of ethylene glycol, 364.8 parts of 1,4-butanediol, 81.2 parts of 1,3-butanediol, and 4.0 parts of tetra-n-butyl titanate were charged into a reaction vessel, and after a demethanol reaction at 180°C in a stream of N2 gas, A linear unsaturated polyester resin having a molecular weight of 8000 was obtained by a condensation reaction under reduced pressure at a temperature of 240 to 260°C and a pressure of 0.5 to 1 mmHg. Resin synthesis example (d) NIAX polyol PCP-0200 (polycaprolactone manufactured by Chitsuso) 250 parts, 2-hydroxyethyl methacrylate 122.2 parts, hydroquinone 0.024
Place 0.033 parts of tin octylate in a reaction can, and add 80
After heating and dissolving at ℃, 163.6 parts of TDI was added dropwise while cooling the reaction vessel to a temperature of 80 to 90℃, and after the dropwise addition was completed, the reaction was allowed to occur at 80℃ until the NCO conversion rate reached 95% or more. The obtained resin composition is referred to as (d). The molecular weight of this resin is 1140. Resin synthesis example (e) 148 parts of phthalic anhydride, 65 parts of 1,3-butanediol
1 part, 30 parts of ethylene glycol, and 2.5 parts of para-toluenesulfonic acid were charged into a reaction vessel, and after esterification reaction at 150°C for 1 hour and 5 hours at 180°C under a N2 gas stream, the mixture was cooled to 100°C, and 0.3 parts of hydroquinone,
28 parts of acrylic acid was added and an esterification reaction was carried out for 15 hours to obtain an oligoester acrylate with a molecular weight of 2000. Resin synthesis example (f) 250 parts of Adeka Polyether P-1000 (polyether manufactured by Asahi Denka Co., Ltd.), 65 parts of 2-hydroxyethyl methacrylate, 0.013 parts of hydroquinone, and 0.017 parts of tin octylate were placed in a reaction vessel and heated to 80°C. After dissolving, 87.0 parts of TDI was added dropwise while cooling the reaction vessel to a temperature of 80 to 90°C, and after the dropping was completed, the temperature was increased to 80°C.
Let the reaction occur until the NCO reaction rate reaches 95% or more.
The obtained resin composition is referred to as (f). The molecular weight of this resin is 1610. Example 1 40 parts of the resin composition (a) 4 parts of the resin composition (d) Solvent (toluene/methyl ethyl ketone = 1/1)
56 parts The mixture of the above compositions was thoroughly mixed and dissolved to prepare a radiation-curable undercoating paint. After drying this paint in the form of a polyester film, it was applied using an electro-curtain type electron beam accelerator manufactured by ESI at an acceleration voltage of 160 KV and an electrode current of 160 KV.
The coating was cured by irradiation with an electron beam in an N 2 atmosphere at a radiation dose of 10 mA and a radiation dose of 3 Mrad to form a primer layer. Next, the following magnetic paint was applied thereon, subjected to orientation treatment, surface smoothing treatment after drying, and cut into 1/2 inch width to obtain a videotape (sample #1). Manufacturing method of magnetic paint Nitrocellulose (manufactured by Asahi Kasei Corporation H1/2″) 8 parts Vinyrite VAGH (manufactured by Union Carbide Corporation)
10 parts urethane elastomer (Gutudoritsu, Ester 5703) 9 parts methyl isobutyl ketone 150 parts cyclohexanone Add 100 parts of magnetic powder (cobalt-coated iron oxide) to the solution obtained from 50 parts of α-Al 2 O 3 (0.5μ granules). ) 2 parts lubricant (higher fatty acid modified silicone oil) 1 part dispersant (soybean oil refined lecithin) 3 parts were blended and dispersed in a ball mill for 24 hours to prepare a magnetic paint. Example 2 The resin composition (c) 7 parts NK ester-A-4G (acrylic monomer manufactured by Shin Nakamura Chemical, molecular weight 198) 3 parts Solvent (toluene/methyl ethyl ketone = 1/1)
90 parts The mixture of the above compositions was thoroughly mixed and dissolved to prepare a radiation-curable undercoating paint. This paint is applied to a polyester film to a dry film thickness of 0.2μ, and after drying, the radiation dose is
A primer layer was cross-linked and cured by electron beam irradiation under N2 atmosphere under conditions of 5M Rad. Next, a magnetic layer was provided in the same manner as in Example 1 to produce a videotape (sample #2). Example 3 6 parts of the above resin composition (b) 3 parts of the above resin composition (e) 1 part of 1,6 hexane glycol diacrylate 1 part of solvent (toluene/methyl ethyl ketone = 1/1)
90 parts A radiation-curable undercoating paint was prepared by thoroughly mixing and dissolving the mixture of the above compositions. This paint is applied to a polyester film to a dry film thickness of 0.1μ, and after drying, the radiation dose is
Electron beam irradiation was performed under N 2 atmosphere under conditions of 2M Rad to provide a crosslinked and cured primer layer. Next, a magnetic layer was provided in the same manner as in Example 1 to produce a videotape (sample #3). Example 4 47 parts of the above resin composition (a) 3 parts of the above resin composition (f) 0.3 parts of benzophenone 0.1 part of triethanolamine Solvent (toluene/methyl ethyl ketone = 1/1)
50 parts The above composition was mixed and dissolved to prepare an ultraviolet curable undercoat paint. This paint was applied to a polyester film to a dry film thickness of 0.5μ, and after drying, a high-pressure mercury lamp (output
The coating film was cured by irradiating ultraviolet rays at a line speed of 10 m/min under 80 W/effective pipe length 1 cm). Next, the magnetic paint of Example 1 was applied on top of this,
After drying, the surface was smoothed and cut into 1/2 inch width to obtain a videotape (sample #4). Example 5 The above resin composition (d) 10 parts NK ester A 4 G (manufactured by Shin Nakamura Chemical) 10 parts benzoin ethyl ether 0.3 parts Solvent (toluene/methyl ethyl ketone = 1/1)
80 parts The above composition was mixed and dissolved to prepare an ultraviolet curable paint. A videotape (sample #5) was prepared in the same manner as in Example 4, except that this paint was applied to a polyester film to a dry film thickness of 0.2 μm. Comparative Example 1 Vinyl chloride/vinyl acetate copolymer (Vinylite VAGH manufactured by Union Carbide)
10 parts Solvent (toluene/methyl ethyl ketone = 1/1)
90 parts Example 1 except that a paint obtained by mixing and dissolving the above composition was applied to a polyester film to a dry thickness of 0.5μ, and dried to form an undercoat layer.
A videotape (sample A) was prepared by providing a magnetic layer in the same manner as described above. Comparative Example 2 The magnetic paint of Example 1 was applied to a polyester film without a primer layer, and after drying, the surface was smoothed and cut into 1/2 inch width to obtain a videotape (Sample B). . Comparative Example 3 The resin composition (a) 50 parts solvent (toluene/methyl ethyl ketone = 1/1)
50 parts The above composition was mixed and dissolved to prepare a radiation-curable coating material, and a videotape (sample C) was produced in the same manner as in Example 1. Comparative example 4 NK ester-A-4G (manufactured by Shin Nakamura Chemical) 10 parts solvent (toluene/methyl ethyl ketone = 1/1)
89.5 parts Benzoin ethyl ether 0.5 parts The above composition was mixed and dissolved to prepare an ultraviolet curable paint, and a videotape (Sample D) was produced in the same manner as in Example 4. Example 6 Similarly to Example 3, a primer layer was provided on a polyester film. Next, the following radiation-curable magnetic paint was applied on top of the coating, dried, and then subjected to surface smoothing treatment.
A magnetic layer was provided by irradiating and curing with an electron beam in an N 2 atmosphere under the conditions of 160 KV, electrode current of 10 mA, and irradiation dose of 5 Mrad. Then, it was cut into 1/2 inch width to obtain a videotape (sample #6). Method for producing radiation-curable magnetic paint Magnetic powder (cobalt-coated iron oxide) 120 parts The above resin composition (a) 15 parts (in terms of solid content) The above resin composition (d) 15 parts (in terms of solid content) Lubrication Agent 0.2 parts α-Al 2 O 3 (0.5μ granules) 2 parts Solvent (methyl ethyl ketone/toluene = 1/1)
200 parts The mixture of the above composition was dispersed in a ball mill for 24 hours to prepare a radiation-curable magnetic coating. Comparative Example 5 The radiation-curable magnetic paint of Example 6 was applied to a polyester film without providing a primer layer, and treated and cured in the same manner as in Example 6. then 1/
A videotape (sample #E) was obtained by cutting into a 2-inch width. Example 7 Similarly to Example 1, a primer layer was provided on a polyester film. Next, the following thermosetting magnetic paint was applied thereon, subjected to orientation treatment, drying, and smoothing treatment, and then thermally cured at 60° C. for 48 hours to form a magnetic layer. (Sample #7) Production of thermosetting magnetic paint Magnetic powder (cobalt-coated iron oxide) 100 parts Vinylite VAGH 15 parts Urethane elastomer (Ester 5703) 10 parts Methyl ethyl ketone 100 parts Methyl isobutyl ketone 100 parts Toluene 100 parts After the mixture was kneaded in a ball mill for 48 hours, 4 parts of Coronate L manufactured by Nippon Polyurethane Co., Ltd. was mixed as a crosslinking agent to prepare a magnetic paint. Comparative Example 6 In Comparative Example 1, only the formation of the magnetic layer was carried out in the same manner as in Example 7, and the rest was carried out in the same manner as in Comparative Example 1 to obtain Sample #F. Videotape samples #1 to #7 and #A to #F
Regarding the peel strength (adhesion) of the coating film and
Video sensitivity in VHS video deck (PF 4 MHZ)
The results of the measurements are shown in Table 1. Regarding adhesion, all samples with appropriate undercoat treatment had higher values than those without treatment (#B), but those using a compound with a molecular weight of less than 400 (#D) had lower values. Therefore, the effect of using a high molecular weight component in combination was confirmed. or,
It was found that the samples subjected to the radiation curing treatment according to the present invention had higher values than the conventional ones (#A), and there were no problems with respect to adhesion. In addition, at 4MHZ video sensitivity, the undercoat layer is not cross-linked and hardened (#A).
The characteristics were lower than that of the untreated material (#B), and this is thought to be because the undercoat layer swelled when the magnetic layer was applied, damaging the surface smoothness of the magnetic layer. A similar tendency was observed with #C composed of a molecular weight of 8,000 or more and a low crosslinking density. On the other hand, since the sample subjected to the radiation hardening treatment of the present invention was easily subjected to surface smoothing treatment, the characteristics were actually improved compared to the untreated sample. 【table】

Claims (1)

【特許請求の範囲】 1 支持体に非磁性下塗り層を施した後、磁性層
を形成してなる磁気記録媒体において、該下塗り
層が、 (A) 放射線により硬化性をもつ不飽和二重結合を
2個以上有する分子量5000以上、好ましくは
8000以上の化合物、 (B) 放射線により硬化性をもつ不飽和二重結合を
1個以上有する分子量400以上で、かつ5000未
満、好ましくは600〜3000の化合物、 (C) 放射線により硬化性をもつ不飽和二重結合を
1個以上有する分子量400未満の化合物、 上記(A)、(B)、(C)から選ばれる少なくとも2種以
上を含有する放射線硬化性塗料を用い、放射線照
射により形成されてなることを特徴とする磁気記
録媒体。 2 (A)が放射線により硬化性をもつ不飽和二重結
合を2個以上有する分子量5000以上、好ましくは
8000以上の、繊維素系樹脂、塩化ビニル系樹脂、
ブチラール系樹脂、アクリル系樹脂および不飽和
ポリエステル系樹脂から選ばれる1種または2種
以上であり、(B)が放射線により硬化性をもつ不飽
和二重結合を1個以上有する分子量400以上で、
かつ5000未満、好ましくは600〜3000の、ポリエ
ステル系樹脂、ポリエーテル系樹脂、ポリウレタ
ン系樹脂およびエポキシ系樹脂から選ばれる1種
または2種以上である特許請求の範囲第1項記載
の磁気記録媒体。 3 放射線硬化性塗料が(A)、(B)、(C)から選ばれる
少なくとも2種以上を含有し、かつ(A)が0〜95重
量%、(B)が0〜80重量%、(C)が0〜50重量%の配
合比率である特許請求の範囲第1項または第2項
記載の磁気記録媒体。 4 放射線硬化性塗料が(A)および(B)を含有し、(A)
が20〜95重量%、(B)が5〜80重量%の配合比率で
ある特許請求の範囲第1項または第2項記載の磁
気記録媒体。 5 下塗り層を施し、続いて磁性層を形成した
後、放射線を照射してなる特許請求の範囲第1項
ないし第4項いずれか記載の磁気記録媒体。 6 磁性層が放射線硬化型磁性塗料より形成され
てなる特許請求の範囲第5項記載の磁気記録媒
体。 7 放射線が電子線である特許請求の範囲第1項
ないし第6項いずれか記載の磁気記録媒体。 8 放射線硬化性塗料がさらに樹脂固形分に対し
0.1〜10重量%の光重合増感剤を含有し、紫外線
照射により下塗り層が形成されてなる特許請求の
範囲第1項ないし第4項いずれか記載の磁気記録
媒体。
[Scope of Claims] 1. A magnetic recording medium in which a magnetic layer is formed after a nonmagnetic undercoat layer is applied to a support, in which the undercoat layer (A) contains unsaturated double bonds that are curable by radiation. having a molecular weight of 5,000 or more, preferably having two or more
8,000 or more, (B) a compound with a molecular weight of 400 or more and less than 5,000, preferably 600 to 3,000, which has one or more unsaturated double bonds that are curable by radiation; (C) a compound that is curable by radiation. A compound with a molecular weight of less than 400 that has one or more unsaturated double bonds, and is formed by radiation irradiation using a radiation-curable paint containing at least two or more selected from the above (A), (B), and (C). A magnetic recording medium characterized by: 2 (A) has two or more unsaturated double bonds that are curable by radiation and has a molecular weight of 5000 or more, preferably
More than 8000 cellulose resins, vinyl chloride resins,
one or more selected from butyral resins, acrylic resins, and unsaturated polyester resins, and (B) has one or more unsaturated double bonds that are curable by radiation and has a molecular weight of 400 or more,
and less than 5,000, preferably from 600 to 3,000, of one or more selected from polyester resins, polyether resins, polyurethane resins, and epoxy resins. . 3. The radiation-curable paint contains at least two or more selected from (A), (B), and (C), and (A) is 0 to 95% by weight, (B) is 0 to 80% by weight, ( 3. The magnetic recording medium according to claim 1, wherein C) has a blending ratio of 0 to 50% by weight. 4. The radiation-curable paint contains (A) and (B), and (A)
The magnetic recording medium according to claim 1 or 2, wherein the blending ratio is 20 to 95% by weight of (B) and 5 to 80% by weight of (B). 5. The magnetic recording medium according to any one of claims 1 to 4, which is obtained by applying radiation after applying an undercoat layer and subsequently forming a magnetic layer. 6. The magnetic recording medium according to claim 5, wherein the magnetic layer is formed from a radiation-curable magnetic coating. 7. The magnetic recording medium according to any one of claims 1 to 6, wherein the radiation is an electron beam. 8 Radiation-curable paint further increases the resin solid content.
5. A magnetic recording medium according to claim 1, which contains 0.1 to 10% by weight of a photopolymerizable sensitizer and has an undercoat layer formed by irradiation with ultraviolet rays.
JP57016302A 1982-02-05 1982-02-05 Magnetic recording medium Granted JPS58146024A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57016302A JPS58146024A (en) 1982-02-05 1982-02-05 Magnetic recording medium
US06/463,419 US4511629A (en) 1982-02-05 1983-02-03 Magnetic recording medium
DE3303805A DE3303805C2 (en) 1982-02-05 1983-02-04 Magnetic recording medium
GB8303160A GB2116075B (en) 1982-02-05 1983-02-04 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016302A JPS58146024A (en) 1982-02-05 1982-02-05 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58146024A JPS58146024A (en) 1983-08-31
JPH0130221B2 true JPH0130221B2 (en) 1989-06-16

Family

ID=11912743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016302A Granted JPS58146024A (en) 1982-02-05 1982-02-05 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58146024A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731808B2 (en) * 1985-03-07 1995-04-10 ティーディーケイ株式会社 Method of manufacturing magnetic recording medium
JP3862898B2 (en) 1999-09-10 2006-12-27 Tdk株式会社 Magnetic recording medium and method of manufacturing magnetic recording medium
JP4119704B2 (en) 2002-07-31 2008-07-16 Tdk株式会社 Magnetic recording medium
JP4534574B2 (en) 2004-04-23 2010-09-01 富士フイルム株式会社 Magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910243A (en) * 1972-05-26 1974-01-29
JPS55116757A (en) * 1979-03-02 1980-09-08 Asahi Chem Ind Co Ltd Condensation of phthalimide derivative
JPS5625232A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium
JPS5625230A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910243A (en) * 1972-05-26 1974-01-29
JPS55116757A (en) * 1979-03-02 1980-09-08 Asahi Chem Ind Co Ltd Condensation of phthalimide derivative
JPS5625232A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium
JPS5625230A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS58146024A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
EP0047321B1 (en) Magnetic recording medium
GB2116075A (en) Magnetic recording medium
US4596747A (en) Magnetic recording medium
US4559118A (en) Magnetic recording media
JPS5815573A (en) Radiation-curing magnetic paint and magnetic recording medium obtained therefrom
JPH0130221B2 (en)
US4632878A (en) Magnetic recording medium
JPS6159621A (en) Binder for magnetic recording medium
JPH0640384B2 (en) Magnetic recording medium
JPS6045938A (en) Magnetic recording medium
JPS63162664A (en) Urethane group-containing vinyl compound, coating and adhesive composition containing said compound and magnetic recording medium
JPS6038721A (en) Magnetic recording medium
JPS58146023A (en) Magnetic recording medium
JPS6050619A (en) Magnetic disc and its production
KR850001005B1 (en) Magnetic recording medium
JPH03281670A (en) Radiation-curable magnetic paint and magnetic recording medium obtained by using the same
JPH0332130B2 (en)
JPH0125141B2 (en)
JPH044269A (en) Radiation-curing type magnetic coating and magnetic recording medium obtained by using same coating
JPH0215414A (en) Magnetic recording medium
JPS62217420A (en) Magnetic recording medium
JPH0572009B2 (en)
JPS5829145A (en) Magnetic recording medium and its manufacture
JPS59162638A (en) Magnetic recording medium
JPH0413765B2 (en)