JPH0413765B2 - - Google Patents

Info

Publication number
JPH0413765B2
JPH0413765B2 JP57190808A JP19080882A JPH0413765B2 JP H0413765 B2 JPH0413765 B2 JP H0413765B2 JP 57190808 A JP57190808 A JP 57190808A JP 19080882 A JP19080882 A JP 19080882A JP H0413765 B2 JPH0413765 B2 JP H0413765B2
Authority
JP
Japan
Prior art keywords
magnetic
molecule
parts
isocyanate
unsaturated double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57190808A
Other languages
Japanese (ja)
Other versions
JPS5982628A (en
Inventor
Ryozo Konno
Makio Sugai
Juichi Kubota
Masaharu Nishimatsu
Osamu Shinora
Shigeru Shimada
Kazunori Tamasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Artience Co Ltd
Original Assignee
TDK Corp
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Toyo Ink Mfg Co Ltd filed Critical TDK Corp
Priority to JP19080882A priority Critical patent/JPS5982628A/en
Publication of JPS5982628A publication Critical patent/JPS5982628A/en
Publication of JPH0413765B2 publication Critical patent/JPH0413765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7021Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing a polyurethane or a polyisocyanate

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、非磁性支持䜓に磁性塗料を塗垃しお
その䞊に磁性局を圢成しおなる磁気蚘録媒䜓の補
造法に関する。曎に詳しくは、本発明は、磁性局
の耐久性、耐油性あるいは耐熱性等の塗膜物性に
優れた磁気蚘録媒䜓を提䟛する熱硬化性および攟
射線硬化性を有するバむンダヌおよびその硬化方
法に特城を有するものである。 近幎、磁気テヌプの塗膜匷床の向䞊が益々芁求
されおおり、倚官胜む゜シアネヌト類を甚いお架
橋硬化させる等の熱硬化性暹脂が䜿甚されおい
る。しかしながら、これらのバむンダヌでは、む
゜シアネヌト化合物の割合が倚い為、ポツトラむ
フが短かく、塗料の保存安定性が䜎䞋し、か぀塗
工埌の衚面凊理その他の工皋を短時間に行う必芁
があ぀た。たた、架橋硬化に長時間の加熱が必芁
であり、その間のブロツキング、基材の裏面の衚
面粗床の転移等が生じ、平滑な磁性局の衚面が埗
難い欠点があ぀た。 近幎、この様な欠点を改善するものずしお、攟
射線硬化性暹脂を甚いた磁性塗料が提案されおお
り、ポツトラむフおよびオンラむン硬化により、
硬化埌巻き取りが可胜にな぀お衚面粗床の転移は
改善されたが、攟射線硬化性暹脂の倚くが䜎分子
量成分を甚いおおり、攟射線の短時間照射による
硬化では充分な高分子量は望めず、たた架橋密床
が高い為に塗膜高床は良奜であるが、可撓性に劣
り、耐摩耗性に優れた磁気蚘録媒䜓は埗がたか぀
た。 本発明は、こうした欠点を改善すべく鋭意研究
の結果、達成されたものであり、攟射線硬化性暹
脂の速硬化性およびむ゜シアネヌト架橋による高
分子量化の効果を甚いるこずにより、塗膜物性に
優れた磁気蚘録媒䜓が埗られるこずを芋い出し、
本発明を完成したものである。 即ち、本発明は、匷磁性埮粉末、バむンダヌお
よび溶剀から䞻ずしおなる磁性塗料を非磁性支持
䜓䞊に塗垃し、也燥埌、架橋硬化せしめお非磁性
支持䜓䞊に磁気蚘録局を蚭ける磁気蚘録媒䜓の補
造法においお、前蚘バむンダヌが、 (1) (a)分子内にアクリル系䞍飜和二重結合を少な
くずも぀以䞊含有し䞔぀む゜シアネヌト基ず
しお反応し埗る掻性氎玠基を含有しないモノマ
ヌ、オリゎマヌおよびポリマヌ、及び(b)分子内
にアクリル系䞍飜和二重結合を少なくずも぀
以䞊含有し䞔぀む゜シアネヌト基ず反応し埗る
掻性氎玠基を含有するモノマヌ、オリゎマヌお
よびポリマヌ、より遞択した皮以䞊の20〜
99.5重量、 (2) 分子内にむ゜シアネヌト基ず反応し埗る掻性
氎玠を少なくずも぀以䞊含有する化合物、オ
リゎマヌおよびポリマヌの皮以䞊を80重量
以䞋、および (3) 分子内に぀以䞊のむ゜シアネヌト基を有す
るむ゜シアネヌト化合物又は分子内にむ゜シア
ネヌト基を぀以䞊およびアクリル系䞍飜和二
重結合を぀以䞊有するむ゜シアネヌト化合物
を0.5〜25重量よりなるか、たたは (1) 分子内にアクリル系䞍飜和二重結合を少なく
ずも぀以䞊含有しおよびむ゜シアネヌト基ず
反応し埗る掻性氎玠基を含有するモノマヌ、オ
リゎマヌおよびポリマヌの皮以䞊を20〜99.5
重量、および (2) 分子内に぀以䞊のむ゜シアネヌト基を有す
るむ゜シアネヌト化合物又は分子内にむ゜シア
ネヌト基を぀以䞊およびアクリル系䞍飜和二
重結合を぀以䞊有するむ゜シアネヌト化合物
を0.5〜25重量、 を含む磁性塗料を甚い、非磁性支持䜓䞊に塗垃
し、也燥埌、電子線照射ず加熱凊理ずを同時に行
な぀お、たたは攟射線を照射し次いで加熱凊理を
行な぀お架橋硬化せしめるこずを特城ずする磁気
蚘録媒䜓の補造法である。 即ち、本発明におけるバむンダヌを甚いた磁性
塗料を基材に塗垃し、也燥した埌に、攟射線照射
を行うこずによりアクリル系䞍飜和二重結合のラ
ゞカル反応により線状又は網目構造が圢成され
る。他方、必芁に応じた所定枩床、所定時間の加
熱により掻性氎玠基ずむ゜シアネヌト基ずの反応
でも架橋構造が圢成される。埓぀お䞡者の架橋硬
化反応が組み合わされるこずにより高分子量化さ
れた高次の架橋構造が埗られ、塗膜硬床および耐
摩耗性に優れた磁気蚘録局が埗られるものず考え
られる。たた、本発明におけるむ゜シアネヌト化
合物の割合は埓来の熱硬化性暹脂に比べお比范的
少なくお良く、充分なポツトラむフが埗られる。
本発明の硬化方法においおは、攟射線照射ず同時
にたたは照射埌にむ゜シアネヌトによる架橋硬化
に必芁な加熱凊理を行なう時には、攟射線硬化に
よる䞉次元網目構造が圢成されおおり、䟋えば、
ロヌル状に巻き取぀た埌に加熱凊理を行぀おも、
塗膜は軟化せず、衚面粗床の磁性局衚面ぞの転移
が生じない。これに察しお、加熱凊理を先に行い
次いで攟射線照射を行぀た堎合、加熱凊理はロヌ
ルに巻いお行うのが通垞であり、未架橋の塗膜は
軟化し、衚面粗床の転移が生じるず共に攟射線照
射時の硬化性が䜎く、高線量の照射が必芁であ぀
た。このような欠点を陀くべく本発明に斌ける硬
化方法は、磁性塗料を塗垃し、也燥した埌に、攟
射線照射ず同時にたたは照射埌に、む゜シアネヌ
トによる架橋硬化に必芁な加熱凊理を行なうこず
が重芁である。 本発明に斌ける攟射線硬化性成分、即ち(1)の成
分ずしおは、分子内に぀以䞊のアクリル系䞍飜
和二重結合を有する化合物が䜿甚される。たた、
(1)の成分は、む゜シアネヌト基ず反応し埗る掻性
氎玠基䟋えば氎酞基、カルボキシル基、アミノ
基、アミド基等を有しおいおもよい。 本発明におけるアクリル䞍飜和二重結合を含有
する化合物即ち(1)の成分ずしおは、各皮反応性基
を有する化合物、䟋えば成分(2)のような化合物に
埓来公知の方法により化合物の末端又は偎鎖にア
クリル系䞍飜和二重結合基を結合させた化合物が
甚いられる。アクリル系䞍飜和二重結合基を化合
物の末端又は偎鎖に結合させた化合物ずしおは、
次のものが挙げられる。 () む゜シアネヌト基ずの反応性を有する基を
有するメタアクリル゚ステル単量䜓ずポリ
む゜シアネヌト化合物ずの反応生成物モル以
䞊ず、分子䞭に個以䞊の氎酞基を有する化合
物モルずの反応生成物あるいはこれ等者の
反応順を倉えお埗られる反応生成物が挙げられ
る。たた、オリゎマヌ、ポリマヌの氎酞基の圓
量より少ないむ゜シアネヌト化合物ず反応させ
るこずにより、氎酞基およびアクリル系䞍飜和
二重結合を有するプレポリマヌ、オリゎマヌ、
もしくはポリマヌを埗るこずができる。 () 分子䞭に゚ポキシ基を個以䞊含む化合物
分子ず、゚ポキシ基ず反応する基および電子
線硬化性䞍飜和二重結合を有する単量䜓分子
以䞊ずの反応物が挙げられる。 ゚ポキシ基ずアクリル酞、メタクリル酞等ず
の反応により氎酞基が副生するこずは公知であ
り、アクリル系䞍飜和二重結合及び氎酞基を有
する化合物ずしお甚いられる。 () 分子䞭にカルボキシル基を個以䞊含む化
合物分子ずカルボキシル基ず反応する基およ
び攟射線硬化性䞍飜和二重結合を有する単量䜓
分子以䞊ずの反応物、䟋えばメタクリル酞を
溶液重合させお埗たカルボキシル基を含有する
熱可塑性暹脂にグリシゞルメタクリレヌトを反
応させ、第項ず同様にカルボキシ基ず゚ポキ
シ基の開環反応により分子䞭にアクリル系二重
結合を導入させた暹脂、プレポリマヌおよびポ
リマヌを挙げるこずができる。 たた、オリゎマヌ、ポリマヌのカルボキシル
基の圓量より少ない゚ポキシ基を持぀単量䜓ず
反応させるこずにより、カルボキシル基および
アクリル系䞍飜和二重結合を有するプレポリマ
ヌ、オリゎマヌもしくはポリマヌを埗るこずが
できる。 () アクリル系䞍飜和二重結合を含有する単量
䜓ずしおは、埓来公知の単量䜓で良く、䟋えば
メチルメタアクリレヌト、゚チルメタ
アクリレヌト、ブチルメタアクリレヌト等
および倚䟡アルコヌルのメタアクリル酞゚
ステル䟋えば、ゞ゚チレングリコヌルゞメ
タアクリレヌト、トリメチロヌルプロパント
リメタアクリレヌト等を挙げるこずができ
る。 たた、む゜シアネヌト基ず反応性を有する基
ずアクリル系䞍飜和二重結合を有する化合物ず
しおは、倚䟡アルコヌルの䞀郚をメタアク
リル酞で゚ステル化しお埗られる。䟋えば、ト
リメチロヌルプロパンゞメタアクリレヌ
ト、ペンタ゚リスリトヌルトリアクリレヌト等
を挙げるこずが出来る。 本発明に斌ける(2)の成分ずしおはむ゜シアネヌ
ト基ず反応し埗る掻性氎玠基、䟋えば氎酞基、カ
ルボキシル基、アミノ基等を含有する化合物、オ
リゎマヌたたはポリマヌであり、䟋えばアデカポ
リ゚ヌテル−700、アデカポリ゚ヌテル−
1000、アデカポリ゚ヌテル−1500以䞊旭電化
瀟補、ポリメグ1000、ポリメグ650以䞋クオヌ
カヌ・オヌツ瀟補等の倚官胜性ポリ゚ヌテル
類、ニトロセルロヌズ、アセチルセルロヌズ、゚
チルセルロヌズの様な繊維玠誘導䜓、ビニラむト
VAGH米囜ナニオン・カヌバむド瀟補の様な
氎酞基を有する䞀郚ケン化された塩化ビニル−酢
酞ビニル共重合䜓、ポリビニルアルコヌル、ポリ
ビニルホリマヌル、ポリビニルブチラヌル、ポリ
カプロラクトンPCP−0200、ポリカプロラクト
ンPCP−0240、ポリカプロラクトンPCP−0300
以䞊テツ゜瀟補等の倚官胜性ポリ゚ステルポ
リオヌル類、フタル酞、む゜フタル酞、テレフタ
ル酞、アゞピン酞、コハク酞、セバチン酞のよう
な飜和倚塩基酞ず゚チレングリコヌル、ゞ゚チレ
ングリコヌル、−ブタンゞオヌル、
−ブタンゞオヌル、−プロピレングリコヌ
ル、ゞプロピレングリコヌル、−ヘキサン
グリコヌル、ネオペンチルグリコヌル、グリセリ
ン、トリメチロヌルプロパン、ペンタ゚リスリツ
トのような倚䟡アルコヌルずの゚ステル結合によ
り埗られる末端又は偎鎖に氎酞基を有する飜和ポ
リ゚ステル暹脂、氎酞基を含有するアクリル゚ス
テルおよびメタクリル゚ステルを少なくずも䞀皮
以䞊重合成分ずしお含むアクリル系重合䜓、゚ピ
コヌト828、゚ピコヌト1001、゚ピコヌト1007、
゚ピコヌト1009以䞊シ゚ル化孊瀟補等その他
皮々のタむプの゚ポキシ暹脂が挙げられる。 分子䞭にカルボキシル基を個以䞊含む化合物
ずしおは、分子鎖䞭たたは分子末端にカルボキシ
ル基を含むポリ゚ステル類、アクリル酞、メタク
リル酞、無氎マレむン酞、フマル酞等のラゞカル
重合性を持ち、か぀カルボキシル基を有する単量
䜓のホモポリマヌあるいは他の重合性モノマヌず
の共重合䜓等を挙げるこずができる。 たた、本発明に斌ける(3)の成分であるポリむ゜
シアネヌト化合物ずしおは、−トル゚ンゞ
む゜シアネヌト、−トル゚ンゞむ゜シアネ
ヌト、−キシレンゞむ゜シアネヌト、−
プニレンゞむ゜シアネヌト、−プニレンゞ
む゜シアネヌト、ヘキサメチレンゞむ゜シアネヌ
ト、む゜ホロンゞむ゜シアネヌトやデスモゞナヌ
ル、デスモゞナヌルIL西ドむツ バむ゚ル瀟
補等が挙げられる。 ポリオヌルずポリむ゜シアネヌトの反応で埗ら
れる末端にむ゜シアネヌト基を有するポリりレタ
ンプレポリマヌ又はポリマヌを挙げるこずが出来
る。 たた(3)の成分ずしおはアクリル系䞍飜和二重結
合およびむ゜シアネヌト基を含有する化合物であ
぀おもよく、䟋えば䞊蚘のポリむ゜シアネヌト化
合物をそのむ゜シアネヌト基の圓量より少ない氎
酞基を含有するアクリルモノマヌずの反応によ぀
お埗られる化合物が䜿甚される。 本発明のバむンダヌは、攟射線硬化性を有する
成分(1)が20〜99.5重量、熱硬化性を有する成分
(2)が〜80重量、そしお硬化剀である成分(3)が
0.5〜25重量の範囲で甚いられる。成分(1)が20
重量以䞋においおは、攟射線照射により充分な
網目構造が埗られず、熱凊理時に塗膜の軟化が生
じる欠点がある。たた、成分(2)が80重量以䞊に
斌いおも同様の欠点があり、軟化により衚面粗床
ず転移が生じ平滑な磁性局が埗られなか぀た。成
分(3)が0.5重量以䞋では熱凊理による物性改善
の効果が少なく、25重量以䞊では、塗料のポツ
トラむフが著じるしく短かくなり取扱いが困難ず
なる欠点がある。 本発明に斌ける磁性塗料は、基材䞊に圢成され
た塗膜の磁気的特性および機械的物性から磁性粒
子バむンダヌ重量比8614〜6535の範
囲で適切に䜿甚される。 本発明の磁性塗料では非反応性溶剀が䜿甚され
る。溶剀ずしおは特に制限はないが、バむンダヌ
の溶解性および盞溶性等を考慮しお適宜遞択され
る。䟋えば、アセトン、メチル゚チルケトン、メ
チルむ゜ブチルケトン、シクロヘキサノン等のケ
トン類、ギ酞゚チル、酢酞゚チル、酢酞ブチル等
の゚ステル類、トル゚ン、キシレン、゚チルベン
れン等の芳銙族炭化氎玠類、む゜プロピル゚ヌテ
ル、゚チル゚ヌテル、ゞオキサン等の゚ヌテル
類、テトラヒドロフラン、フルフラヌル等のフラ
ン類等を単䞀溶剀たたはこれらの混合溶剀ずしお
甚いられる。 本発明に係わるバむンダヌを甚いた磁性塗料が
塗垃される基䜓ずしおは、珟圚磁気蚘録媒䜓甚基
材ずしお広く掻甚されおいくものでよく、䟋えば
ポリ゚チレンテレフタレヌト系フむルム、曎に耐
熱性を芁求される甚途しおはポリむミドフむル
ム、ポリアミドフむルム等が掻甚されおいる。特
にポリ゚ステル系フむルムにおいおは薄物ベヌス
では軞延䌞、軞延䌞凊理をほどこしお利甚す
るケヌスを倚い。たた玙にコヌテむングをほどこ
す甚途も有る。 本発明な䜿甚される磁性䜓埮粉末は、γ−
Fe2O3、Fe3O4、Coド−ブγ−Fe2O3、Coド−ブ
γ−Fe2O3−Fe3O4固溶䜓、Co系化合物被着型γ
−Fe2O3、Co系化合物被着型Fe3O4γ−Fe2O3ず
の䞭間酞化状態も含む、ここで蚀うCo系化合物
ずは、酞化コバルト、氎酞化コバルト、コバルト
プラむト、コバルトむオン吞着物等コバルトの
磁気異方性を保磁力向䞊に掻甚する堎合を瀺す
である。Co、Fe−Co、Fe−Co−Ni、Co−Ni等
の匷磁性金属を䞻成分ずする、BH4等の還元剀
による湿匏還元法や、酞化鉄衚面をSi化合物で凊
理埌、H2ガス等により也匏還元法によ぀お、あ
るいは䜎圧アルゎンガス気流䞭で真空蒞発させる
こずによ぀お埗られる手法等各皮補法によ぀お埗
られた金属埮粒子、単結晶バリりムプラむト埮
粉である。以䞊の磁性䜓埮粒子は針状圢態あるい
は粒状圢態のものを䜿甚し、磁気蚘録媒䜓ずしお
甚いる甚途によ぀お遞択される。 近幎特に技術進歩が著しく、しかも垂堎性の拡
倧しおいる高バむアスのHiFi甚オヌデむオカセ
ツトテヌプ、ビデオカセツトテヌプ、ビデオテヌ
プ接觊転写プリント甚マスタヌテヌプ等には本発
明のバむンダヌず䞊蚘磁性䜓埮粉末䞭、特に高密
床蚘録甚途に有利なコバルト倉性針状酞化鉄コ
バルトドヌプタむプもしくはコバルト系化合物被
着タむプあるいは曎に高保磁力の針状合金埮粒
子ずを組合せるこずにより、極めお良奜な電磁倉
換特性ず物性信頌性を有する高性胜テヌプを埗る
こずが出来た。 本発明の磁性塗料に関しおも、必芁に応じお通
垞䜿甚される各皮垯電防止剀、最滑剀、分散剀、
増感剀、レベリング剀、耐摩耗性付䞎剀、塗膜匷
床補匷添加剀等を甚いるこずができる。たた、反
応に関䞎しない暹脂類を必芁に応じお䜿甚するこ
ずもできる。 本発明による磁気蚘録媒䜓䟋えばビデオ甚の磁
気テヌプを補造する堎合、䟋えばたず(1)および(2)
のバむンダヌ成分、磁性粉およびその他添加剀等
を溶剀䞭に分散させた磁性塗料を調敎し、これに
(3)のむ゜シアネヌト化合物を添加し、そしお基材
に塗垃する。次いで、加熱しお溶剀を蒞発させ、
衚面凊理等の加工を行い、そしお攟射線を照射す
る。次いでロヌル状に巻き取り、所定枩床で所定
時間加熱しおむ゜シアネヌト化合物による硬化を
斜すこずができる。 本発明に斌いお硬化の為に䜿甚される攟射線ず
しおは、電子線加速噚を線源ずした電子線、Co60
を線源ずしたγ−線、Sr90を線源ずしたβ−線、
線発生噚を線源ずした線等が䜿甚される。特
に照射線源ずしおは吞収線量の制埡、構造工皋ラ
むンぞの導入、電離攟射線の遮閉等の芋地から、
電子線加速噚による電子線を䜿甚する方法が有利
である。 照射線源ずしおは、吞収線量の制埡、補造工皋
ラむンぞの導入の為の電離攟射線の自己遮蔜、工
皋ラむン諞蚭備ずのシヌケンス制埡ずの接続のし
易さ等の点で電子線加速噚の利甚が有利である。
電子線加速噚ずしおは、埓来から、コツククロフ
ト型、パンデグラフ型、共振倉圧噚型、鉄心絶瞁
倉圧噚型、リンアアクセレレヌタヌ型等䞻ずしお
高電圧を埗る方匏の差により各皮の加速噚が実甚
化されおいる。 しかし、磁気蚘録媒䜓は汎甚甚途においおは10
ミクロン厚以䞋の薄い磁性膜厚のものがほずんど
であり、埓぀お䞊蚘加速噚で通垞的に䜿甚される
1000KV以䞊の高加速電圧は䞍必芁であり、
300KV以䞋の䜎加速電圧の電子線加速噚で十分
である。このような䜎加速電圧加速噚は、システ
ム自䜓のコストが䜎䞋する点だけでなく、その䞊
に電離攟射線の遮蔜蚭備の点でも特に有利ずな
る。遮蔜蚭備を鉛補ずするかコンクリヌト補ずす
るかたたその遮蔜厚に぀いおは次衚のような基準
が報告されおいる攟射線利甚研究䌚報告頁、
1979幎月、日本原子力䌚議
The present invention relates to a method for producing a magnetic recording medium, which comprises coating a non-magnetic support with a magnetic paint and forming a magnetic layer thereon. More specifically, the present invention features a thermosetting and radiation curable binder and a curing method thereof, which provide a magnetic recording medium with excellent coating film properties such as durability, oil resistance, and heat resistance of the magnetic layer. It is something that you have. In recent years, there has been an increasing demand for improvements in the strength of magnetic tape coatings, and thermosetting resins that are crosslinked and cured using polyfunctional isocyanates have been used. However, since these binders have a high proportion of isocyanate compounds, the pot life is short, the storage stability of the paint is reduced, and it is necessary to perform surface treatment and other steps after coating in a short period of time. In addition, long-time heating is required for crosslinking and curing, and during this time, blocking occurs, the surface roughness of the back surface of the substrate changes, etc., and it is difficult to obtain a smooth surface of the magnetic layer. In recent years, magnetic paints using radiation-curable resins have been proposed as a way to improve these drawbacks, and with pot life and online curing,
Rolling up after curing has become possible, which has improved the surface roughness transition, but many radiation-curable resins use low molecular weight components, and it is not possible to achieve a sufficient high molecular weight by curing with short-term radiation irradiation. Also, since the crosslinking density is high, the coating film height is good, but the flexibility is poor and it is difficult to obtain a magnetic recording medium with excellent wear resistance. The present invention was achieved as a result of intensive research in order to improve these drawbacks, and by utilizing the rapid curing properties of radiation-curable resin and the effect of increasing the molecular weight through isocyanate crosslinking, it has achieved excellent physical properties of the coating film. discovered that magnetic recording media could be obtained,
This completes the present invention. That is, the present invention provides a magnetic recording medium in which a magnetic coating mainly consisting of ferromagnetic fine powder, a binder, and a solvent is coated on a non-magnetic support, dried, and then cross-linked and cured to form a magnetic recording layer on the non-magnetic support. In the production method, the binder includes (1) (a) monomers, oligomers, and polymers containing at least one acrylic unsaturated double bond in the molecule and containing no active hydrogen group capable of reacting as an isocyanate group; , and (b) one or more monomers, oligomers, and polymers containing at least one acrylic unsaturated double bond in the molecule and an active hydrogen group capable of reacting with an isocyanate group.
99.5% by weight, (2) 80% by weight of one or more compounds, oligomers, and polymers containing at least one active hydrogen that can react with isocyanate groups in the molecule.
and (3) 0.5 to 25% by weight of an isocyanate compound having two or more isocyanate groups in the molecule or an isocyanate compound having one or more isocyanate groups and one or more acrylic unsaturated double bonds in the molecule. or (1) one or more monomers, oligomers, and polymers containing at least one acrylic unsaturated double bond in the molecule and an active hydrogen group capable of reacting with an isocyanate group. 99.5
% by weight, and (2) 0.5 to 25% by weight of an isocyanate compound having two or more isocyanate groups in the molecule or an isocyanate compound having one or more isocyanate groups and one or more acrylic unsaturated double bonds in the molecule. %, is applied onto a non-magnetic support, and after drying, is cross-linked and cured by simultaneously performing electron beam irradiation and heat treatment, or by irradiating radiation and then heat treatment. A method for manufacturing a magnetic recording medium characterized by: That is, by applying a magnetic paint using the binder of the present invention to a base material, drying it, and then irradiating it with radiation, a linear or network structure is formed by a radical reaction of acrylic unsaturated double bonds. On the other hand, a crosslinked structure is also formed by reaction between active hydrogen groups and isocyanate groups by heating at a predetermined temperature and for a predetermined time as necessary. Therefore, it is thought that a combination of both crosslinking and curing reactions results in a high-order crosslinked structure with a high molecular weight, resulting in a magnetic recording layer with excellent coating film hardness and abrasion resistance. Further, the proportion of the isocyanate compound in the present invention may be relatively small compared to conventional thermosetting resins, and a sufficient pot life can be obtained.
In the curing method of the present invention, when the heat treatment necessary for crosslinking and curing with isocyanate is performed simultaneously with or after radiation irradiation, a three-dimensional network structure is formed by radiation curing, and for example,
Even if heat treatment is performed after winding into a roll,
The coating film does not soften and the surface roughness does not transfer to the surface of the magnetic layer. On the other hand, when heat treatment is first performed and then radiation irradiation is performed, the heat treatment is usually carried out by winding it into a roll, which softens the uncrosslinked coating film and causes a change in surface roughness. Curing properties during radiation irradiation were low, and high-dose irradiation was required. In order to eliminate such drawbacks, in the curing method of the present invention, it is important to apply the magnetic paint, dry it, and then perform the heat treatment necessary for crosslinking and curing with isocyanate simultaneously with or after irradiation with radiation. . As the radiation-curable component in the present invention, that is, component (1), a compound having one or more acrylic unsaturated double bonds in the molecule is used. Also,
Component (1) may have an active hydrogen group such as a hydroxyl group, a carboxyl group, an amino group, an amide group, etc. that can react with an isocyanate group. In the present invention, the compound containing an acrylic unsaturated double bond, that is, the component (1), is a compound having various reactive groups, such as a compound such as component (2), by a conventionally known method. A compound in which an acrylic unsaturated double bond group is bonded to the chain is used. Compounds with an acrylic unsaturated double bond group attached to the terminal or side chain of the compound include:
These include: () 1 mole or more of a reaction product of a polyisocyanate compound and a (meth)acrylic ester monomer having a group that is reactive with an isocyanate group, and 1 mole of a compound having one or more hydroxyl groups in the molecule. Examples include reaction products and reaction products obtained by changing the reaction order of these three components. In addition, by reacting with an isocyanate compound smaller than the equivalent of the hydroxyl group of the oligomer or polymer, prepolymers and oligomers having hydroxyl groups and acrylic unsaturated double bonds,
Alternatively, polymers can be obtained. () A reaction product of one molecule of a compound containing one or more epoxy groups in the molecule and one or more molecules of a monomer having an electron beam-curable unsaturated double bond and a group that reacts with the epoxy group. It is known that a hydroxyl group is produced as a by-product through the reaction of an epoxy group with acrylic acid, methacrylic acid, etc., and is used as a compound having an acrylic unsaturated double bond and a hydroxyl group. () Solution polymerization of a reaction product of one molecule of a compound containing one or more carboxyl groups in the molecule and one or more molecules of a monomer having a group that reacts with carboxyl groups and a radiation-curable unsaturated double bond, such as methacrylic acid. A resin or prepolymer obtained by reacting glycidyl methacrylate with a thermoplastic resin containing a carboxyl group obtained by the above process, and introducing an acrylic double bond into the molecule by the ring-opening reaction of the carboxyl group and the epoxy group as in the above. and polymers. Furthermore, by reacting with a monomer having fewer epoxy groups than the equivalent of carboxyl groups in the oligomer or polymer, a prepolymer, oligomer or polymer having a carboxyl group and an acrylic unsaturated double bond can be obtained. () As the monomer containing an acrylic unsaturated double bond, conventionally known monomers may be used, such as methyl (meth)acrylate, ethyl (meth)acrylate, etc.
Acrylates, butyl (meth)acrylate, etc., and (meth)acrylic acid esters of polyhydric alcohols include, for example, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and the like. Further, a compound having a group reactive with an isocyanate group and an acrylic unsaturated double bond can be obtained by esterifying a part of a polyhydric alcohol with (meth)acrylic acid. For example, trimethylolpropane di(meth)acrylate, pentaerythritol triacrylate, etc. can be mentioned. Component (2) in the present invention is a compound, oligomer or polymer containing an active hydrogen group that can react with an isocyanate group, such as a hydroxyl group, a carboxyl group, an amino group, etc., such as ADEKA Polyether P-700, Adeka polyether P-
Polyfunctional polyethers such as 1000, Adeka Polyether G-1500 (manufactured by Asahi Denka Co., Ltd.), Polymeg 1000, and Polymeg 650 (hereinafter manufactured by Quaker Oats), fibers such as nitrocellulose, acetylcellulose, and ethylcellulose. elementary derivative, vinylite
Partially saponified vinyl chloride-vinyl acetate copolymer with hydroxyl groups such as VAGH (manufactured by Union Carbide, USA), polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polycaprolactone PCP-0200, polycaprolactone PCP- 0240, polycaprolactone PCP−0300
(manufactured by Tetsuso), saturated polybasic acids such as phthalic acid, isophthalic acid, terephthalic acid, adipic acid, succinic acid, and sebacic acid, and ethylene glycol, diethylene glycol, and 1,4-butane. Diol, 1,3
- terminals obtained by ester bonding with polyhydric alcohols such as butanediol, 1,2-propylene glycol, dipropylene glycol, 1,6-hexane glycol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, or Saturated polyester resin having a hydroxyl group in the side chain, acrylic polymer containing at least one kind of acrylic ester and methacrylic ester containing a hydroxyl group as a polymerization component, Epicote 828, Epicote 1001, Epicote 1007,
Other various types of epoxy resins include Epicote 1009 (manufactured by Ciel Kagaku Co., Ltd.). Compounds containing one or more carboxyl groups in the molecule include polyesters containing carboxyl groups in the molecular chain or at the end of the molecule, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, etc., which have radical polymerizability and have carboxyl groups. Examples include homopolymers of monomers having groups and copolymers with other polymerizable monomers. Further, as the polyisocyanate compound which is the component (3) in the present invention, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 1,4-xylene diisocyanate, m-
Examples include phenylene diisocyanate, p-phenylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, Desmodyur L, Desmodyur IL (manufactured by Bayer AG, West Germany), and the like. Examples include polyurethane prepolymers or polymers having isocyanate groups at the ends obtained by the reaction of polyols and polyisocyanates. The component (3) may also be a compound containing an acrylic unsaturated double bond and an isocyanate group. For example, the above polyisocyanate compound is combined with an acrylic monomer containing less hydroxyl groups than the equivalent of the isocyanate group. The compounds obtained by the reaction are used. The binder of the present invention contains 20 to 99.5% by weight of the radiation curable component (1) and the thermosetting component (1).
(2) is 0 to 80% by weight, and component (3) which is a curing agent is
It is used in a range of 0.5 to 25% by weight. Component (1) is 20
If the amount is less than 1% by weight, a sufficient network structure cannot be obtained by radiation irradiation, and the coating film may be softened during heat treatment. In addition, the same drawback occurs even when the content of component (2) is 80% by weight or more, and surface roughness and dislocation occur due to softening, making it impossible to obtain a smooth magnetic layer. If component (3) is less than 0.5% by weight, the effect of improving physical properties by heat treatment will be small, and if it is more than 25% by weight, the pot life of the paint will be significantly shortened, making it difficult to handle. The magnetic paint according to the present invention is appropriately used in a range of magnetic particles/binder (weight ratio) of 86/14 to 65/35 based on the magnetic properties and mechanical properties of the coating film formed on the base material. Ru. A non-reactive solvent is used in the magnetic paint of the present invention. There are no particular restrictions on the solvent, but it is appropriately selected in consideration of the solubility and compatibility of the binder. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, esters such as ethyl formate, ethyl acetate, and butyl acetate, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, isopropyl ether, ethyl ether, dioxane, etc. ethers, tetrahydrofuran, furfurals such as furfural, etc. can be used as a single solvent or a mixture of these solvents. The substrate to which the magnetic paint using the binder of the present invention is coated may be any material that is currently widely used as a substrate for magnetic recording media, such as polyethylene terephthalate film, and other materials that require heat resistance. For this purpose, polyimide film, polyamide film, etc. are used. Particularly in the case of polyester films, thin films are often subjected to uniaxial or biaxial stretching treatment. It is also used to coat paper. The magnetic fine powder used in the present invention is γ-
Fe 2 O 3 , Fe 3 O 4 , Co-doped γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 -Fe 3 O 4 solid solution, Co-doped γ
-Fe 2 O 3 , Co-based compound-coated Fe 3 O 4 (including intermediate oxidation state with γ-Fe 2 O 3 ; Co-based compounds referred to here include cobalt oxide, cobalt hydroxide, cobalt ferrite, This shows a case where the magnetic anisotropy of cobalt, such as a cobalt ion adsorbent, is used to improve coercive force)
It is. A wet reduction method using a reducing agent such as BH 4 whose main component is a ferromagnetic metal such as Co, Fe-Co, Fe-Co-Ni, Co-Ni, etc., or after treating the iron oxide surface with a Si compound, H 2 These are metal fine particles and single crystal barium ferrite fine powder obtained by various manufacturing methods such as a dry reduction method using a gas or the like or a method obtained by vacuum evaporation in a low-pressure argon gas stream. The above-mentioned magnetic fine particles are in the form of needles or particles, and are selected depending on the intended use as a magnetic recording medium. High bias HiFi audio cassette tapes, video cassette tapes, master tapes for videotape contact transfer printing, etc., which have undergone remarkable technological progress in recent years and whose marketability is expanding, contain the binder of the present invention and the above-mentioned magnetic fine powder. By combining cobalt-modified acicular iron oxide (cobalt-doped type or cobalt-based compound coated type), which is especially advantageous for high-density recording applications, or acicular alloy fine particles with high coercive force, extremely good electromagnetic conversion characteristics can be achieved. A high-performance tape with reliable physical properties could be obtained. Regarding the magnetic paint of the present invention, various commonly used antistatic agents, lubricants, dispersants,
A sensitizer, a leveling agent, an abrasion resistance imparting agent, a coating strength reinforcing additive, etc. can be used. Moreover, resins that do not participate in the reaction can also be used as necessary. When manufacturing a magnetic recording medium according to the present invention, such as a magnetic tape for video, for example, first (1) and (2)
A magnetic paint is prepared by dispersing the binder component, magnetic powder, and other additives in a solvent, and then applied to the magnetic paint.
Add the isocyanate compound of (3) and apply to the substrate. The solvent is then evaporated by heating,
Processing such as surface treatment is performed, and then radiation is irradiated. Then, it can be wound into a roll and heated at a predetermined temperature for a predetermined time to be cured with an isocyanate compound. In the present invention, the radiation used for curing includes an electron beam using an electron beam accelerator as a radiation source, Co 60
γ-rays using Sr90 as a source, β-rays using Sr 90 as a source,
X-rays using an X-ray generator as a radiation source are used. In particular, as an irradiation source, from the standpoint of controlling absorbed dose, introducing into structural process lines, and shielding from ionizing radiation,
Preference is given to methods using electron beams from electron beam accelerators. As an irradiation source, electron beam accelerators are recommended for the following reasons: control of absorbed dose, self-shielding of ionizing radiation when introduced into the manufacturing process line, ease of connection with sequence control of process line equipment, etc. is advantageous.
As electron beam accelerators, various types of accelerators have been put into practical use, such as Kotscroft type, Pandegraph type, resonant transformer type, iron core insulated transformer type, and Liner accelerator type, mainly due to differences in the method of obtaining high voltage. . However, magnetic recording media can only be used for general purpose applications.
Most have a thin magnetic film thickness of less than a micron, and are therefore commonly used in the above accelerators.
High accelerating voltage over 1000KV is unnecessary,
An electron beam accelerator with a low accelerating voltage of 300KV or less is sufficient. Such a low accelerating voltage accelerator is particularly advantageous not only in terms of lower costs for the system itself, but also in terms of ionizing radiation shielding equipment. The standards shown in the table below have been reported regarding whether the shielding equipment should be made of lead or concrete, and the thickness of the shielding (Radiation Utilization Research Group Report, p. 8).
August 1979, Japan Atomic Energy Council)

【衚】 䞊衚に瀺されるように、300KV以䞋の電子線
加速電圧においおは、遮蔜材ずしお最倧cmの鉛
板を甚いお電子線被照射郚を包む加速管党䜓を芆
うこずで挏掩線を十分遮断するこずができる。
この為、高額の電子線照射宀を別に蚭ける必芁が
なく、照射システム自䜓も磁気蚘録媒䜓補造ラむ
ンのシステムずしお組蟌むこずが可胜ずなり、
埓぀お磁気蚘録媒䜓の電子線による也燥・硬化工
皋をオンラむン化するこずが可胜ずなる。 このような具䜓的システムずしおは、米囜゚ナ
ヌゞヌサむ゚ンス瀟により補造されおいる䜎線量
タむプの電子線加速噚゚レクトロカヌテンシス
テムや西独囜ホリマヌフむゞツクス瀟の自己遮
閉型スキダニング型䜎線量タむプ電子線加速噚が
奜適䟋である。 たた、攟射線架橋に際しおは、N2ガス、Heガ
ス、CO2ガス等の䞍掻性ガス気流䞭で攟射線を蚘
録媒䜓に照射するこずが重芁であり、磁性塗膜の
様に非垞に磁性顔料充填床の高い塗膜は非垞に倚
孔質ずな぀おいる為に、空気䞭で攟射線を照射す
るこずは、バむンダヌ成分の架橋に際し攟射線照
射により生じたO3等の圱響でポリマヌ䞭に生じ
たラゞカルが有効に架橋反応に働く事を阻害す
る。その圱響は、磁性局衚面は圓然ずしお倚孔質
の為塗膜内郚たでバむンダヌ架橋阻害の圱響を受
ける。 埓぀お、掻性゚ネルギヌ線を照射する郚分の雰
囲気は、特に酞玠濃床が最倧でのN2、Ne、
CO2等の䞍掻性ガス雰囲気に保぀こずが重芁ずな
る。 又本発明に斌けるむ゜シアネヌト化合物の架橋
反応の為の加熱凊理は、埓来公知の条件で良く、
䟋えば、60℃、24時間䜍かけお熱硬化を行う事は
良く知られおいる。 以䞋実斜䟋および比范䟋のより本発明を具䜓的
に説明する。なお、各䟋においお「郚」ずあるの
は重量郚を瀺す。 先ず、本発明においお甚いる暹脂の合成䟋を䟋
瀺する。 TDIアダクトの合成 トリレンゞむ゜シアネヌトTDI348郚を
の぀口フラスコ内においおN2気流䞭で80℃
に加熱埌、−ヒドロキシ゚チルメタクリレヌト
2HEMA260郚、オクチル酞スズ0.07郚および
ハむドロキノン0.05郚を反応猶内の枩床が80〜85
℃ずなる様に冷华制埡しながら滎䞋し、滎䞋終了
埌、80℃で時間撹拌しお、反応を完結させる。
反応終了埌、内容物を取り出し、冷华埌、癜色ペ
ヌスト状のTDIの2HEMAアダクトを埗た。 暹脂合成䟋 (a) 塩化ビニル酢酞ビニルビニルアルコヌルが
93重量の組成で分子量18000の共重合
䜓100郚をトル゚ン238郚およびシクロヘキサノン
95郚䞭に加熱溶解埌、80℃に昇枩し、䞋蚘TDIア
ダクトを15郚加え、さらにオクチル酞スズ0.002
郚およびハむドロキノン0.002郚加え、そしお82
℃でN2ガス気流䞭む゜シアネヌトNCO反応
率が90以䞊ずなるたで反応せしめる。反応終了
埌、冷华し、メチル゚チルケトン238郚を加えお
垌釈する。埗られた暹脂組成物を(a)ずする。この
暹脂は、塩酞ビ暹脂䞭の氎酞基の玄55が反応せ
ずに残぀おいる。 暹脂合成䟋 (b) NIAXポリオヌルPCP−0200チツ゜瀟補ポリ
カプロラクトン250郚、−ヒドロキシ゚チル
メタクリレヌト122.2郚、ハむドロキノン0.024郚
およびオクチル酞スズ0.033郚を反応猶に入れ、
80℃に加熱溶解埌、TDI163.6郚を反応猶内の枩
床が80〜90℃ずなる様に冷华しながら滎䞋し、滎
䞋終了埌、80℃でNCO反応率が95以䞊ずなる
たで反応せしめる。埗られた暹脂組成物を(b)ずす
る。この暹脂は氎酞基を含有しない。 暹脂合成䟋 (c) 無氎フタル酞148郚、ブタンゞオヌル65
郚、゚チレングリコヌル30郚およびパラトルコン
スルホン酞2.5郚を反応猶に仕蟌み、窒玠ガス気
流䞋に150℃で時間、次いで180℃で時間゚ス
テル化反応の埌、100℃に冷华し、ハむドロキノ
ン0.3郚およびアクリル酞28郚を加えそしお15時
間゚ステル化反応を行぀た。埗られた暹脂組成物
を(c)ずする。この暹脂は氎酞基を含有しない。 暹脂合成䟋 (d) TDI174郚、メチル゚チルケトン87郚およびト
ル゚ン87郚を反応猶に入れ、80℃に加熱埌、アデ
カポリ゚ヌテル−400旭電化補ポリ゚ヌテル・
トリオヌル133郚を滎䞋し、80〜90℃に保ちな
がら時間反応せしめ、次いで−ヒドロキシ゚
チルメタクリレヌト65郚、ハむドロキノン0.005
郚およびオクチル酞スズ0.005郚を滎䞋し、滎䞋
終了埌、80℃でNCO反応率95以䞊ずなるたで
反応せしめ、む゜シアネヌト基およびアクリル系
䞍飜和二重結合を有する化合物を埗た。埗られた
暹脂組成物を(d)ずする。 暹脂合成䟋 (e) −ヒドロキシ゚チルメタクリレヌト10郚、ブ
チルアクリレヌト40郚、トル゚ン37.5郚およびメ
チルむ゜ブチルケトン37.5郚を反応猶に入れ、80
℃に加熱埌、−ヒドロキシ゚チルメタクリレヌ
ト30郚、ブチルアクリレヌト120郚および重合開
始剀ずしおのベンゟむルパヌオキサむド郚をト
ル゚ン112.5郚およびメチルむ゜ブチルケトン
112.5郚に溶解し、滎䞋埌、80〜90℃で時間反
応せしめ、反応生成物330郚にTDIアダクト28郚
を加え、オクチル酞スズ0.012郚およびハむドロ
キノン0.012郚の存圚䞋に80℃でNCO反応率90
以䞊たで反応せしめる。埗られた暹脂組成物を(e)
ずする。 この暹脂はアクリル系䞍飜和二重結合および氎
酞基を含有する。 暹脂合成䟋 (f) ゚ピコヌト828ゞ゚ル補゚ポキシ暹脂200郚
をトル゚ン25郚およびメチル゚チルケトン25郚䞭
に加熱溶解埌、−ゞメチルベンゞルアミン
2.7郚およびハむドロキノン1.4郚を添加し、80℃
ずし、アクリル酞69郚を滎䞋しお80℃で酞䟡以
䞋たで反応せしめる。この暹脂を(f)ずする。 実斜䟋  コバルト被着針状γ−Fe2O3 120郚 カヌボンブラツク䞉菱MA−600 郚 α−Al2O30.5Ό粒状 郚 分散剀倧豆油粟補レシチン 郚 溶剀メチル゚チルケトントル゚ン50
50 100郚 䞊蚘組成物をボヌルミル䞭にお、予備混合し、次
いで 合成䟋(a)の暹脂固圢分換算 18郚 合成䟋(b)の暹脂固圢分換算 12郚 最滑剀高玚脂肪酞倉性シリコヌンオむル
郚 溶剀メチル゚チルケトントル゚ン50
50 200郚 の組成物を加えおボヌルミル䞭で充分に分散を行
぀た。次いで、官胜む゜シアネヌト化合物パ
む゚ル瀟補、デスモゞナヌルを固圢分換算で
倍添加し、ミキサヌにお混合し磁性塗料を䜜぀
た。この塗料をただちに12Όポリ゚ステルフむル
ム䞊に塗垃し、磁堎配向凊理および也燥衚面平滑
化凊理を行い、しかる埌に、窒玠雰囲気䞋で磁性
局に察しお160KV加速電圧の電子線を5Mrad
照射した。次いで80℃に保぀た熱凊理炉䞭で48時
間保持した。埗られた詊料をむンチ巟に裁断 しビデオテヌプ詊料No.を埗た。 比范䟋  実斜䟋においお、官胜む゜シアネヌトデ
スモゞナヌルを甚いずに、塗料を䜜補し、実
斜䟋ず同䞀条件にお硬化を行い埗られた詊料を
むンチ巟に裁断しビデオテヌプ詊料を
埗た。 比范䟋  実斜䟋の磁性塗料を甚いお、ポリ゚ステルフ
むルム䞊に塗垃し也燥磁堎配向凊理および衚面平
滑凊理を行い、しかる埌に、実斜䟋ず同じ条件
で電子線を5Mrad照射した。埗られた詊料を1/2
むンチ巟に裁断しビデオテヌプ詊料を埗
た。 第図はビデオテヌプをEIAJ統䞀芏栌オヌプ
ンリヌルVTR束䞋電噚産業補NV−3120にお
信号を蚘録した埌、バネはかりで巻取り偎に200
グラムの匵力を加え、静止画象再生を行な぀た時
の再生出力に察する枛衰量スチヌル再生を瀺
す。 図により明らかなように磁性塗膜ずヘツドの盞
察速床が11secにも及ぶきびしい摩耗条件に
もかかわらず詊料No.は信号の枛衰が著じるしく
少ない。これに察し詊料及び詊料では、電子
線硬化だけでも比范的良奜な塗膜を圢成しおいる
が、枛衰が芋られた。 第図は、枩床−10℃、盞察湿床から60
℃、80の範囲でビデオテヌプをサむクル、
日間保眮した埌、宀枩にもどし、24時間静眮埌、
スケヌル再生テストに䜿甚したものず同じVTR
で走行させヘツドドラムずピンチロヌラ間に日本
自動制埡補テンシペンアナラむザヌIVA−500型
をセツトし、走行時の巻取り偎のテンシペンの倉
化を走行時間に察しお調べたものである。 本詊隓では磁性塗膜自䜓の摩擊係数のレベルが
評䟡されるのみならず、テヌプ走行性の劣化、枩
床、湿床等の環境条件に察する安定性の評䟡も可
胜である。 図より明らかなように、電子線照射し、次いで
熱凊理を行぀た詊料No.がテヌプの摩擊係数の倉
化が小さく、枩床、湿床倉化に察する走行安定性
も良奜であ぀た。 実斜䟋  Fe合金針状磁性粉 120郚 分散剀オレむン酞 郚 溶剀メチル゚チルケトントル゚ン50
50 100郚 䞊蚘組成物をボヌルミル䞭で予備混合し、次いで 合成䟋(c)の暹脂固圢分換算 15郚 ポリりレタン暹脂BFグツドリツチ瀟補ニス
テン5703固圢分換算 15郚 溶剀メチル゚チルケトントル゚ン50
50 200郚 最滑剀高玚脂肪酞 郚 の組成物を加えお、ボヌルミル䞭で充分に分散を
行぀た。次いで、合成䟋(d)の暹脂を固圢分換算で
10郚添加し、ミキサヌにお十分混合埌、ただちに
それを12Όポリ゚ステルフむルム䞊に塗垃し、磁
堎配向、溶剀也燥、衚面平滑化凊理の埌、窒玠雰
囲気䞋で加速電圧160KVの電子線を5Mrad照射
した。次いで80℃に保぀た加熱凊理炉䞭で48時間
保持した。埗られた詊料を3.8mm巟に裁断し、合
金オヌデむオカセツトテヌプ詊料No.を埗
た。 実斜䟋  実斜䟋においお、む゜シアネヌト成分である
合成䟋(d)の代りにコロネヌトを郚添加した他
は、実斜䟋ず同䞀条件にお硬化を行い、埗られ
た詊料を3.8mm巟に裁断し、合金オヌデむオカセ
ツトテヌプ詊料を埗た。 比范䟋  実斜䟋の塗料を甚い、同䞀条件でポリ゚ステ
ルフむルム䞊に塗垃埌加工を行いロヌル状に巻き
取぀た。しかる埌に80℃に保぀た加熱凊理炉䞭で
48時間保持した。しかる埌、実斜䟋ず同䞀条件
で攟射線照射を行い詊料を䜜成した。熱凊
理された詊料はベヌスフむルムに粘着した為衚面
の平滑性が倱なわれた。 衚に合金オヌデむオカセツトテヌプの特性を
瀺す。詊料およびは、ポツトラむフが長く、
塗垃埌の衚面成型性にすぐれおいる為および、加
熱凊理前に攟射線硬化が斜こされおおり、熱軟化
を起さず、極めお平滑な衚面性ず高い残留磁気密
床が埗られる。埓぀お、䜎呚波数の333Hzでの
MoLから高呚波数の16KHzのMoLに至るたで高
感床のテヌプが埗られ、これに察しお先に熱硬化
を行぀た詊料では加熱凊理時に軟化により衚面
の平滑性が倱なわれ、感床が䜎䞋した。 又、テヌプの信頌性物性であるテヌプのキシミ
音を生じるたでの走行時間、カヌステレオによる
埀埩耐久走行性においお、詊料が詊料より良
奜な性胜を瀺した。これは、む゜シアネヌト成分
が攟射線硬化性および熱硬化性を有しおおり成分
(1)ず(2)の架橋剀ずしお䜜甚しおいる為ず考えられ
る。
[Table] As shown in the table above, at electron beam accelerating voltages of 300KV or less, leakage of X-rays can be prevented by using a lead plate with a maximum thickness of 3 cm as a shielding material to cover the entire acceleration tube that surrounds the electron beam irradiated area. It can be blocked sufficiently.
Therefore, there is no need to separately provide an expensive electron beam irradiation chamber, and the irradiation system itself can be incorporated as an I system in the magnetic recording media manufacturing line.
Therefore, it becomes possible to conduct the drying and curing process of the magnetic recording medium using an electron beam online. Specific examples of such systems include the low-dose type electron beam accelerator (electrocurtain system) manufactured by Energy Sciences, Inc. in the United States, and the self-shielding scanning type low-dose type electron beam manufactured by Hollimar Physics of West Germany. Accelerators are a suitable example. In addition, during radiation crosslinking, it is important to irradiate the recording medium with radiation in an inert gas flow such as N 2 gas, He gas, CO 2 gas, etc. Since the coating film with high oxidation rate is extremely porous, irradiation with radiation in the air is effective because the radicals generated in the polymer due to the influence of O 3 etc. generated by radiation irradiation during crosslinking of the binder component are effective. inhibits the cross-linking reaction. The effect is that since the surface of the magnetic layer is naturally porous, the inside of the coating film is also affected by the binder's crosslinking inhibition. Therefore, the atmosphere in the area to be irradiated with active energy rays should be N 2 , Ne, Ne, etc. with a maximum oxygen concentration of 1%.
It is important to maintain an atmosphere of inert gas such as CO 2 . In addition, the heat treatment for the crosslinking reaction of the isocyanate compound in the present invention may be performed under conventionally known conditions.
For example, it is well known that heat curing is performed at 60°C for about 24 hours. The present invention will be explained in more detail below using Examples and Comparative Examples. In each example, "parts" indicate parts by weight. First, an example of synthesis of the resin used in the present invention will be illustrated. Synthesis of TDI adduct 348 parts of tolylene diisocyanate (TDI)
80°C in a N2 stream in a four-necked flask.
After heating, 260 parts of 2-hydroxyethyl methacrylate (2HEMA), 0.07 part of tin octylate and 0.05 part of hydroquinone were added until the temperature inside the reaction vessel was 80-85.
The mixture was added dropwise while controlling the cooling so that the temperature was maintained at 80°C, and after the addition was completed, the reaction was completed by stirring at 80°C for 3 hours.
After the reaction was completed, the contents were taken out, and after cooling, a white paste-like TDI 2HEMA adduct was obtained. Resin synthesis example (a) Vinyl chloride/vinyl acetate/vinyl alcohol
100 parts of a copolymer with a molecular weight of 18,000 with a composition of 93/2/5% by weight was mixed with 238 parts of toluene and cyclohexanone.
After heating and dissolving in 95 parts, the temperature was raised to 80℃, 15 parts of the following TDI adduct was added, and 0.002 parts of tin octylate was added.
part and add 0.002 parts of hydroquinone, and 82 parts
The reaction is allowed to occur at ℃ in a stream of N2 gas until the reaction rate of isocyanate (NCO) reaches 90% or more. After the reaction is completed, the mixture is cooled and diluted with 238 parts of methyl ethyl ketone. The obtained resin composition is referred to as (a). In this resin, approximately 55% of the hydroxyl groups in the vinyl hydrochloride resin remain unreacted. Resin synthesis example (b) 250 parts of NIAX polyol PCP-0200 (polycaprolactone manufactured by Chitsuso Corporation), 122.2 parts of 2-hydroxyethyl methacrylate, 0.024 parts of hydroquinone and 0.033 parts of tin octylate were placed in a reaction vessel.
After heating and dissolving at 80°C, 163.6 parts of TDI was added dropwise while cooling the reaction vessel to a temperature of 80 to 90°C. After the dropwise addition was completed, the reaction was continued at 80°C until the NCO reaction rate reached 95% or higher. urge The obtained resin composition is referred to as (b). This resin does not contain hydroxyl groups. Resin synthesis example (c) 148 parts of phthalic anhydride, 65 parts of 1,3-butanediol
A reactor was charged with 30 parts of ethylene glycol and 2.5 parts of paratokonsulfonic acid, and after esterification reaction at 150°C for 1 hour under a nitrogen gas stream and then at 180°C for 5 hours, the mixture was cooled to 100°C and 0.3 parts of hydroquinone was added. 1 part and 28 parts of acrylic acid were added, and the esterification reaction was carried out for 15 hours. The obtained resin composition is referred to as (c). This resin does not contain hydroxyl groups. Resin synthesis example (d) 174 parts of TDI, 87 parts of methyl ethyl ketone and 87 parts of toluene were placed in a reaction vessel, heated to 80°C, and then Adeka Polyether G-400 (polyether manufactured by Asahi Denka Co., Ltd.) was added.
133 parts of triol was added dropwise and reacted for 3 hours while keeping the temperature at 80-90°C, followed by 65 parts of 2-hydroxyethyl methacrylate and 0.005 parts of hydroquinone.
1 part and 0.005 part of tin octylate were added dropwise, and after the dropwise addition was completed, the reaction was carried out at 80° C. until the NCO reaction rate reached 95% or more to obtain a compound having an isocyanate group and an acrylic unsaturated double bond. The obtained resin composition is referred to as (d). Resin synthesis example (e) Put 10 parts of 2-hydroxyethyl methacrylate, 40 parts of butyl acrylate, 37.5 parts of toluene and 37.5 parts of methyl isobutyl ketone into a reaction vessel,
After heating to ℃, 30 parts of 2-hydroxyethyl methacrylate, 120 parts of butyl acrylate, and 8 parts of benzoyl peroxide as a polymerization initiator were mixed with 112.5 parts of toluene and methyl isobutyl ketone.
After dropwise addition, 28 parts of TDI adduct was added to 330 parts of the reaction product, and NCO reaction was carried out at 80°C in the presence of 0.012 parts of tin octylate and 0.012 parts of hydroquinone. Rate 90%
Let them react to the above. The obtained resin composition (e)
shall be. This resin contains acrylic unsaturated double bonds and hydroxyl groups. Resin synthesis example (f) After heating and dissolving 200 parts of Epicote 828 (epoxy resin manufactured by Ziel) in 25 parts of toluene and 25 parts of methyl ethyl ketone, dissolve N,N-dimethylbenzylamine.
Add 2.7 parts and 1.4 parts of hydroquinone and heat to 80°C.
Then, 69 parts of acrylic acid was added dropwise to react at 80°C until the acid value reached 5 or less. This resin is referred to as (f). Example 1 Cobalt-coated acicular γ-Fe 2 O 3 120 parts Carbon black (Mitsubishi MA-600) 5 parts α-Al 2 O 3 (0.5Ό granules) 2 parts Dispersant (soybean oil refined lecithin) 3 parts Solvent (Methyl ethyl ketone/toluene = 50/
50) 100 parts of the above composition were premixed in a ball mill, and then: 18 parts of the resin of Synthesis Example (a) (in terms of solid content) 12 parts of the resin of Synthesis Example (b) (in terms of solid content) Lubricant (high grade) fatty acid modified silicone oil)
3 parts solvent (methyl ethyl ketone/toluene = 50/
50) 200 parts of the composition was added and thoroughly dispersed in a ball mill. Next, three times the solid content of a trifunctional isocyanate compound (Desmodyur L, manufactured by Peyer) was added and mixed in a mixer to prepare a magnetic paint. This paint was immediately applied onto a 12 Ό polyester film, subjected to magnetic field orientation treatment and dry surface smoothing treatment, and then an electron beam of 160 KV (acceleration voltage) was applied to the magnetic layer for 5 Mrad in a nitrogen atmosphere.
Irradiated. Then, it was kept in a heat treatment furnace kept at 80°C for 48 hours. The obtained sample was cut into 1/2 inch width to obtain a videotape (sample No. 1). Comparative Example 1 In Example 1, a paint was prepared without using the trifunctional isocyanate (Desmodyur L), and the resulting sample was cured under the same conditions as Example 1 and cut into 1/2 inch width. A tape (sample A) was obtained. Comparative Example 2 The magnetic paint of Example 1 was applied onto a polyester film, subjected to dry magnetic field orientation treatment and surface smoothing treatment, and then irradiated with an electron beam of 5 Mrad under the same conditions as Example 1. 1/2 of the obtained sample
A videotape (Sample B) was obtained by cutting into inch width pieces. Figure 1 shows the signal recorded on a videotape using an EIAJ unified standard open reel VTR (NV-3120 manufactured by Matsushita Electric Industrial Co., Ltd.).
This shows the amount of attenuation (still playback) with respect to the playback output when still image reproduction is performed with a tension of gram. As is clear from the figure, despite severe wear conditions where the relative speed between the magnetic coating and the head was as high as 11 m/sec, sample No. 1 showed significantly less signal attenuation. On the other hand, in Samples A and B, relatively good coating films were formed by electron beam curing alone, but attenuation was observed. Figure 2 shows the temperature from -10℃ and relative humidity from 0% to 60℃.
℃, 5 cycles of videotape in the 80% range, 5
After keeping it for a day, return it to room temperature, leave it still for 24 hours,
Same VTR used for scale playback test
A tension analyzer model IVA-500 manufactured by Nippon Automatic Control Co., Ltd. was set between the head drum and the pinch roller, and changes in tension on the winding side during running were investigated with respect to running time. This test not only evaluates the level of the friction coefficient of the magnetic coating itself, but also makes it possible to evaluate the deterioration of tape running performance and stability against environmental conditions such as temperature and humidity. As is clear from the figure, Sample No. 1, which was subjected to electron beam irradiation and then heat treatment, had a small change in the coefficient of friction of the tape and good running stability against changes in temperature and humidity. Example 2 Fe alloy acicular magnetic powder 120 parts Dispersant (oleic acid) 2 parts Solvent (methyl ethyl ketone/toluene = 50/
50) 100 parts of the above composition were premixed in a ball mill, and then: Resin of Synthesis Example (c) (in terms of solid content) 15 parts Polyurethane resin (Nysten 5703 manufactured by BF Gudritsch) (in terms of solid content) 15 parts Solvent (methyl ethyl ketone) /Toluene=50/
50) 200 parts of lubricant (higher fatty acid) 3 parts of the composition was added and thoroughly dispersed in a ball mill. Next, the resin of Synthesis Example (d) was calculated in terms of solid content.
After adding 10 parts and thoroughly mixing with a mixer, it was immediately coated on a 12 ÎŒ polyester film, and after magnetic field orientation, solvent drying, and surface smoothing treatment, it was irradiated with an electron beam of 5 Mrad at an acceleration voltage of 160 KV under a nitrogen atmosphere. . The mixture was then kept in a heat treatment furnace kept at 80°C for 48 hours. The obtained sample was cut to a width of 3.8 mm to obtain an alloy audio cassette tape (sample No. 2). Example 3 Curing was carried out under the same conditions as in Example 2, except that 3 parts of Coronate L was added instead of the isocyanate component in Synthesis Example (d), and the obtained sample was cut into 3.8 mm wide samples. An alloy audio cassette tape (Sample 3) was obtained. Comparative Example 3 Using the coating material of Example 2, it was coated on a polyester film and then processed and wound into a roll. After that, it was placed in a heat treatment furnace kept at 80℃.
Hold for 48 hours. Thereafter, radiation irradiation was performed under the same conditions as in Example 2 to prepare sample c. The heat-treated sample adhered to the base film and lost its surface smoothness. Table 1 shows the properties of the alloy audio cassette tape. Samples 2 and 3 have long pot lives;
Because it has excellent surface moldability after application, and because it is radiation-cured before heat treatment, it does not undergo thermal softening and can provide extremely smooth surface properties and high residual magnetic density. Therefore, at the low frequency 333Hz
Highly sensitive tapes ranging from MoL to high-frequency 16KHz MoL were obtained; on the other hand, sample C, which was heat-cured first, lost its surface smoothness due to softening during heat treatment, resulting in a decrease in sensitivity. did. In addition, Sample 2 exhibited better performance than Sample 3 in terms of the running time until the tape makes a squeaking sound, which are the reliability physical properties of the tape, and the durability of reciprocating running on a car stereo. This is because the isocyanate component has radiation curing and thermosetting properties.
This is thought to be because it acts as a crosslinking agent between (1) and (2).

【衚】 実斜䟋  γ−Fe2O3 120郚 カヌボンブラツク䞉菱MA600 郚 α−Al2O3粉末0.5Ό粒状 郚 分散剀゜ルビタミンモノオレ゚ヌト 郚 溶剀メチル゚チルケトントル゚ン50
50 100郚 䞊蚘組成物をボヌルミル䞭にお予備混合し、次い
で 合成䟋(e)の暹脂固圢分換算 15郚 合成䟋(f)の暹脂固圢分換算 15郚 最滑剀デナポン補クラむトツクス 郚 溶剀メチル゚チルケトントル゚ン50
50 200郚 の組成物を加えおボヌルミル䞭で充分に分散を行
぀た。次いで、官胜む゜シアネヌト化合物バ
む゚ル瀟補デスモゞナヌルを固圢分換算で
倍添加し、ミキサヌで十分混合し、磁性塗料を䜜
成した。この塗料をただちに118Όポリ゚ステル
フむルムに塗膜局が玄10Όになるように塗垃也燥
し、次いで、衚面平滑化凊理を行぀た埌に、実斜
䟋ず同様の条件で硬化凊理を行぀た。埗られた
詊料を円板状盎埄65mmに打ち抜き、磁気デむ
スク詊料No.を埗た。 比范䟋  実斜䟋においお、む゜シアネヌト化合物デ
スモゞナヌルを甚いない他は同様の条件にお
硬化を行い、埗られた詊料を円板状盎埄65mm
に打ち抜き、磁気デむスク詊料を埗た。 比范䟋  実斜䟋の塗料を甚い、同䞀条件でポリ゚ステ
ルフむルム䞊に塗垃、埌加工を行い、ロヌル状に
巻き取぀た。しかる埌に、40℃に保぀た加熱凊理
炉䞭で72時間保持した埌、実斜䟋ず同䞀条件で
電子線の照射を行぀た。埗られた詊料を円板状
盎埄65mmに打ち抜き、磁気デむスク詊料
を埗た。 磁気デむスクをそれぞれ蚘録再生装眮に装填
し、磁気ヘツドバツト 40cm2ず摺動さ
せながら玄秒の速床で走行させ环積ドロツ
プアりト数が1000個に達するたでの走行時間を枬
定した。 埗られた結果ず磁性局の衚面状態を衚−に瀺
す。
[Table] Example 4 γ-Fe 2 O 3 120 parts Carbon black (Mitsubishi MA600) 5 parts α-Al 2 O 3 powder (0.5Ό granules) 2 parts Dispersant (solvitamin monooleate) 3 parts Solvent (methyl ethyl ketone) /Toluene=50/
50) 100 parts of the above composition were premixed in a ball mill, and then: 15 parts of the resin of Synthesis Example (e) (in terms of solid content) 15 parts of the resin of Synthesis Example (f) (in terms of solid content) Lubricant (manufactured by Dupont) 3 parts solvent (methyl ethyl ketone/toluene = 50/
50) 200 parts of the composition was added and thoroughly dispersed in a ball mill. Next, a trifunctional isocyanate compound (Desmodyur L manufactured by Bayer) was added to
Add twice as much and mix thoroughly with a mixer to create a magnetic paint. This paint was immediately coated on a 118Ό polyester film to a thickness of about 10Ό and dried, followed by surface smoothing treatment and curing treatment under the same conditions as in Example 1. The obtained sample was punched out into a disk shape (diameter 65 mm) to obtain a magnetic disk (sample No. 4). Comparative Example 4 Curing was performed under the same conditions as in Example 3, except that the isocyanate compound (Desmodyur L) was not used, and the obtained sample was shaped into a disk (diameter 65 mm).
The disk was punched out to obtain a magnetic disk (sample D). Comparative Example 5 Using the coating material of Example 4, it was coated on a polyester film under the same conditions, post-processed, and wound up into a roll. Thereafter, it was kept in a heat treatment furnace kept at 40° C. for 72 hours, and then irradiated with an electron beam under the same conditions as in Example 3. The obtained sample was punched out into a disk shape (diameter 65 mm) and placed into a magnetic disk (sample E).
I got it. Each magnetic disk was loaded into a recording/reproducing device and run at a speed of approximately 2 m/sec while sliding against a magnetic head (batt E 40 g/cm 2 ), and the running time until the cumulative number of dropouts reached 1000 was measured. . Table 2 shows the results obtained and the surface condition of the magnetic layer.

【衚】 本発明の詊料は走行安定性および衚面状態共
に良奜であるが、電子線照射のみの詊料は耐久
性に劣る。たた、同䞀組成を甚いそしお先に熱硬
化を行぀た詊料では、走行時間が短かくなり、
同様に耐久性が䜎䞋しおおり、攟射硬化性暹脂の
硬化性が䜎䞋しおいるものず掚定される。
[Table] Sample 4 of the present invention has good running stability and surface condition, but Sample D, which was subjected to only electron beam irradiation, has poor durability. In addition, for sample E, which had the same composition and was heat-cured first, the running time was shorter;
Similarly, the durability was decreased, and it is presumed that the curability of the radiation-curable resin was decreased.

【図面の簡単な説明】[Brief explanation of drawings]

第〜図は、本発明に埓぀お磁気蚘録媒䜓の
性胜を瀺すグラフである。
1-2 are graphs illustrating the performance of magnetic recording media in accordance with the present invention.

Claims (1)

【特蚱請求の範囲】  匷磁性埮粉末、バむンダヌおよび溶剀から䞻
ずしおなる磁性塗料を非磁性支持䜓䞊に塗垃し、
也燥埌、架橋硬化せしめお非磁性支持䜓䞊に磁気
蚘録局を蚭ける磁気蚘録媒䜓の補造法においお、
前蚘バむンダヌが、 (1) (a)分子内にアクリル系䞍飜和二重結合を少な
くずも぀以䞊含有し䞔぀む゜シアネヌト基ず
しお反応し埗る掻性氎玠基を含有しないモノマ
ヌ、オリゎマヌおよびポリマヌ、及び(b)分子内
にアクリル系䞍飜和二重結合を少なくずも぀
以䞊含有し䞔぀む゜シアネヌト基ず反応し埗る
掻性氎玠基を含有するモノマヌ、オリゎマヌお
よびポリマヌ、より遞択した皮以䞊を20〜
99.5重量、 (2) 分子内にむ゜シアネヌト基ず反応し埗る掻性
氎玠を少なくずも぀以䞊含有する化合物、オ
リゎマヌおよびポリマヌの皮以䞊を80重量
以䞋、および (3) 分子内に぀以䞊のむ゜シアネヌト基を有す
るむ゜シアネヌト化合物又は分子内にむ゜シア
ネヌト基を぀以䞊およびアクリル系䞍飜和二
重結合を぀以䞊有するむ゜シアネヌト化合物
を0.5〜25重量、 よりなる磁性塗料を甚い、非磁性支持䜓䞊に塗垃
し、也燥埌、電子線照射ず加熱凊理ずを同時に行
な぀お、たたは攟射線を照射し次いで加熱凊理を
行な぀お架橋硬化せしめるこずを特城ずする磁気
蚘録媒䜓の補造法。  匷磁性埮粉末、バむンダヌおよび溶剀から䞻
ずしおなる磁性塗料を非磁性支持䜓䞊に塗垃し、
也燥埌、架橋硬化せしめお非磁性支持䜓䞊に磁気
蚘録局を蚭ける磁気蚘録媒䜓の補造法においお、
前蚘バむンダヌが、 (1) 分子内にアクリル系䞍飜和二重結合を少なく
ずも぀以䞊含有しおよびむ゜シアネヌト基ず
しお反応し埗る掻性氎玠基を含有するモノマ
ヌ、オリゎマヌおよびポリマヌの皮以䞊を20
〜99.5重量、及び、 (2) 分子内に぀以䞊のむ゜シアネヌト基を有す
るむ゜シアネヌト化合物又は分子内にむ゜シア
ネヌト基を぀以䞊およびアクリル系䞍飜和二
重結合を぀以䞊有するむ゜シアネヌト化合物
を0.5〜25重量、 を含む磁性塗料を甚い、非磁性支持䜓䞊に塗垃
し、也燥埌、電子線照射ず加熱凊理ずを同時に行
な぀お、たたは攟射線を照射し次いで加熱凊理を
行な぀お架橋硬化せしめるこずを特城ずする磁気
蚘録媒䜓の補造法。
[Claims] 1. Coating a magnetic paint mainly consisting of ferromagnetic fine powder, a binder and a solvent onto a non-magnetic support,
In a method for producing a magnetic recording medium in which a magnetic recording layer is formed on a nonmagnetic support by crosslinking and curing after drying,
The binder is (1) (a) a monomer, oligomer, or polymer that contains at least one acrylic unsaturated double bond in the molecule and does not contain an active hydrogen group that can react as an isocyanate group, and (b) 20 to 20 to more than one selected from monomers, oligomers, and polymers containing at least one acrylic unsaturated double bond in the molecule and an active hydrogen group capable of reacting with an isocyanate group.
99.5% by weight, (2) 80% by weight of one or more compounds, oligomers, and polymers containing at least one active hydrogen that can react with isocyanate groups in the molecule.
and (3) 0.5 to 25% by weight of an isocyanate compound having two or more isocyanate groups in the molecule or an isocyanate compound having one or more isocyanate groups and one or more acrylic unsaturated double bonds in the molecule. , is applied on a non-magnetic support, and after drying is cross-linked and cured by simultaneously performing electron beam irradiation and heat treatment, or by irradiating radiation and then heat treatment. Features: Manufacturing method for magnetic recording media. 2. Applying a magnetic paint mainly consisting of ferromagnetic fine powder, a binder and a solvent onto a non-magnetic support,
In a method for producing a magnetic recording medium in which a magnetic recording layer is formed on a nonmagnetic support by crosslinking and curing after drying,
The binder comprises: (1) one or more monomers, oligomers, and polymers containing at least one acrylic unsaturated double bond in the molecule and an active hydrogen group that can react as an isocyanate group;
~99.5% by weight, and (2) 0.5% of an isocyanate compound having two or more isocyanate groups in the molecule or an isocyanate compound having one or more isocyanate groups and one or more acrylic unsaturated double bonds in the molecule. ~25% by weight, is applied onto a non-magnetic support, and after drying, crosslinking is achieved by simultaneously performing electron beam irradiation and heat treatment, or by irradiating radiation and then heat treatment. A method for manufacturing a magnetic recording medium, characterized by hardening it.
JP19080882A 1982-11-01 1982-11-01 Magnetic recording medium and its manufacture Granted JPS5982628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19080882A JPS5982628A (en) 1982-11-01 1982-11-01 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19080882A JPS5982628A (en) 1982-11-01 1982-11-01 Magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS5982628A JPS5982628A (en) 1984-05-12
JPH0413765B2 true JPH0413765B2 (en) 1992-03-10

Family

ID=16264085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19080882A Granted JPS5982628A (en) 1982-11-01 1982-11-01 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS5982628A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016194A1 (en) * 2000-03-31 2001-10-04 Bayer Ag Coating system containing UV-curable, isocyanate group-containing urethane (meth) acrylates and hydroxyl group-containing urethane (meth) acrylates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625230A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium
JPS56122802A (en) * 1980-03-03 1981-09-26 Toyo Ink Mfg Co Ltd Radiation-curable resin composition
JPS5724028A (en) * 1980-07-17 1982-02-08 Sony Corp Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625230A (en) * 1979-08-06 1981-03-11 Sony Corp Magnetic recording medium
JPS56122802A (en) * 1980-03-03 1981-09-26 Toyo Ink Mfg Co Ltd Radiation-curable resin composition
JPS5724028A (en) * 1980-07-17 1982-02-08 Sony Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS5982628A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
JPS6357857B2 (en)
JPS6366846B2 (en)
US4547419A (en) Magnetic recording medium
US4560617A (en) Magnetic recording medium
JPH0612564B2 (en) Magnetic recording medium
JPS6142729A (en) Magnetic recording medium
US4708909A (en) Radiation-curable, magnetic coating material and magnetic recording medium using the same
US4591528A (en) Magnetic recording medium
US4618535A (en) Magnetic recording medium
US4716077A (en) Magnetic recording medium
US4639389A (en) Magnetic recording medium
US4587150A (en) Magnetic recording medium
US4559265A (en) Magnetic recording medium
JPH0413765B2 (en)
JPH0413766B2 (en)
JPS5924436A (en) Magnetic recording medium
US4946729A (en) Resin composition and magnetic recording medium employing the composition
US4603081A (en) Magnetic recording medium
JPS6045938A (en) Magnetic recording medium
JPH0546016B2 (en)
KR850001005B1 (en) Magnetic recording medium
JPH0125141B2 (en)
JPS6323227A (en) Magnetic recording medium
JPS6139219A (en) Magnetic recording medium
JPS61246917A (en) Magnetic recording medium