JPH01299606A - Separation film for pervaporation - Google Patents

Separation film for pervaporation

Info

Publication number
JPH01299606A
JPH01299606A JP12944988A JP12944988A JPH01299606A JP H01299606 A JPH01299606 A JP H01299606A JP 12944988 A JP12944988 A JP 12944988A JP 12944988 A JP12944988 A JP 12944988A JP H01299606 A JPH01299606 A JP H01299606A
Authority
JP
Japan
Prior art keywords
membrane
separation
aminophenyl
sulfone
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12944988A
Other languages
Japanese (ja)
Other versions
JPH0556178B2 (en
Inventor
Shoji Tsujii
彰司 辻井
Shinsuke Takegami
竹上 信介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Original Assignee
TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO filed Critical TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Priority to JP12944988A priority Critical patent/JPH01299606A/en
Publication of JPH01299606A publication Critical patent/JPH01299606A/en
Publication of JPH0556178B2 publication Critical patent/JPH0556178B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a separation film having sufficient film forming property, high separation effect, and high permeability by using bis(3-aminophenyl)sulfone and bis(4-aminophenyl)sulfone as diamine components for a copolymer constituting said film. CONSTITUTION:A film for separating water from a water/org. liquid mixture by the pervaporation process is constituted of an aromatic polyamide copolymer consisting of 20-80mol.% bis(3-aminophenyl)sulfone and 80-20mol.% bis(4- aminophenyl)sulfone as diamine components, which are copolymerized with acid components consisting primarily of isophthalic acid and/or terephthalic acid. The separation film obtd. by this process has high separation effect and high permeability, having also sufficient film forming property and high film strength.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は有機物水溶液から水を分離する方法に関するも
のである。史に詳しくは、浸透気化法(パーベーパレー
ジジン法)によって水−有機液体混合物から水を分離す
るための分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for separating water from an aqueous solution of organic matter. More specifically, it relates to a separation membrane for separating water from a water-organic liquid mixture by pervaporation.

〈従来の技術〉 従来、水−有機液体混合物又は2成分以−Lの何機液体
混合物を分離する方法として、蒸留法が古くから知られ
ている。しかし、蒸留法では共沸混合物、近沸点混合物
、熱で変性しやすい化合物を分離することは極めて困難
であること、また、蒸留法によって分離が可能な混合物
においても、多大なエネルギーを消費することが多いと
いった問題から、これらを解決する技術として、膜を用
いた分離技術が期待されている。膜を用いた分離技術の
中で、特に水−a機成体混合物を分離するために有効な
方法として浸透気化法(パーベーパレーション法)が考
えられる。この浸透気化法は、高分子膜の一方の側に分
離を1−1的とする混合液体を供給し、他方の側を気相
にして、真空、減圧、又はキャリアガスを流すことによ
り、蒸気圧差をl′jえて特定の物質を優先的に膜透過
させて分離する方法である。つまり、浸透気化法は、膜
を介して相変化を起こさせるところが、逆浸透圧法、気
体分離法といった他の膜分離法と大きく異なるところで
ある。史にこの方法は、膜の透過側のJトカが極めて小
さいため、物質の膜透過の駆動力である化学ポテンシャ
ルの勾配が非常に大きくなり、全濃度域での分離が可能
であることも他の膜分離法にはない特色である。そのた
め、逆浸透圧法では、その操作圧力の而で難しいとされ
ていた有機液体混合物の分離もこの浸透気化法では可能
になる。浸透気化法のもう一つの特徴は、従来、蒸留法
では分離が困難であった共沸混合物、近沸点混合物、熱
分解性混合物などを分離、濃縮、精製でき、省エネルギ
ープロセスであることがあげられる。このように浸透気
化法は、他の分離法にはない数多くの特徴を有しており
、有機液体混合物の分離に最も適した分離方法の一つで
ある。
<Prior Art> Distillation has long been known as a method for separating water-organic liquid mixtures or liquid mixtures of two or more components. However, it is extremely difficult to separate azeotropic mixtures, near-boiling point mixtures, and compounds that are easily denatured by heat using distillation, and even for mixtures that can be separated by distillation, a large amount of energy is consumed. Separation technology using membranes is expected to solve these problems. Among separation techniques using membranes, a pervaporation method is considered to be particularly effective for separating a water-a-mechanical mixture. This pervaporation method supplies a mixed liquid for 1-1 separation to one side of a polymer membrane, sets the other side to the gas phase, and then generates vapor by applying a vacuum, reduced pressure, or flowing a carrier gas. This is a method in which a specific substance is separated by preferentially passing through the membrane by varying the pressure difference l'j. In other words, the pervaporation method differs greatly from other membrane separation methods such as reverse osmosis and gas separation in that it causes a phase change through a membrane. Historically, in this method, because the J-toca on the permeate side of the membrane is extremely small, the gradient of the chemical potential, which is the driving force for the permeation of the substance through the membrane, becomes extremely large, making it possible to separate the entire concentration range. This is a feature not found in other membrane separation methods. Therefore, this pervaporation method makes it possible to separate organic liquid mixtures, which is difficult to do with reverse osmosis due to its operating pressure. Another feature of the pervaporation method is that it is an energy-saving process that can separate, concentrate, and purify azeotropic mixtures, near-boiling point mixtures, and thermally decomposable mixtures that were difficult to separate using conventional distillation methods. . As described above, the pervaporation method has many features not found in other separation methods, and is one of the separation methods most suitable for separating organic liquid mixtures.

近年、特に浸透気化法に関する研究が盛んに行われ、使
用する高分子膜についても数多くの報告がある。例えば
、水−エタノールの分離に関しては、米国特許第295
3502号明細書に、アセチルセルロース均一膜が、米
国特許第3035060号明細書には、加水分解された
ポリ酢酸ビニル膜が提案されている。又、特開昭59−
109204 秒分’Klには、セルロースアセテート
膜や、ポリビニルアルコール系膜をスキン層とする複合
膜が、特開昭59−55304号公報及び特開昭59−
55305号公報にはポリエチレンイミン系架橋複合膜
が、特開昭81−281138号公報にはアクリル酸基
含イfポリマー系架橋複合膜が提案されているo Jo
urnal of Membrane 5cience
1 (197G) 271〜287においては、ポリテ
トラフルオロエチレンにポリ(N−ビニルピロリドン)
をグラフトした膜が、Journal of Memb
raneSclence 9 (1981) 191−
196においては、ポリテトラフルオロエチレンにスチ
レンをグラフトした膜が報告されている。しかし、この
様に数多くの浸透気化用高分子膜が提案されているにも
かかわらず、この浸透気化法は実用化されていない。
In recent years, research on pervaporation methods in particular has been actively conducted, and there have been many reports regarding the polymer membranes used. For example, for water-ethanol separation, US Pat.
No. 3,502 proposes an acetyl cellulose homogeneous membrane, and US Pat. No. 3,035,060 proposes a hydrolyzed polyvinyl acetate membrane. Also, JP-A-59-
109204 sec'Kl has a composite membrane having a cellulose acetate membrane or a polyvinyl alcohol membrane as a skin layer, as disclosed in JP-A No. 59-55304 and JP-A No. 59-Sho.
No. 55305 proposes a polyethyleneimine-based crosslinked composite membrane, and JP-A No. 81-281138 proposes an acrylic acid group-containing polymer-based crosslinked composite membrane.
Urnal of Membrane 5science
1 (197G) 271-287, poly(N-vinylpyrrolidone) is added to polytetrafluoroethylene.
The membrane grafted with
raneScience 9 (1981) 191-
No. 196 reports a membrane in which styrene is grafted onto polytetrafluoroethylene. However, although many polymer membranes for pervaporation have been proposed, this pervaporation method has not been put to practical use.

これは、現在までに提案されている浸透気化用高分子膜
の多くが、分離性能あるいは、透過性能において不充分
であったり、製膜性や、膜の耐久性に問題があることに
起因している。
This is because many of the polymer membranes proposed to date for pervaporation have insufficient separation performance or permeation performance, or have problems with membrane formability or membrane durability. ing.

しかも、−膜内な傾向として、分離性能と透過性能は相
い反する性質があり、両者を共に高いレベルに維持する
ことが難しいとされている。浸透気化膜の実用化には、
これらの問題の解決が不可避である。即ち、分離性能が
悪いと、高分子膜を1回透過しても、目的とする濃度ま
で濃縮又は分離することができず、そのため多段の分離
操作が必要となったり、他の分離法との組み合わせが必
要となり、装置が大型化して、設備コストが過大になる
など、実用−L問題が多い。父、水や有機化合物が高分
子膜を透過する透過速度(111位模而積面弔位膜厚・
単位時間当りの透過量で表示)が小さいと、膜面積を非
常に大きくするか又は膜厚を極端に薄くしたり、複合膜
化しなければならず、やはり、装置が大型化してしまう
。製膜性、膜の強度、耐久性が低ドするなど、実用上問
題になる。
Furthermore, as a tendency within the membrane, separation performance and permeation performance tend to be contradictory, and it is said that it is difficult to maintain both at a high level. For practical application of pervaporation membranes,
Solving these problems is inevitable. In other words, if the separation performance is poor, it will not be possible to concentrate or separate to the desired concentration even after passing through the polymer membrane once, resulting in the need for multi-stage separation operations or problems with other separation methods. There are many practical problems, such as the need for combinations, the large size of the device, and excessive equipment costs. Father, the permeation rate at which water and organic compounds permeate through polymer membranes (111th place)
If the amount of permeation (expressed as the amount of permeation per unit time) is small, the membrane area must be made very large, the membrane thickness extremely thin, or a composite membrane must be used, which also results in an increase in the size of the device. This poses practical problems such as reduced film formability, film strength, and durability.

本発明で言う透過速度とは、単位面積、単位膜厚、91
位時間当りの透過混合物漬で、kg・μm/r/・hr
の単位で表す。一方、分離係数(α)は、供給液中の水
と有機物との比に対する、透過気体中の水と有機物との
混合比である。即ち、αン: (X/Y) p/ (X
/Y)rである。ここで、X、Yは2成分系での水及び
自゛機物のそれぞれの組成を、また、P及びfは透過気
体及び供給液を表す。
The permeation rate in the present invention refers to unit area, unit film thickness, 91
kg・μm/r/・hr per hour of permeation mixture immersion
Expressed in units of. On the other hand, the separation coefficient (α) is the mixing ratio of water and organic matter in the permeate gas to the ratio of water and organic matter in the feed liquid. That is, α: (X/Y) p/ (X
/Y)r. Here, X and Y represent the respective compositions of water and organic matter in a two-component system, and P and f represent the permeate gas and the feed liquid.

〈発明が解決しようとする課題〉 本発明の目的は、パーベーパレーション法によって水−
有機液体混合液から水を分離するにあたり、従来の膜で
は透過速度及び分離係数を同時に高められなかった問題
点を解決し[tつ、製膜性の優れた高分子膜を提供する
ものである。
<Problem to be solved by the invention> The purpose of the present invention is to solve the problem of water by pervaporation method.
In separating water from an organic liquid mixture, the present invention solves the problem that conventional membranes cannot simultaneously increase the permeation rate and separation coefficient, and provides a polymer membrane with excellent film formability. .

く課題を解決するための手段〉 本発明者らは、良好な製膜性と膜強度を保持しつつ、高
い分離性と透過性を有する浸透気化用分離膜について鋭
意研究した結果、以下の分離膜がこの[1的を達成する
ことがわかった。
Means for Solving the Problems As a result of intensive research into pervaporation separation membranes that have high separation performance and permeability while maintaining good film formability and membrane strength, the present inventors have found the following separation membranes. It has been found that the membrane achieves this goal.

すなわち本発明はビス(3−アミノフェニル)スルホン
20モル%〜80モル%及びビス(4−たはテレフタル
酸成分を−し酸成分とする芳香族ポリアミド共重合体か
らなることを特徴とする特許気化用分離膜である。
That is, the present invention is a patent characterized in that it consists of an aromatic polyamide copolymer containing 20 mol% to 80 mol% of bis(3-aminophenyl)sulfone and a bis(4- or terephthalic acid component) as an acid component. This is a separation membrane for vaporization.

ここで本発明の内容を更に詳しく説明するために、浸透
気化法による液体の分離機構について説明する。即ち、
浸透気化法による液体の分離機構は膜への液体の溶解と
拡散によると説明されている。
Here, in order to explain the content of the present invention in more detail, a liquid separation mechanism using a pervaporation method will be explained. That is,
The liquid separation mechanism by pervaporation is explained as being based on the dissolution and diffusion of the liquid into the membrane.

一般に、膜透過後のA成分のB成分に対する重量比を透
過前のA成分のB成分に対する重量比で除した分離係数
α合はA成分とB成分の膜への溶解度の比と膜内部での
拡散速度の比の積で表される。分離係数α倉を上げるた
めにはA成分とB成分の溶解度の比か、又は拡散速度の
比のどちらか又は両方の比を高める必要がある。
In general, the separation coefficient α, which is calculated by dividing the weight ratio of component A to component B after permeation through the membrane by the weight ratio of component A to component B before permeation, is the ratio of the solubility of component A and component B in the membrane, and the ratio of the solubility of component A and component B in the membrane. It is expressed as the product of the ratio of diffusion rates of . In order to increase the separation coefficient α, it is necessary to increase either or both of the solubility ratio and the diffusion rate ratio of component A and component B.

溶解性は主に透過分子と膜との分子間相互作用(化学的
相溶性)によって決まるものである。膜素材と分離対象
物との化学的相溶性の尺度として、溶解度パラメーター
が取り上げられている。膜素材の選択にあたって膜素材
と透過分子との化学的相溶性の高い物質、あるいは極性
の類似した膜素材を選ぶのがよく、供給液中の分離対象
物(透過分子)が親水性の場合には、溶解度パラメータ
ーの大きい、極性の高い膜素材が、疎水性の場合には逆
の膜素材が適しているJわれでいる。つまり、水−エタ
ノールの分離には前者の膜素材が適している。
Solubility is mainly determined by intermolecular interactions (chemical compatibility) between permeable molecules and the membrane. The solubility parameter is taken up as a measure of chemical compatibility between the membrane material and the separation target. When selecting a membrane material, it is best to choose a substance that has high chemical compatibility with the membrane material and the permeating molecules, or a membrane material with similar polarity. In the case of hydrophobic membrane materials, highly polar membrane materials with large solubility parameters are suitable, and in the case of hydrophobic membrane materials, the opposite membrane material is suitable. In other words, the former membrane material is suitable for water-ethanol separation.

しかしながら、このような素材の多くは供給液に溶解あ
るいは膨潤してしまい、その素材を単独で使用すると膜
の耐久性などで問題が生じてくる。
However, many of these materials dissolve or swell in the supply liquid, and when such materials are used alone, problems arise in terms of membrane durability and the like.

そこで製膜後、イオン結合や、電子線、プラズマ照射に
より架橋構造を導入したり、非極性の素材とのブロック
構造にしたり、複合膜化することにより、耐久性を付与
することが多い。
Therefore, after film formation, durability is often imparted by introducing a crosslinked structure through ionic bonding, electron beam or plasma irradiation, creating a block structure with non-polar materials, or forming a composite film.

拡散速度は透過分子の形、大きさ、凝集状態及び膜の自
由体積によって決まる。分離係数αnを一ヒげるために
は、供給液の透過分子の形状が大きく違っていなければ
ならない。−膜内には形状の小さい分子が拡散速度が大
きい。一方、膜の自由体積は巨視的な孔ではないが分子
尺度でみた分子間隙で定義されるものである。自由体積
の大きな膜では透過分子の大きさの差による拡散速度の
差が小さく、自由体積の小さな膜では透過分子の大きさ
の差による拡散速度の差が大きい。
The rate of diffusion is determined by the shape, size, aggregation state of the permeating molecules and the free volume of the membrane. In order to increase the separation coefficient αn, the shapes of the permeating molecules in the feed liquid must be significantly different. - Molecules with small shapes have a high diffusion rate within the membrane. On the other hand, the free volume of a membrane is not defined by macroscopic pores, but by molecular gaps on a molecular scale. In a membrane with a large free volume, the difference in diffusion rate due to the difference in the size of the permeating molecules is small, and in a membrane with a small free volume, the difference in the diffusion rate due to the difference in the size of the permeating molecules is large.

透過分子の大きさを利用して分離係数を上げるためには
、膜の自由体積を小さくする必要がある。
In order to increase the separation coefficient by utilizing the size of permeable molecules, it is necessary to reduce the free volume of the membrane.

膜の自由体積を小さくするためには、架橋構造や結晶構
造を導入して、微密な::、次元編目構造を形成する方
法がとられている。
In order to reduce the free volume of a membrane, methods have been taken to introduce a cross-linked structure or a crystalline structure to form a microscopic ::, dimensional mesh structure.

本発明者らは、各種の高分子膜について、水溶性0機物
、特にアルコールを含有する水溶液の分離性能をパーベ
ーパレーション法で検討した結果、ビス(3−アミノフ
ェニル)スルホン及びビス(4−アミノフェニル)スル
ホンをジアミン成分としイソフタル酸成分を主酸成分と
した芳香族ポリアミドの共重合体が、架橋構造の導入や
複合膜化することなく単独素材で良好な製膜性と高い分
離係数及び透過速度を有することを見い出した。
The present inventors investigated the separation performance of various polymer membranes for aqueous solutions containing zero water-soluble substances, especially alcohol, using the pervaporation method. -A copolymer of aromatic polyamide containing diamine component (aminophenyl) sulfone and isophthalic acid component as the main acid component has good film formability and high separation coefficient as a single material without introducing a cross-linked structure or forming a composite film. and permeation rate.

以下に本発明について更に詳細に説明する。The present invention will be explained in more detail below.

本発明の芳香族ポリアミドポリマーに用いられるジアミ
ンは、ビス(3−アミノフェニル)スルホン及びビス(
4−アミノフェニル)スルホンである。ビス(4−アミ
ノフェニル)スルホンの使用晴は、両者の合計酸に対し
、20〜80モル%である。80モル%より多い場合は
、分離係数が著しく低”l、20モル%より少ない場合
は透過速度が著しく低下する。ビス(4−アミノフェニ
ル)スルホンが20〜80モル%の範囲において分離係
数、透過速度共に優れた性能を示す。好ましくは、ビス
(4−アミノフェニル)スルホンが30〜70モル%の
範囲が特に優れている。
The diamines used in the aromatic polyamide polymer of the present invention include bis(3-aminophenyl)sulfone and bis(3-aminophenyl)sulfone.
4-aminophenyl) sulfone. The amount of bis(4-aminophenyl)sulfone used is 20 to 80 mol% based on the total amount of both acids. If it is more than 80 mol%, the separation coefficient is extremely low, and if it is less than 20 mol%, the permeation rate is significantly reduced.In the range of 20 to 80 mol% bis(4-aminophenyl)sulfone, the separation coefficient is It exhibits excellent performance in both permeation rate.Preferably, the range of 30 to 70 mol% of bis(4-aminophenyl)sulfone is particularly excellent.

酸成分としては、主としてイソフタル酸成分が用いられ
るが、テレフタル酸成分又は、両者の混合物を用いても
構わない。他に芳香族ジカルボン酸成分を用いることが
できるが、その使用機は全酸成分に対し、20モル%以
下が好ましい。
As the acid component, an isophthalic acid component is mainly used, but a terephthalic acid component or a mixture of both may also be used. Other aromatic dicarboxylic acid components can be used, but the amount used is preferably 20 mol % or less based on the total acid components.

ポリマーは、ジアミンとジカルボン酸クロリドとの反応
により得られる。反応の方法は溶液重合法や、界面重合
法が用いられる。該ポリマーから得られる分離膜の形状
は平膜、スパイラル型あるいは中空糸型等特に制限はな
いが、分離性能、特に透過速度を向」ユさせるために、
膜は非対称構造をとることが望ましい。
The polymer is obtained by reacting a diamine with a dicarboxylic acid chloride. A solution polymerization method or an interfacial polymerization method is used for the reaction. The shape of the separation membrane obtained from the polymer is not particularly limited, such as flat membrane, spiral type, or hollow fiber type, but in order to improve separation performance, especially permeation rate,
It is desirable that the membrane has an asymmetric structure.

該ポリマーは、N−メチルピロリドン、N、 N−ジメ
チルホルムアミドあるいはN、N−ジメチルアセトアミ
ド等適当な極性溶媒に溶解する。また、非対称構造を形
成する際の遅凝固剤であるグリコール類等と一1二記溶
媒との混合溶媒にも溶解する。従って非対称膜を得るに
は例えば、該ポリマーをN−メチルピロリドンと遅凝固
剤であるグリコール類との混合液に溶解した後、ガラス
板上に流延、一定時間放置後水等該ポリマーの非溶媒中
へ浸漬すれば良い。
The polymer is dissolved in a suitable polar solvent such as N-methylpyrrolidone, N,N-dimethylformamide or N,N-dimethylacetamide. It is also soluble in a mixed solvent of a glycol, etc., which is a slow coagulant when forming an asymmetric structure, and a No. 112 solvent. Therefore, in order to obtain an asymmetric membrane, for example, the polymer is dissolved in a mixture of N-methylpyrrolidone and glycols, which are slow-coagulating agents, and then cast onto a glass plate, and after being left for a certain period of time, water etc. Just immerse it in a solvent.

このようにして作製された膜は主に水/有機物、混合物
、例えばメタノール、エタノール、1−プロパツール、
2−プロパツール、n−ブタノール等のアルコール類、
アセトン、メチルエチルケトン等のケトン類、テトラヒ
ドロフラン、ジオキサン等のエーテル類、ギ酸、酢酸等
の有機酸、ホルムアルデヒド、アセトアルデヒド、プロ
ピオンアルデヒド等のアルデヒド類、ピリジンやピリコ
ン等のアミン類の群からなる1又は2以−ヒの化合物を
含む水溶液の浸透気化法による分離に用いられるが、水
と該有機物との蒸気混合物の蒸気透過法による分離に用
いることも出来る。
The membranes prepared in this way are mainly composed of water/organic substances, such as methanol, ethanol, 1-propanol,
Alcohols such as 2-propanol, n-butanol,
One or more of the following: ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, organic acids such as formic acid and acetic acid, aldehydes such as formaldehyde, acetaldehyde and propionaldehyde, and amines such as pyridine and pyricone. Although it is used to separate an aqueous solution containing the compound of (1) by pervaporation, it can also be used to separate a vapor mixture of water and the organic substance by vapor permeation.

く作用〉 本発明のポリマーから得られた膜は、芳香族ポリアミド
であることより、熱安定性に優れておりまた、製膜性も
良好である。該Iりの示す高い分離係数及び透A速度の
理由は明らかではないが、芳香族ポリアミド分子構造に
おける適度な屈曲性と水毒結合の作用により、水と有機
物の分離に適した分子間隙(自由体積)が形成されてい
ると推定される。又、芳香族ポリアミド中には親水性の
アミド結合やカルボン酸基、アミン基等も含まれており
、供給液中の水との親和性が大きいために水の透過速度
が有機物の透過速度より大きいためと4えられる。
Effects> Since the film obtained from the polymer of the present invention is an aromatic polyamide, it has excellent thermal stability and also has good film formability. Although the reasons for the high separation coefficient and A permeation rate of the polyamide are not clear, due to the moderate flexibility in the aromatic polyamide molecular structure and the action of water-toxic bonds, molecular gaps (free) suitable for the separation of water and organic matter are created. volume) is estimated to have been formed. In addition, aromatic polyamide contains hydrophilic amide bonds, carboxylic acid groups, amine groups, etc., and has a high affinity for water in the feed solution, so the water permeation rate is higher than the permeation rate of organic matter. It is given a rating of 4 because it is large.

〈実施例〉 以下に実施例で本発明を具体的に説明するが、これによ
って本発明が限定されるものではない。
<Examples> The present invention will be specifically explained below using Examples, but the present invention is not limited thereto.

(1)  製膜方法 ポリマー3gを12gのジメチルアセトアミド(1) 
M A C)に溶解し、ドクターナイフを用いてガラス
板IZに流延し1.80℃で加熱乾燥後ガラス板から膜
をはがし、均質膜を得た。更に護膜を濾紙にはさみ、1
80℃で加熱減圧乾燥を16時間1テい熱処理を施した
(1) Film forming method 3g of polymer to 12g of dimethylacetamide (1)
The mixture was dissolved in MAC) and cast onto a glass plate IZ using a doctor knife, and after drying by heating at 1.80°C, the film was peeled off from the glass plate to obtain a homogeneous film. Furthermore, sandwich the protective membrane between the filter paper, 1
Heat treatment was performed by heating and drying under reduced pressure at 80° C. for 16 hours.

■ 浸透気化性能のalll定法 浸透気化性能の測定は、製科研式浸透気化測定装置を使
った。
■ All standard methods for pervaporation performance The permeation performance was measured using a Seikagaku-style permeation measurement device.

水/水溶性有機化合物混合液の供給側は大気圧F1透過
側はQ、3wmHg以下の減圧のときの膜の仔効面積は
19.6ctftであった。膜を透過した水と有機化合
物は液体窒素で凝縮させて採集した。透過液中に内部標
準としてn−プロパツールを加え、 TCD−ガスクロマトグラフィーにより透過速度及び分
離係数を求めた。なおエタンH2〇 一ルに対する水の分離係数α  は次のよtOH うに定義したものである。
The supply side of the water/water-soluble organic compound mixture was at atmospheric pressure F1, and the permeation side was Q, and the effective area of the membrane at reduced pressure of 3 wmHg or less was 19.6 ctft. Water and organic compounds that passed through the membrane were condensed with liquid nitrogen and collected. N-propatool was added to the permeate as an internal standard, and the permeation rate and separation coefficient were determined by TCD-gas chromatography. The separation coefficient α of water for 20 liters of ethane H is defined as follows.

但し、上式のXELOH,XH2Oは供給液のエタノー
ル、水の重量%を、またYE、OH,YH20は透過液
のエタノール、水の重量%を表す。
However, in the above formula, XELOH and XH2O represent the weight percent of ethanol and water in the feed liquid, and YE, OH, and YH20 represent the weight percent of ethanol and water in the permeate.

実施例1 撹拌器、温度計、窒素導入管及び試料投入日付のlQの
四ツ1]フラスコ中にビス(3−アミノフェニル)スル
ホン27.5g (0,11J)及びビス(4−アミノ
フェニル)スルホン27.5g(0,11J)を入れ、
窒素ガスを導入する。脱水したN−メチルピロリドン5
00−を加え撹拌する。完全に溶解した後、水浴で内温
か4℃になるまで冷却する。試料投入[1からイソフタ
ル酸ジクロリド粉末45.0g (0,22[IQ)を
投入し、1時間水浴で冷却したまま撹拌する。
Example 1 27.5 g (0,11 J) of bis(3-aminophenyl) sulfone and bis(4-aminophenyl) in a flask. Add 27.5g (0.11J) of sulfone,
Introduce nitrogen gas. Dehydrated N-methylpyrrolidone 5
Add 00- and stir. After completely dissolving, cool in a water bath until the internal temperature reaches 4°C. Input 45.0 g (0.22[IQ) of isophthalic acid dichloride powder from Sample Input [1] and stir while cooling in a water bath for 1 hour.

その後、室温で2時間反応させた後、3Qのメタノール
中に注ぐことにより、ポリマーの固体を得た。該ポリマ
ーはミキサーを用いて粉砕水洗を繰り返した後、減圧乾
燥を行い乾燥した。得られたポリマーを上記製膜法に従
い製膜し、浸透気化性能の測定を行った。水とエタノー
ルの分離係数(α  )は3387.透過速度は0.2
5(kgE、OH ・μ贋/rl・h)であった。
Thereafter, after reacting at room temperature for 2 hours, a solid polymer was obtained by pouring into 3Q methanol. The polymer was pulverized using a mixer, washed repeatedly with water, and then dried under reduced pressure. The obtained polymer was formed into a film according to the above-mentioned film forming method, and the permeation vaporization performance was measured. The separation coefficient (α) between water and ethanol is 3387. The permeation rate is 0.2
5 (kgE, OH・μfalse/rl・h).

実施例2 実施例1と同様にして、ビス(3−アミノフェニル)ス
ルホン41: 3g (0,17J)とビス(4−アミ
ノフェニル)スルホン13.8g(0,06J)をジア
ミン成分とし、イソフタル酸ジクロリド45.0g (
0,22J)を酸成分として重合を行った。得られたポ
リマーを上記の方法に従い製膜し、浸透気化性能の測定
を行った。
Example 2 In the same manner as in Example 1, 3 g (0,17 J) of bis(3-aminophenyl) sulfone 41 and 13.8 g (0,06 J) of bis(4-aminophenyl) sulfone were used as diamine components, and isophthal Acid dichloride 45.0g (
Polymerization was carried out using 0.22 J) as the acid component. The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured.

水とエタノールの分離係数(α  )は579、LOH 透過速度は0.09(kg・μm/rl・h)であった
The separation coefficient (α) between water and ethanol was 579, and the LOH permeation rate was 0.09 (kg·μm/rl·h).

実施例3 実施例1と同様にして、ビス(3−アミノフェニル)ス
ルホン13.8g (0,06J)とビス(4−アミノ
フェニル)スルホン41.3g(0,17J)をジアミ
ン成分とし、イソフタル酸ジクロリド45.0g (0
,22+J)を酸成分としてiK合を行った。得られた
ポリマーを」―記の方法に従い製膜し、浸透気化性能の
測定を行った。
Example 3 In the same manner as in Example 1, 13.8 g (0,06 J) of bis(3-aminophenyl) sulfone and 41.3 g (0,17 J) of bis(4-aminophenyl) sulfone were used as diamine components, and isophthal Acid dichloride 45.0g (0
, 22+J) was used as the acid component. The obtained polymer was formed into a film according to the method described in "-" and its pervaporation performance was measured.

水とエタノールの分離係数(α  )は315、tOH 透過速度は0.42 (kg”、un/1111@hr
)であった。
The separation coefficient (α) between water and ethanol is 315, and the tOH permeation rate is 0.42 (kg”, un/1111@hr
)Met.

比較例1 実施例1と同様にして、ビス(3−アミノフェニル)ス
ルホン55.0g (0,22J)をジアミン成分とし
、イソフタル酸ジクロリド45.0g(0,22J)を
酸成分として重合を行った。
Comparative Example 1 Polymerization was carried out in the same manner as in Example 1, using 55.0 g (0.22 J) of bis(3-aminophenyl)sulfone as the diamine component and 45.0 g (0.22 J) of isophthalic acid dichloride as the acid component. Ta.

得られたポリマーを上記の方法に従い製膜し、浸透気化
性能の測定を行った。水とエタノールの分離係数(α 
 )は193、透過速度は0.08E、01l (kg・μrn/ぜ11h)であった。
The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured. Separation coefficient of water and ethanol (α
) was 193, and the permeation rate was 0.08E, 01l (kg·μrn/11h).

比較例2 実施例1と同様にしてビス(4−アミノフェニル)スル
ホン55.0g (0,22J)をジアミン成分とし、
イソフタル酸ジクロリド45.0g(0,22J)を酸
成分として重合を行った。得られたポリマーを1−記の
方法に従い製膜し、浸透気化性能の測定を行った。水と
エタノールの分離H,0 係数(α  )は14、透過速度は0.20(kgE、
OR ・μm/n?*h)であった。
Comparative Example 2 In the same manner as in Example 1, 55.0 g (0.22 J) of bis(4-aminophenyl)sulfone was used as a diamine component,
Polymerization was carried out using 45.0 g (0.22 J) of isophthalic acid dichloride as the acid component. The obtained polymer was formed into a film according to the method described in 1-, and the permeation vaporization performance was measured. The separation H,0 coefficient (α) of water and ethanol is 14, and the permeation rate is 0.20 (kgE,
OR ・μm/n? *h).

比較例3 実施例1と同様にしてビス[4−(4−アミノフェノキ
シ)フェニルコスルホン88.1g(0,16J)をジ
アミン成分とし、イソフタル酸ジクロリド31.9g 
(0,16mQ)を酸成分として重合を行った。得られ
たポリマーを上記の方法に従い製膜し、浸透気化性能の
測定を行った。
Comparative Example 3 In the same manner as in Example 1, 88.1 g (0.16 J) of bis[4-(4-aminophenoxy)phenylcosulfone] was used as the diamine component, and 31.9 g of isophthalic acid dichloride was added.
Polymerization was carried out using (0.16 mQ) as an acid component. The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured.

水とエタノールの分離係数(α  )は50、透E、O
H 過速度は0.72(kg・μ層/♂・h)であった。
The separation coefficient (α) of water and ethanol is 50, permeability E, O
H overspeed was 0.72 (kg·μ layer/male·h).

第1表 第1表からも明らかなように、ビス(3−アミノフェニ
ル)スルホンとビス(4−アミノフェニル)スルホンを
ジアミン成分として用いた芳香族ポリアミドは、それぞ
れビス(3−アミノフェニル)スルホン又はビス(4−
アミノフェニル)スルホンを中種でジアミン成分として
用いた芳香族ポリアミドと比べ、非常に高い浸透気化性
能を示す。
Table 1 As is clear from Table 1, the aromatic polyamides using bis(3-aminophenyl) sulfone and bis(4-aminophenyl) sulfone as diamine components are bis(3-aminophenyl) sulfone, respectively. or bis(4-
Compared to aromatic polyamides containing (aminophenyl) sulfone as the diamine component, it exhibits extremely high pervaporation performance.

[発明の効果コ 本発明の膜を用いれば、従来の膜を用いた分離方法に比
べて高い分離係数を維持しつつ、大きい透過速度で、有
機液体混合物を効率よ(浸透気化法で分離することが出
来る。又、架橋反応や、複合膜化を行うことなく、単独
素材で製膜することが可能である。そのため、分離シス
テムのコンパクト化、合理化、処理能力の増大、低コス
ト化が図られ、本発明は化学工業などの分tjnn製の
プロセスの短縮化や省エネルギー化への膜分離方法の実
用化に有効であり、産業上のを用件が極めて大きいもの
である。
[Effects of the Invention] By using the membrane of the present invention, organic liquid mixtures can be efficiently separated (separated by pervaporation) at a higher permeation rate while maintaining a higher separation coefficient than separation methods using conventional membranes. In addition, it is possible to form a membrane using a single material without cross-linking reaction or forming a composite membrane.As a result, separation systems can be made more compact and rational, increasing throughput and reducing costs. Therefore, the present invention is effective in practical application of a membrane separation method for shortening the process and saving energy in the chemical industry, etc., and has extremely large industrial requirements.

特許出願人 通商産業省基礎産業局長Patent applicant: Director-General of Basic Industries Bureau, Ministry of International Trade and Industry

Claims (1)

【特許請求の範囲】[Claims] ビス(3−アミノフェニル)スルホン20モル%〜80
モル%及びビス(4−アミノフェニル)スルホン80モ
ル%〜20モル%をジアミン成分とし、イソフタル酸成
分および/またはテレフタル酸成分を主酸成分とする芳
香族ポリアミド共重合体からなることを特徴とする浸透
気化用分離膜。
Bis(3-aminophenyl)sulfone 20 mol% ~ 80
It is characterized by consisting of an aromatic polyamide copolymer containing 80 mol% to 20 mol% of bis(4-aminophenyl)sulfone as a diamine component and an isophthalic acid component and/or a terephthalic acid component as the main acid component. Separation membrane for pervaporation.
JP12944988A 1988-05-28 1988-05-28 Separation film for pervaporation Granted JPH01299606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12944988A JPH01299606A (en) 1988-05-28 1988-05-28 Separation film for pervaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12944988A JPH01299606A (en) 1988-05-28 1988-05-28 Separation film for pervaporation

Publications (2)

Publication Number Publication Date
JPH01299606A true JPH01299606A (en) 1989-12-04
JPH0556178B2 JPH0556178B2 (en) 1993-08-18

Family

ID=15009754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12944988A Granted JPH01299606A (en) 1988-05-28 1988-05-28 Separation film for pervaporation

Country Status (1)

Country Link
JP (1) JPH01299606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955692B2 (en) 2007-08-22 2011-06-07 E. I. Du Pont De Nemours And Company Protective garment comprising fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4′ diamino diphenyl sulfone
KR101531432B1 (en) * 2007-08-22 2015-06-24 이 아이 듀폰 디 네모아 앤드 캄파니 Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4'diamino diphenyl sulfone and methods for making same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868869A (en) * 1994-08-30 1996-03-12 Rhythm Watch Co Ltd Door opening and closing mechanism of decorative timepiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955692B2 (en) 2007-08-22 2011-06-07 E. I. Du Pont De Nemours And Company Protective garment comprising fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4′ diamino diphenyl sulfone
KR101531432B1 (en) * 2007-08-22 2015-06-24 이 아이 듀폰 디 네모아 앤드 캄파니 Fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4'diamino diphenyl sulfone and methods for making same

Also Published As

Publication number Publication date
JPH0556178B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
NL8002844A (en) PROCESS FOR PREPARING A SELECTIVE PERMEABLE MEMBRANE AND THE MEMBRANES SO OBTAINED.
JPH0321335A (en) Fine porous base layer made of interfacial polyamide copolymer
JPH0371169B2 (en)
JPH02187134A (en) Structure and method for separation of fluid mixture
JPH01299606A (en) Separation film for pervaporation
RU2129910C1 (en) Method of manufacturing composite polymer pervaporation membranes
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPS63283705A (en) Selective semipermeable membrane of polyamideimide
RU2166984C2 (en) Method of polymeric multilayer pervaporation membrane making
JPH01299604A (en) Osmotic vaporation film
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH01299605A (en) Separation film for osmotic vaporation
JPH03232523A (en) Composite membrane
JPH0516290B2 (en)
JP2003251152A (en) Precision porous poly(ether sulfone) filter membrane
JPH0568292B2 (en)
JPH0556179B2 (en)
JPS62140603A (en) Liquid separation membrane
JPH0559777B2 (en)
JPH0423569B2 (en)
JPS63182005A (en) Polyion complex separation membrane
JP2952685B2 (en) Separation membrane for liquid separation
JP3018093B2 (en) Polyimide water selective separation membrane
JPS62244403A (en) Permselective membrane
JP2918687B2 (en) Polyparabanic acid selective separation membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term