JPH0556179B2 - - Google Patents

Info

Publication number
JPH0556179B2
JPH0556179B2 JP32152689A JP32152689A JPH0556179B2 JP H0556179 B2 JPH0556179 B2 JP H0556179B2 JP 32152689 A JP32152689 A JP 32152689A JP 32152689 A JP32152689 A JP 32152689A JP H0556179 B2 JPH0556179 B2 JP H0556179B2
Authority
JP
Japan
Prior art keywords
membrane
separation
pervaporation
polymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32152689A
Other languages
Japanese (ja)
Other versions
JPH03186330A (en
Inventor
Shinsuke Takegami
Shoji Tsujii
Hideki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHO SANGYOSHO KISO SANGYO
TSUSHO SANGYOSHO KISO SANGYO KYOKUCHO
Original Assignee
TSUSHO SANGYOSHO KISO SANGYO
TSUSHO SANGYOSHO KISO SANGYO KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHO SANGYOSHO KISO SANGYO, TSUSHO SANGYOSHO KISO SANGYO KYOKUCHO filed Critical TSUSHO SANGYOSHO KISO SANGYO
Priority to JP32152689A priority Critical patent/JPH03186330A/en
Publication of JPH03186330A publication Critical patent/JPH03186330A/en
Publication of JPH0556179B2 publication Critical patent/JPH0556179B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は有機物氎溶液から氎を分離する方法に
関するものである。曎に詳しくは、浞透気化法
パヌベヌパレヌシペン法によ぀お氎−有機液
䜓混合物から氎を分離するための分離膜に関する
ものである。 埓来の技術 埓来、氎−有機液䜓混合物又は成分以䞊の有
機液䜓混合物を分離する方法ずしお、蒞留法が叀
くから知られおいる。しかし、蒞留法では共沞混
合物、近沞点混合物、熱で倉性しやすい化合物を
分離するこずは極めお困難であるこず、たた、蒞
留法によ぀お分離が可胜な混合物においおも、倚
倧な゚ネルギヌを消費するこずが倚いずい぀た問
題から、これらを解決する技術ずしお、膜を甚い
た分離技術が期埅されおいる。膜を甚いた分離技
術の䞭で、特に氎−有機液䜓混合物を分離するた
めに有効な方法ずしお浞透気化法パヌベヌパレ
ヌシペン法が考えられる。この浞透気化法は、
高分子膜の䞀方の偎に分離を目的ずする混合液䜓
を䟛絊し、他方の偎を真空、枛圧、又はキダリア
ガスを流すこずにより、蒞気圧差を䞎えお特定の
物質を優先的に膜透過させお分離する方法であ
る。぀たり、浞透気化法は、膜を界しお盞倉化を
起こさせるずころが、逆浞透圧法、気䜓分離法ず
い぀た他の膜分離法ず倧きく異なるずころであ
る。曎にこの方法は、膜の透過偎の圧力が極めお
小さいため、物質の膜透過の駆動力である化孊ポ
テンシダルの募配が非垞に倧きくなり、党濃床域
での分離が可胜であるこずも他の膜分離法にはな
い特色である。そのため、逆浞透圧法では、その
操䜜圧力の面で難しいずされおいた有機液䜓混合
物の分離にもこの浞透気化法が適甚出来る。浞透
気化法のもう䞀぀の特城は、埓来、蒞留法では分
離が困難であ぀た共沞混合物、近沞点混合物、熱
分解性混合物などを分離、濃瞮又は粟補が出来
お、省゚ネルギヌプロセスであるこずがあげられ
る。このように浞透気化法は、他の分離法にはな
い、数倚くの特城を有しおおり、有機液䜓混合物
の分離に最も適した分離方法の䞀぀である。 近幎、特に浞透気化法に関する研究が盛んに行
われ、䜿甚する高分子膜に぀いおも数倚くの報告
がある。䟋えば、氎−゚タノヌルの分離に関しお
は、米囜特蚱第2953502号明现曞に、アセチルセ
ルロヌス均䞀膜が、米囜特蚱第3035060号明现曞
には、加氎分解されたポリ酢酞ビニル膜が提案さ
れおいる。又、特開昭59−109204号公報には、セ
ルロヌスアセテヌト膜や、ポリビニルアルコヌル
系膜をスキン局ずする耇合膜が、特開昭59−
55304号公報及び特開昭59−55305号公報にはポリ
゚チレンむミン系架橋耇合膜が、特開昭61−
281138号公報にはアクリル酞基含有ポリマヌ系架
橋耇合膜が提案されおいる。Journal of
membrane Science1976271〜287においお
は、ポリテトラフルオロ゚チレンにポリ−ビ
ニルピロリドンをグラフトした膜が、Journal
of Membrane Science1981191〜196にお
いおは、ポリテトラフルオロ゚チレンにスチレン
をグラフトした膜が報告されおいる。しかし、こ
の様に数倚くの浞透気化甚高分子膜が提案されお
いるにもかかわらず、この浞透気化法は実甚化さ
れおいない。 これは、珟圚たでに提案されおいる浞透気化甚
高分子膜の倚くが、分離性胜あるいは、透過性胜
においお䞍充分であ぀たり、補膜性や、膜の耐久
性に問題があるこずに起因しおいる。 しかも、䞀般的な傟向ずしお、分離性胜ず透過
性胜は盞い反する性質があり、䞡者を共に高いレ
ベルに維持するこずが難しいずされおいる。浞透
気化膜の実甚化には、これらの問題の解決が䞍可
避である。即ち、分離性胜が悪いず、高分子膜を
回透過しおも、目的ずする濃床たで濃瞮又は分
離するこずができず、そのため倚段の分離操䜜が
必芁ずなり、他の分離法ずの組み合わせが必芁ず
なり、装眮が倧型化しお、蚭備コストが過倧にな
るなど、実甚䞊問題が倚い。又、氎や有機化合物
が高分子膜を透過する透過係数単䜍膜面積、単
䜍膜厚、単䜍時間圓りの透過量で衚瀺が小さい
ず、膜面積を非垞に倧きくするか又は膜厚を極端
に薄くしたり、耇合膜化しなければならず、いず
れも、装眮が倧型化したり、補膜補、膜の匷床、
耐久性が䜎䞋するなど、実甚䞊問題になる。 本発明で蚀う透過速床ずは、平膜の堎合は単䜍
膜面積、単䜍時間、膜厚1Ό圓りの透過混合物
量で、Kg・Όm2・hrの単䜍で衚す。䞭空系膜
の堎合は、単䜍膜面積、単䜍時間圓りの透過混合
物量で衚す。䞀方、分離係数αは、䟛絊液䞭
の氎ず有機物ずの濃床比に察する、透過気䜓䞭の
氎ず有機物ずの濃床比である。即ち、αX Y
Pfである。ここで、、は成
分系での氎及び有機物のそれぞれの濃床を、た
た、及びは透過気䜓及び䟛絊液を衚す。 発明が解決しようずする課題 本発明の目的は、パヌベヌパレヌシペン法によ
぀お氎−有機液䜓混合液から氎を分離するにあた
り、埓来の膜では透過速床及び分離係数を同時に
高められなか぀た問題点を解決し䞔぀、耐久性の
優れた高分子膜を提䟛するものである。 問題点を解決するための手段 本発明者らは、良奜な補膜性ず膜匷床、膜性胜
の耐久性を保持し぀぀、高い分離性ず倧きい透過
性を有する透過気化分離膜に぀いお鋭意研究した
結果、以䞋の分離膜がこの目的を達成するこずが
わか぀た。 ここで本発明の内容を曎に詳しく説明するため
に、浞透気化法による液䜓の分離機構に぀いお説
明する。即ち、浞透気化法による液䜓の分離機構
は膜ぞの液䜓の溶解ず拡散によるず説明されおい
る。 䞀般に、膜透過埌の成分の成分に察する濃
床比を透過前の成分の成分に察する濃床比で
陀した分離係数αA Bは成分ず成分の膜ぞの溶
解床の比ず膜内郚での拡散速床の比の積で衚され
る。分離係数αA Bを䞊げるためには成分ず成
分の溶解床の比か、又は拡散速床の比のどちらか
又は䞡方の比を高める必芁がある。 溶解性は䞻に透過分子ず膜ずの分子間盞互䜿甚
化孊的盞溶性によ぀お決たるものである。膜
玠材ずしお分離察象物ずの化孊的盞溶性の尺床ず
しお、溶解床パラメヌタヌが取り䞊げられおい
る。膜玠材の遞択にあた぀お膜玠材ず透過分子ず
の化孊的盞溶性の高い物質、あるいは極性の類䌌
した膜玠材を遞ぶのがよく、䟛絊液䞭の分離察称
物透過分子が芪氎性の堎合には、溶解床パラ
メヌタヌの倧きい、極性の高い膜玠材が、疎氎性
の堎合には逆の膜玠材が適しおいるず蚀われおい
る。぀たり、氎−゚タノヌルの分離には前者の膜
玠材が適しおいる。しかしながら、このような玠
材の倚くは䟛絊液に溶解あるいは膚最しおした
い、その玠材を単独で䜿甚するず膜の耐久性など
で問題が生じおくる。そこで補膜埌、むオン結合
や、電子線、プラズマ照射により架橋構造を導入
したり、非極性の玠材ずのブロツク構造にした
り、耇合膜化するこずにより、耐久性を付䞎する
こずが倚い。拡散速床は透過分子の圢、倧きさ、
凝集状態及び膜の自由䜓積によ぀お決たる。分離
係数αA Bを䞊げるためには、䟛絊液の透過分子の
圢状が倧きく違぀おいなければならない。䞀般的
には圢状の小さい分子が拡散速床が倧きい。䞀
方、膜の自由䜓積は巚芖的な孔ではないが分子尺
床でみた分子間隙で定矩されるものである。自由
䜓積の倧きな膜では透過分子の倧きさの差による
拡散速床の差が小さく、自由䜓積の小さな膜では
透過分子の倧きさの差による拡散速床の差が倧き
い。 透過分子の倧きさを利甚しお分離係数を䞊げる
ためには、膜の自由䜓積を小さくする必芁があ
る。膜の自由䜓積を小さくするためには、架橋構
造や結晶構造を導入しお、緻密な䞉次元網目構造
を圢成する方法がずられおいる。 本発明者らは、各皮の高分子膜に぀いお、氎溶
性有機物、特にアルコヌルを含有する氎溶液の分
離性胜をパヌベヌパレヌシペン法で怜蚎した結
果、ビス−アミノプニルスルホン及びメ
タプニレンゞアミンをゞアミン成分ずしむ゜フ
タル酞成分を䞻酞成分ずした芳銙族ポリアミドの
共重合䜓が、架橋構造の導入や耇合膜化するこず
なく単独玠材で良奜な補膜性ず高い分離係数及び
透過速床を有するこずを芋い出した。 以䞋に本発明に぀いお曎に詳现に説明する。 本発明の芳銙族ポリアミドポリマヌに甚いられ
るゞアミンは、ビス−アミノプニルスル
ホン及び䜎分子量ゞアミン成分ずしおメタプニ
レンゞアミンである。メタプニレンゞアミンの
䜿甚量は、党ゞアミン成分の合蚈量に察し、20〜
70モルである。 70モルより倚い堎合は、ポリマヌの溶解性が
著しく䜎䞋し、膜構造を非察称膜化する際の溶媒
条件が厳しく限定され、良奜な分離膜を埗るこず
は困難になる。又、20モルより少ない堎合は良
奜な分離性胜は埗られなくなる。メタプニレン
ゞアミン成分が20〜70モルの範囲においお分離
係数、溶解性胜共に優れた性胜を瀺す。 酞成分ずしおは、䞻ずしおむ゜フタル酞成分が
甚いられるが、他に芳銙族ゞカルボン酞成分を甚
いるこずもできる。その䜿甚量は党酞成分に察
し、20モル以䞋が奜たしい。 ポリマヌはゞアミンずゞカルボン酞クロリドず
の反応により埗られる。反応の方法は溶液重合法
や、界面重合法が甚いられる。該ポリマヌから埗
られる分離膜の圢状は平膜、スパむラル型あるい
は䞭空系型特に制限はないが、分離性胜、特に透
過速床を向䞊させるために、膜は非察称構造をず
るこずが望たしい。 該ポリマヌは、−メチルピロリドン、
N′−ゞメチルホルムアミドあるいはN′−ゞ
メチルアセトアミド等適圓な極性溶媒に溶解す
る。たた、非察称構造を圢成するには該ポリマヌ
を溶解した補膜原液をドクタヌナむフを甚いおガ
ラス板䞊に流延し、䞀定時間攟眮しお溶媒の䞀郚
を蒞発された埌、氎等の該ポリマヌの非溶媒䞭ぞ
浞挬すればい。又、䞭空糞膜を圢成する際には、
補膜原液を玡糞口金を甚いお䞭空糞状に玡糞した
埌、䞀定時間䞍掻性ガス䞭で溶媒の䞀郚を蒞発さ
せ、凝固济䞭ぞ浞挬すればよい。非察称構造を圢
成する際に、補膜原液に遅凝固剀であるグリコヌ
ル類等を溶しおもよい。 このようにしお䜜補された分離膜は、䞻に氎
有機物、混合物、䟋えばメタノヌル、゚タノヌ
ル、−プロパノヌル、−プロパノヌル、−
ブタノヌル等のアルコヌル類、アセトン、メチル
゚チルケトン等のケトン類、テトラヒドロフラ
ン、ゞオキサン等の゚ヌテル類、ギ酞、酢酞等の
有機酞、ホルムアルデヒド、アセトアルデヒド、
プロピオンアルデヒド等のアルデヒド類、ピリゞ
ンやピコリン等のアミン類の矀からなる又は
以䞊の化合物を含む氎溶液の浞透気化法による分
離に甚いられるが、氎ず該有機物ずの蒞気混合物
の蒞気透過法による分離に甚いるこずも出来る。 䜜甚 本発明のポリマヌから埗られた膜は、芳銙族ポ
リアミドであるこずにより、熱安定補、耐薬品性
に優れおおり、補膜性も良奜である。該膜の瀺す
高い分離係数及び透過速床の理由は明らかではな
いが、芳銙族ポリアミド分子構造における適床な
屈曲性ず氎玠結合の䜜甚により、氎ず有機物の分
離に適した分子間隙自由䜓積が圢成されおい
るず掚定される。又、芳銙族ポリアミド䞭には芪
氎性のアミド結合やカルボン酞基、アミノ基等も
含たれおおり、䟛絊液䞭の氎ずの芪和性が倧きい
ために氎の透過速床が有機物の透過速床より倧き
いためず考えられる。 実斜䟋 以䞋に実斜䟋で本発明を具䜓的に説明するが、
これによ぀お本発明が限定されるものではない。 (1) 補膜方法 平膜の補膜方法は、ポリマヌを12の
N′−ゞメチルアセトアミドDMACに
溶解し、ドクタヌナむフを甚いおガラス板䞊に
流延し、80℃で加熱也燥埌ガラス板から膜をは
がし、均質膜を埗た。該膜を瀘玙にはさみ、
160℃で加熱枛圧也燥を16時間行぀た。曎に、
250℃で時間熱凊理を行぀た。 䞭空糞膜の補膜方法は、ポリマヌを
N′−ゞメチルアセトアミド溶媒に、ポリマヌ
濃床が30重量になるように溶解した。この溶
液を䞭空糞補造甚玡糞口金から䞀定流量で抌し
出し、同時に芯液ずしお、プロピレングリコヌ
ルを䞀定流量で抌し出し、圢成された䞭空糞状
䜓をcmの゚アヌギダツプを取぀お䞀定速床
10分で連続的に匕きずりながら、30重
量のN′−ゞメチルアセトアミドを含む
氎溶液からなる25℃の凝固济䞭に導き、曎に、
氎䞭に䞀昌倜浞挬しお掗浄した。この埌、む゜
プロピルアルコヌルずヘキサンに各時間づ぀
浞挬した埌、䞀昌倜颚也した。埗られた䞭空糞
を160℃、枛圧䞋で䞀昌倜加熱也燥した。 (2) 浞透気化性胜の枬定法 浞透気化性胜の枬定は、補科研匏浞透気化枬
定装眮を䜜぀た。氎氎溶液有機化合物混合液
の䟛絊偎は倧気圧䞋、透過偎は0.3.mmHg以䞋の
枛圧䞋で以䞋の浞透気化実隓を行぀た。膜面䞊
に䟛絊液を加え䞀定枩床䞋で撹拌した。このず
きの膜の有効面積は19.6cm2であ぀た。膜を透過
した氎ず有機化合物は液䜓窒玠で凝瞮させお採
集した。透過液䞭に内郚暙準ずしお−プロパ
ノヌルを加え、TCD−ガスクロマトグラフむ
ヌにより透過速床及び分離係数を求めた。なお
゚タノヌルに察する氎の分離係数αH20 EtOHは次の
ように定矩したものである。 αH20 EtOHYH20YEtOHYH20YEtOH 䜆し、䞊匏のXEtOH、XH20は䟛絊液の゚タノ
ヌル、氎の重量をたたYEtOH、YH20は透過液
の゚タノヌル、氎の重量を衚す。 透過速床(Q)は平膜の堎合、単䜍膜面積、単䜍
時間、膜厚1Ό圓りの透過混合物量でKg・Ό
m2・hrで衚す。䞭空糞膜の堎合は、単䜍膜
面積、単䜍時間圓りの透過混合物量でKgm2・
hrで衚す。 実斜䟋  撹拌噚、枩床系、窒玠導入管及び詊料投入口付
のの四ツ口フラスコ䞭にビス−アミノフ
゚ニルスルホン42.50.17ml及びメタプ
ニレンゞアミン7.90.07mlを入れ、窒玠ガ
スを導入する。脱氎した−メチルピロリドン
500mlを加え撹拌する。完党に溶解した埌、氷济
で内枩が℃になるたで冷华する。詊料投入口か
ら、む゜フタル酞ゞクロリド粉末49.50.24
mlを投入し、時間法济で冷华したたた撹拌す
る。その埌宀枩で時間反応させた埌、のメ
タノヌル䞭に泚ぐこずによりポリマヌ固䜓を埗
た。該ポリマヌは、ミキサヌを甚いお粉砕、氎掗
を繰り返した埌、枛圧也燥を行い也燥した。埗ら
れたポリマヌを䞊蚘補膜法に埓い平膜を補膜し、
浞透気化性胜の枬定を行぀た。浞透気化性胜の枬
定は、膜の耐久性を考慮しお95゚タノヌル氎溶
液を膜面に䟛絊した埌、60℃で100時間攟眮した
埌、浞透気化性胜を枬定した氎ず゚タノヌルの分
離係数αH20 EtOH1050、透過速床は0.31Kg・Ό
・m2・であ぀た。 実斜䟋  実斜䟋ず同様にしお埗られたポリマヌを䞊蚘
の方法の埓い䞭空糞膜を補膜し、曎に第衚に瀺
す枩床で時間熱凊理を行぀た。このようにしお
埗られた䞭空糞膜の浞透気化性胜の枬定を行぀
た。 浞透気化性胜の枬定は、膜の耐久性を考慮しお
95゚タノヌル氎溶液を膜面に䟛絊した埌、60℃
で100時間攟眮した埌、浞透気化性胜を枬定した。
(Industrial Application Field) The present invention relates to a method for separating water from an organic substance aqueous solution. More specifically, the present invention relates to a separation membrane for separating water from a water-organic liquid mixture by a pervaporation method. (Prior Art) Distillation has long been known as a method for separating a water-organic liquid mixture or an organic liquid mixture of two or more components. However, it is extremely difficult to separate azeotropic mixtures, near-boiling point mixtures, and compounds that are easily denatured by heat using distillation, and even for mixtures that can be separated by distillation, a large amount of energy is consumed. Separation technology using membranes is expected to solve these problems. Among separation techniques using membranes, pervaporation is considered to be particularly effective for separating water-organic liquid mixtures. This pervaporation method is
By supplying a mixed liquid for the purpose of separation to one side of a polymer membrane and applying a vacuum, reduced pressure, or flowing a carrier gas to the other side, a vapor pressure difference is created to allow specific substances to preferentially permeate through the membrane. This is a method of separation. In other words, the pervaporation method differs greatly from other membrane separation methods such as the reverse osmosis method and the gas separation method in that it causes a phase change through a membrane. Furthermore, because the pressure on the permeate side of the membrane is extremely low, the gradient of the chemical potential, which is the driving force for the permeation of substances through the membrane, is extremely large, making it possible to separate the entire concentration range compared to other membranes. This is a feature not found in separation methods. Therefore, this pervaporation method can also be applied to the separation of organic liquid mixtures, which is difficult to perform using reverse osmosis due to its operating pressure. Another feature of the pervaporation method is that it is an energy-saving process because it can separate, concentrate, or purify azeotropic mixtures, near-boiling point mixtures, and thermally decomposable mixtures that were difficult to separate using conventional distillation methods. can give. As described above, the pervaporation method has many characteristics that other separation methods do not have, and is one of the separation methods most suitable for separating organic liquid mixtures. In recent years, research on pervaporation methods in particular has been actively conducted, and there have been many reports regarding the polymer membranes used. For example, regarding water-ethanol separation, an acetylcellulose homogeneous membrane is proposed in US Pat. No. 2,953,502, and a hydrolyzed polyvinyl acetate membrane is proposed in US Pat. No. 3,035,060. In addition, JP-A-59-109204 discloses a composite membrane having a cellulose acetate membrane or a polyvinyl alcohol-based membrane as a skin layer.
55304 and JP-A-59-55305 disclose polyethyleneimine-based crosslinked composite membranes;
Publication No. 281138 proposes an acrylic acid group-containing polymer-based crosslinked composite membrane. Journal of
In Membrane Science 1 (1976) 271-287, a membrane made of polytetrafluoroethylene grafted with poly(N-vinylpyrrolidone) was published in the Journal
of Membrane Science 9 (1981) 191-196 reports a membrane in which styrene is grafted onto polytetrafluoroethylene. However, although many polymer membranes for pervaporation have been proposed, this pervaporation method has not been put to practical use. This is because many of the polymer membranes proposed to date for pervaporation have insufficient separation performance or permeation performance, or have problems with membrane formability or membrane durability. ing. Moreover, as a general tendency, separation performance and permeation performance are contradictory, and it is said that it is difficult to maintain both at a high level. In order to put pervaporation membranes into practical use, it is necessary to solve these problems. In other words, if the separation performance is poor, it will not be possible to concentrate or separate to the desired concentration even if it passes through the polymer membrane once. Therefore, multi-stage separation operations will be required, making it difficult to combine with other separation methods. This poses many practical problems, such as increasing the size of the equipment and excessive equipment costs. In addition, if the permeability coefficient (expressed as the permeation amount per unit membrane area, unit membrane thickness, or unit time) of water or organic compounds permeating through a polymer membrane is small, the membrane area must be made very large or the membrane thickness must be made extremely large. In either case, it is necessary to make the film thinner or use a composite film.
This poses practical problems such as reduced durability. In the case of a flat membrane, the permeation rate referred to in the present invention is the amount of permeated mixture per unit membrane area, unit time, and membrane thickness of 1 Όm, and is expressed in units of Kg·Όm/m 2 ·hr. In the case of a hollow membrane, it is expressed by unit membrane area and amount of permeated mixture per unit time. On the other hand, the separation coefficient (α) is the concentration ratio of water and organic matter in the permeate gas to the concentration ratio of water and organic matter in the feed liquid. That is, α X Y = (X/
P) P /(X/Y) f . Here, X and Y represent the respective concentrations of water and organic matter in a two-component system, and P and f represent the permeate gas and the feed liquid. (Problems to be Solved by the Invention) The purpose of the present invention is to separate water from a water-organic liquid mixture by a pervaporation method, and to solve the problem that conventional membranes cannot simultaneously increase permeation rate and separation coefficient. The present invention provides a polymer membrane that solves the above problems and has excellent durability. (Means for Solving the Problems) The present inventors have worked diligently to develop a pervaporation separation membrane that has high separation performance and large permeability while maintaining good membrane formability, membrane strength, and durability of membrane performance. As a result of research, it was found that the following separation membrane achieves this purpose. Here, in order to explain the content of the present invention in more detail, a liquid separation mechanism using a pervaporation method will be explained. That is, it is explained that the liquid separation mechanism by pervaporation is based on the dissolution and diffusion of the liquid in the membrane. In general, the separation coefficient α A B is calculated by dividing the concentration ratio of component A to component B after permeation by the concentration ratio of component A to component B before permeation. It is expressed as the product of the ratio of diffusion rates at . In order to increase the separation coefficient α A B , it is necessary to increase either or both of the solubility ratio and the diffusion rate ratio of the A component and the B component. Solubility is primarily determined by the intermolecular interaction (chemical compatibility) between the permeable molecules and the membrane. The solubility parameter has been taken up as a measure of chemical compatibility between membrane materials and the separation target. When selecting a membrane material, it is best to choose a substance that has high chemical compatibility with the membrane material and the permeable molecules, or a membrane material with similar polarity, so that the separation object (permeable molecule) in the feed liquid is hydrophilic. In this case, a membrane material with a large solubility parameter and high polarity is said to be suitable, while in the case of hydrophobicity, the opposite membrane material is said to be suitable. In other words, the former membrane material is suitable for water-ethanol separation. However, many of these materials dissolve or swell in the supply liquid, and when such materials are used alone, problems arise in terms of membrane durability and the like. Therefore, after film formation, durability is often imparted by introducing a crosslinked structure through ionic bonding, electron beam or plasma irradiation, creating a block structure with a non-polar material, or forming a composite film. Diffusion rate depends on the shape, size, and
It depends on the agglomeration state and the free volume of the membrane. In order to increase the separation factor α A B , the shapes of the permeating molecules in the feed liquid must be significantly different. Generally, molecules with smaller shapes have higher diffusion rates. On the other hand, the free volume of a membrane is not defined by macroscopic pores, but by molecular gaps on a molecular scale. In a membrane with a large free volume, the difference in diffusion rate due to the difference in the size of the permeating molecules is small, and in a membrane with a small free volume, the difference in the diffusion rate due to the difference in the size of the permeating molecules is large. In order to increase the separation coefficient by utilizing the size of permeable molecules, it is necessary to reduce the free volume of the membrane. In order to reduce the free volume of a film, methods have been used to introduce a cross-linked structure or a crystal structure to form a dense three-dimensional network structure. The present inventors investigated the separation performance of various polymer membranes for aqueous solutions containing water-soluble organic substances, especially alcohols, using the pervaporation method. A copolymer of aromatic polyamide with a diamine component and an isophthalic acid component as the main acid component has good film formability and high separation coefficient and permeation rate as a single material without introducing a crosslinked structure or forming a composite film. I found out. The present invention will be explained in more detail below. The diamines used in the aromatic polyamide polymers of the present invention are bis(3-aminophenyl)sulfone and metaphenylenediamine as the low molecular weight diamine component. The amount of metaphenylenediamine used is 20 to 20% of the total amount of all diamine components.
It is 70 mol%. If it is more than 70 mol%, the solubility of the polymer will be significantly reduced, the solvent conditions for forming the membrane structure into an asymmetric membrane will be severely limited, and it will be difficult to obtain a good separation membrane. Further, if the amount is less than 20 mol%, good separation performance cannot be obtained. When the metaphenylenediamine component is in the range of 20 to 70 mol%, both separation coefficient and solubility performance are excellent. As the acid component, an isophthalic acid component is mainly used, but an aromatic dicarboxylic acid component can also be used. The amount used is preferably 20 mol% or less based on the total acid components. The polymer is obtained by reacting a diamine with a dicarboxylic acid chloride. A solution polymerization method or an interfacial polymerization method is used for the reaction. The shape of the separation membrane obtained from the polymer is not particularly limited to a flat membrane, spiral type, or hollow type, but in order to improve separation performance, particularly permeation rate, it is desirable that the membrane has an asymmetric structure. The polymer is N-methylpyrrolidone, N,
It is dissolved in a suitable polar solvent such as N'-dimethylformamide or N,N'-dimethylacetamide. In addition, to form an asymmetric structure, a film-forming stock solution in which the polymer is dissolved is cast onto a glass plate using a doctor knife, left to stand for a certain period of time to evaporate part of the solvent, and then a film forming solution containing the polymer dissolved therein is cast onto a glass plate. Just immerse it in the polymer's non-solvent. In addition, when forming a hollow fiber membrane,
After the membrane-forming stock solution is spun into a hollow fiber using a spinneret, a portion of the solvent may be evaporated in an inert gas for a certain period of time, followed by immersion in a coagulation bath. When forming an asymmetric structure, a slow coagulating agent such as glycols may be dissolved in the membrane forming stock solution. The separation membrane produced in this way mainly consists of water/
Organic substances, mixtures such as methanol, ethanol, 1-propanol, 2-propanol, n-
Alcohols such as butanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, organic acids such as formic acid and acetic acid, formaldehyde, acetaldehyde,
1 or 2 consisting of aldehydes such as propionaldehyde and amines such as pyridine and picoline
Although it is used to separate aqueous solutions containing the above compounds by pervaporation, it can also be used to separate a vapor mixture of water and the organic substance by vapor permeation. (Function) Since the film obtained from the polymer of the present invention is an aromatic polyamide, it is thermally stable, has excellent chemical resistance, and has good film formability. The reasons for the high separation coefficient and permeation rate of this membrane are not clear, but the moderate flexibility and hydrogen bonding in the aromatic polyamide molecular structure create a molecular gap (free volume) suitable for separating water and organic matter. It is presumed that it has been formed. In addition, aromatic polyamide contains hydrophilic amide bonds, carboxylic acid groups, amino groups, etc., and has a high affinity for water in the feed solution, so the water permeation rate is higher than the permeation rate of organic matter. This is thought to be due to its large size. (Example) The present invention will be specifically explained below using Examples.
The present invention is not limited thereby. (1) Film forming method To form a flat film, dissolve 3 g of polymer in 12 g of N,N'-dimethylacetamide (DMAC), cast onto a glass plate using a doctor knife, and heat at 80°C. After drying, the film was peeled off from the glass plate to obtain a homogeneous film. Sandwich the membrane between filter paper,
Drying was carried out under reduced pressure at 160°C for 16 hours. Furthermore,
Heat treatment was performed at 250°C for 1 hour. The hollow fiber membrane manufacturing method uses a polymer of N,
The polymer was dissolved in N'-dimethylacetamide solvent at a concentration of 30% by weight. This solution is extruded at a constant flow rate from a spinneret for manufacturing hollow fibers, and at the same time propylene glycol is extruded as a core liquid at a constant flow rate. While withdrawing the mixture, it was introduced into a coagulation bath at 25°C consisting of an aqueous solution containing 30% by weight of N,N'-dimethylacetamide, and further,
It was washed by soaking it in water all day and night. Thereafter, it was immersed in isopropyl alcohol and hexane for 1 hour each, and then air-dried overnight. The obtained hollow fibers were heated and dried at 160° C. under reduced pressure all day and night. (2) Method for measuring pervaporation performance To measure pervaporation performance, we created a Seikagaku-style pervaporation measuring device. The following pervaporation experiment was conducted under atmospheric pressure on the feed side of the water/aqueous organic compound mixture and under reduced pressure of 0.3 mmHg or less on the permeate side. The feed solution was added onto the membrane surface and stirred at a constant temperature. The effective area of the membrane at this time was 19.6 cm 2 . Water and organic compounds that passed through the membrane were condensed with liquid nitrogen and collected. N-propanol was added to the permeate as an internal standard, and the permeation rate and separation coefficient were determined by TCD-gas chromatography. The separation coefficient α H20 EtOH of water with respect to ethanol is defined as follows. α H20 EtOH = Y H20 /Y EtOH /Y H20 /Y EtOH However, in the above formula, X EtOH , Expresses weight %. In the case of a flat membrane, the permeation rate (Q) is expressed as the amount of permeated mixture per unit membrane area, unit time, and membrane thickness of 1 Όm.
Expressed in m/ m2・hr. In the case of hollow fiber membranes, the amount of permeated mixture per unit membrane area and unit time is Kg/ m2・
Expressed in hr. Example 1 42.5 g (0.17 ml) of bis(3-aminophenyl)sulfone and 7.9 g (0.07 ml) of metaphenylenediamine were placed in a four-neck flask equipped with a stirrer, temperature system, nitrogen inlet tube, and sample inlet. and introduce nitrogen gas. Dehydrated N-methylpyrrolidone
Add 500ml and stir. After completely melting, cool in an ice bath until the internal temperature reaches 4°C. From the sample inlet, 49.5 g of isophthalic acid dichloride powder (0.24
ml) and stirred for 1 hour while cooling in a bath. Thereafter, the mixture was reacted at room temperature for 2 hours, and then poured into methanol (Step 3) to obtain a polymer solid. The polymer was repeatedly pulverized using a mixer and washed with water, and then dried under reduced pressure. A flat film was formed from the obtained polymer according to the above film forming method,
The pervaporation performance was measured. The pervaporation performance was measured by supplying a 95% ethanol aqueous solution to the membrane surface and leaving it at 60℃ for 100 hours, taking into account the durability of the membrane. H20 EtOH ) 1050, permeation rate is 0.31 (Kg・Ό
m・m 2・h). Example 2 A hollow fiber membrane was formed from the polymer obtained in the same manner as in Example 1 according to the method described above, and further heat-treated at the temperature shown in Table 1 for 1 hour. The pervaporation performance of the hollow fiber membrane thus obtained was measured. Measuring pervaporation performance takes into account the durability of the membrane.
After supplying 95% ethanol aqueous solution to the membrane surface, 60℃
After being left for 100 hours, the permeability performance was measured.

【衚】 比范䟋  実斜䟋ず同様にしお、ビス−アミノプ
ニルスルホン55.00.22molをゞアミン成
分ずし、む゜フタル酞ゞクロリド45.0
0.22molを酞成分ずしお重合を行぀た。埗ら
れたポリマヌを䞊蚘の方法に埓い補膜し、浞透気
化性胜の枬定を行぀た。浞透気化性胜の枬定は、
膜の耐久性を考慮しお95゚タノヌル氎溶液を膜
面に䟛絊した埌、60℃で100時間攟眮した埌、浞
透気化性胜を枬定した。氎ず゚タノヌルの分離係
数αH20 EtOHは53、透過速床は0.73Kg・Ό
m2・であ぀た。 比范䟋  実斜䟋同様にしおビス−−アミノフ
゚ノキシプニルスルホン68.10.16mol
をゞアミン成分ずし、む゜フタル酞ゞクロリド
31.90.16molを酞成分ずしお重合を行぀た。
埗られたポリマヌを䞊蚘の方法に埓い補膜し、浞
透気化性胜の枬定を行぀た。浞透気化性胜の枬定
は、膜の耐久性を考慮しお95゚タノヌル氎溶液
を膜面に䟛絊した埌、60℃で100時間攟眮した埌、
浞透気化性胜を枬定した。氎ず゚タノヌルの分離
係数αH20 EtOHは40、透過速床は0.84Kg・Ό
m2・であ぀た。 発明の効果 本発明の膜を甚いれば、埓来の膜を甚いた分離
方法に比べお高い分離係数を維持し぀぀、倧きい
透過速床で、有機液䜓混合物を効率よく浞透気化
法で分離するこずが出来る。又、架橋反応や、耇
合膜化を行うこずなく、単独玠材で補膜するこず
が可胜である。そのため、分離システムのコンパ
クト化、合理化、凊理胜力の増倧、䜎コスト化が
図られ、本発明は化孊工業などの分離粟補のプロ
セスの短瞮化や省゚ネルギヌ化ぞの膜分離方法の
実甚化に有効であり、産業䞊の有甚性が極めお倧
きいものである。
[Table] Comparative Example 1 In the same manner as in Example 1, 55.0 g (0.22 mol) of bis(3-aminophenyl)sulfone was used as the diamine component, and 45.0 g of isophthalic acid dichloride was added.
Polymerization was carried out using (0.22 mol) as the acid component. The resulting polymer was formed into a film according to the method described above, and its pervaporation performance was measured. Measurement of pervaporation performance is
Taking into consideration the durability of the membrane, a 95% ethanol aqueous solution was supplied to the membrane surface, and after being left at 60°C for 100 hours, the pervaporation performance was measured. The separation coefficient between water and ethanol (α H20 EtOH ) is 53, and the permeation rate is 0.73 (Kg・Όm/
m2・h). Comparative Example 2 68.1 g (0.16 mol) of bis[4-(3-aminophenoxy)phenyl]sulfone was prepared in the same manner as in Example 1.
isophthalic acid dichloride with diamine component.
Polymerization was carried out using 31.9 g (0.16 mol) as the acid component.
The resulting polymer was formed into a film according to the method described above, and its pervaporation performance was measured. The pervaporation performance was measured by supplying a 95% ethanol aqueous solution to the membrane surface and leaving it at 60°C for 100 hours, considering the durability of the membrane.
The pervaporation performance was measured. The separation coefficient between water and ethanol (α H20 EtOH ) is 40, and the permeation rate is 0.84 (Kg・Όm/
m2・h). (Effects of the Invention) By using the membrane of the present invention, organic liquid mixtures can be efficiently separated by pervaporation at a higher permeation rate while maintaining a higher separation coefficient than in separation methods using conventional membranes. I can do it. Further, it is possible to form a film using a single material without performing a crosslinking reaction or forming a composite film. Therefore, the separation system can be made more compact, more rational, the processing capacity can be increased, and the cost can be lowered, and the present invention is effective in shortening separation and purification processes in the chemical industry, etc., and in practical application of membrane separation methods to save energy. Therefore, it has extremely great industrial utility.

Claims (1)

【特蚱請求の範囲】[Claims]  ビス−アミノプニルスルホン30モル
〜80モル及びメタプニレンゞアミン70モル
〜20モルをゞアミン成分ずし、む゜フタル酞
成分を䞻酞成分ずする芳銙族ポリアミド共重合䜓
からなるこずを特城ずする浞透気化甚分離膜。
1 Consisting of an aromatic polyamide copolymer containing 30 mol% to 80 mol% of bis(3-aminophenyl) sulfone and 70 mol% to 20 mol% of metaphenylenediamine as a diamine component and an isophthalic acid component as the main acid component. A separation membrane for pervaporation characterized by:
JP32152689A 1989-12-13 1989-12-13 Separation membrane for osmosis gasification Granted JPH03186330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32152689A JPH03186330A (en) 1989-12-13 1989-12-13 Separation membrane for osmosis gasification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32152689A JPH03186330A (en) 1989-12-13 1989-12-13 Separation membrane for osmosis gasification

Publications (2)

Publication Number Publication Date
JPH03186330A JPH03186330A (en) 1991-08-14
JPH0556179B2 true JPH0556179B2 (en) 1993-08-18

Family

ID=18133557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32152689A Granted JPH03186330A (en) 1989-12-13 1989-12-13 Separation membrane for osmosis gasification

Country Status (1)

Country Link
JP (1) JPH03186330A (en)

Also Published As

Publication number Publication date
JPH03186330A (en) 1991-08-14

Similar Documents

Publication Publication Date Title
JPS63248409A (en) Improved oxidation resistant film and its production
JPS6354903A (en) Separation membrane for pervaporation
WO1988004569A1 (en) Process for separating liquid mixture
JPS5850521B2 (en) Selective permeable membrane made of polyquinazolone polymer
JPH0556179B2 (en)
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPH0761432B2 (en) Method for producing highly functional asymmetric membrane
JPH0556178B2 (en)
JPS63283705A (en) Selective semipermeable membrane of polyamideimide
JP2900184B2 (en) Aromatic copolymer separation membrane
JPS63126506A (en) Anionic high-polymer separating membrane
JPS63130105A (en) Production of permselective composite membrane
JPH0556176B2 (en)
JPH0516290B2 (en)
JPH0568292B2 (en)
JPH0556177B2 (en)
JP2827212B2 (en) Polyamideimide separation membrane
JPH0556180B2 (en)
JPH0423569B2 (en)
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
JP3018093B2 (en) Polyimide water selective separation membrane
JPS637804A (en) Separation membrane for organic substance aqueous solution
JP2918687B2 (en) Polyparabanic acid selective separation membrane
JPH0220290B2 (en)
JPH09239248A (en) Method for treatment of pervaporation membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term