JPH01299604A - Osmotic vaporation film - Google Patents

Osmotic vaporation film

Info

Publication number
JPH01299604A
JPH01299604A JP63129447A JP12944788A JPH01299604A JP H01299604 A JPH01299604 A JP H01299604A JP 63129447 A JP63129447 A JP 63129447A JP 12944788 A JP12944788 A JP 12944788A JP H01299604 A JPH01299604 A JP H01299604A
Authority
JP
Japan
Prior art keywords
film
separation
membrane
bis
sulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129447A
Other languages
Japanese (ja)
Other versions
JPH0556176B2 (en
Inventor
Shoji Tsujii
彰司 辻井
Shinsuke Takegami
竹上 信介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Original Assignee
TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO filed Critical TSUSHO SANGIYOUSHIYOU KISO SANGYO KYOKUCHO
Priority to JP63129447A priority Critical patent/JPH01299604A/en
Publication of JPH01299604A publication Critical patent/JPH01299604A/en
Publication of JPH0556176B2 publication Critical patent/JPH0556176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a osmotic vaporation film having high film forming property, high separation coefft., and high permeation velocity by using bis(3- aminophenyl)sulfone and bis[4-(4-aminophenoxy) phenyl]sulfone as diamine components of a copolymer constituting a material for the film. CONSTITUTION:A film to be used for the separation of water from a water/org. liquid mixture by the osmotic vaporation process is constituted of 20-80mol.% bis(3-aminophenyl) sulfone and 80-20mol.% bis[4-(4-aminophenoxy)phenyl] sulfone, as diamine components. Said diamine components are copolymerized with acid component(s) consisting of isophthalic acid and/or terephthalic acid as primary acid components to obtain thus an aromatic polyamide copolymer. A separation film obtd. by this method has high film forming property as it is without requiring introduction of a crosslinked structure nor transformation to a compound film, having high separation coefft. and high permeation velocity.

Description

【発明の詳細な説明】 〈産業I−の利用分野〉 本発明は有機物水溶液から水を分離する方法に関するも
のである。更に詳しくは、浸透気化法(パーベーパレー
ション法)によって水−有a 液体混合物から水を分離
するための分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Application in Industry I> The present invention relates to a method for separating water from an aqueous solution of organic matter. More specifically, the present invention relates to a separation membrane for separating water from a water-aluminium liquid mixture by a pervaporation method.

〈従来の技術〉 従来、水−有機液体混合物又は2成分以1−の有機液体
混合物を分離する方法として、蒸留法が古くから知られ
ている。しかし、蒸留法では共沸混合物、近沸点混合物
、熱で変性しやすい化合物を分離することは極めて困難
であること、また、蒸留法によって分離が可能な混合物
においても、多大なエネルギーを消費することが多いと
いった問題から、これらを解決する技術として、膜を用
いた分離技術が期待されている。膜を用いた分離技術の
中で、特に水−有機液体混合物を分離するために有効な
方法として浸透気化法(パーベーパレージロン法)が考
えられる。この浸透気化法は、高分子膜の一方の側に分
離を目的とする混合液体を供給し、他方の側を気相にし
て、真空、減圧、又はキャリアガスを流すことにより、
蒸気圧差を与えて特定の物質を優先的に膜透過させて分
離する方法である。つまり、浸透気化法は、膜を介して
相変化を起こさせるところが、逆浸透圧法、気体分離法
といった他の膜分離法と大きく異なるところである。四
にこの方法は、膜の透過側のIF力が極めて小さいため
、物質の膜透過の駆動力である化学ポテンシャルの勾配
が非常に大きくなり、全濃度域での分離が可能であるこ
とも他の膜分離法にはない特色である。そのため、逆浸
透圧法では、その操作圧力の而で難しいとされていた有
機液体混合物の分離もこの浸透気化法では可能になる。
<Prior Art> Distillation has long been known as a method for separating a water-organic liquid mixture or a two-component or more organic liquid mixture. However, it is extremely difficult to separate azeotropic mixtures, near-boiling point mixtures, and compounds that are easily denatured by heat using distillation, and even for mixtures that can be separated by distillation, a large amount of energy is consumed. Separation technology using membranes is expected to solve these problems. Among separation techniques using membranes, the pervaporation method is considered to be particularly effective for separating water-organic liquid mixtures. This pervaporation method involves supplying a mixed liquid for the purpose of separation to one side of a polymer membrane, making the other side a gas phase, and applying a vacuum, reduced pressure, or flowing a carrier gas.
This is a method of separation by applying a vapor pressure difference to allow specific substances to preferentially permeate through the membrane. In other words, the pervaporation method differs greatly from other membrane separation methods such as reverse osmosis and gas separation in that it causes a phase change through a membrane. Fourth, in this method, since the IF force on the permeation side of the membrane is extremely small, the gradient of the chemical potential, which is the driving force for the permeation of substances through the membrane, becomes extremely large, making it possible to separate in the entire concentration range. This is a feature not found in other membrane separation methods. Therefore, this pervaporation method makes it possible to separate organic liquid mixtures, which is difficult to do with reverse osmosis due to its operating pressure.

浸透気化法のもう一つの特徴は、従来、蒸留法では分離
が困難であった共沸混合物、近沸点混合物、熱分解性混
合物などを分離、濃縮、精製出来、省エネルギープロセ
スであることがあげられる。このように浸透気化法は、
他の分離法にはない数多くの特徴を有しており、有機液
体混合物の分離に最も適した分離方法の一つである。
Another feature of the pervaporation method is that it is an energy-saving process that can separate, concentrate, and purify azeotropic mixtures, near-boiling point mixtures, and thermally decomposable mixtures that were difficult to separate using conventional distillation methods. . In this way, the pervaporation method
It has many features not found in other separation methods, and is one of the most suitable separation methods for separating organic liquid mixtures.

近年、特に浸透気化法に関する研究が盛んに行われ、使
用する高分子膜についても数多くの報告がある。例えば
、水−エタノールの分離に関しては、米国特許第295
3502号明細書に、アセチルセルロース均一膜が、米
国特許第3035080号明細−tには、加水分解され
たポリ酢酸ビニル膜が提案されている。又、特開昭59
−109204吋公報には、セルロースアセテート膜や
、ポリビニルアルコール系膜をスキン層とする複合膜が
、特開昭59−55304号公報及び特開昭59−55
305 =r公報にはポリエチレンイミン系架橋複合膜
が、特開昭61−281138号公報にはアクリル酸基
含有ポリマー系架橋複合膜が提案されている。Jour
nal or Membrane 5cience1 
(197G) 271〜287においては、ポリテトラ
フルオロエチレンにポリ(N−ビニルピロリドン)をグ
ラフトした膜が、Journal of Membra
neScience 9 (1981) 191〜19
Gにおいては、ポリテトラフルオロエチレンにスチレン
をグラフトした膜が報告されている。しかし、この様に
数多くの浸透気化用高分子膜が提案されているにもかか
わらず、この浸透気化法は実用化されていない。
In recent years, research on pervaporation methods in particular has been actively conducted, and there have been many reports regarding the polymer membranes used. For example, for water-ethanol separation, US Pat.
No. 3,502 proposes an acetyl cellulose homogeneous membrane, and US Pat. No. 3,035,080 proposes a hydrolyzed polyvinyl acetate membrane. Also, JP-A-59
JP-A No. 59-55304 and JP-A No. 59-55 disclose a composite film having a cellulose acetate film or a polyvinyl alcohol film as a skin layer.
No. 305 = r publication proposes a polyethyleneimine-based crosslinked composite membrane, and JP-A-61-281138 proposes an acrylic acid group-containing polymer-based crosslinked composite membrane. Jour
nal or Membrane 5science1
(197G) 271-287, a membrane in which polytetrafluoroethylene is grafted with poly(N-vinylpyrrolidone) was published in the Journal of Membrane
neScience 9 (1981) 191-19
In G, a membrane in which styrene is grafted onto polytetrafluoroethylene has been reported. However, although many polymer membranes for pervaporation have been proposed, this pervaporation method has not been put to practical use.

これは、現在までに提案されている浸透気化用高分子膜
の多くが、分離性能あるいは、透過性能において不充分
であったり、製膜性や、膜の耐久性に問題があることに
起因している。
This is because many of the polymer membranes proposed to date for pervaporation have insufficient separation performance or permeation performance, or have problems with membrane formability or membrane durability. ing.

しかも、一般的な傾向として、分離性能と透過性能は相
い反する性質があり、両者を共に高いレベルに維持する
ことが難しいとされている。浸透気化膜の実用化には、
これらの問題の解決が不可避である。即ち、分離性能が
悪いと、高分子膜を1回透過しても、[1的とする濃度
まで濃縮又は分離することができず、そのため多段の分
離操作が必妥となったり、他の分離法との組み合わせが
必要となり、装置が大型化して、設備コストが過大にな
るなど、実用り問題が多い。又、水や有機化合物が高分
子膜を透過する透過速度(単位膜面積、il1位膜厚、
単位時111当りの透過晴で表示)が小さいと、膜面積
を非常に大きくするか又は膜厚を極端に薄くしたり、複
合膜化しなければならず、やはり、装置が大型化してし
まう。製膜性、膜の強度、耐久性が低下するなど、実用
−L問題になる。
Moreover, as a general tendency, separation performance and permeation performance are contradictory, and it is said that it is difficult to maintain both at a high level. For practical application of pervaporation membranes,
Solving these problems is inevitable. In other words, if the separation performance is poor, even if it passes through the polymer membrane once, it will not be possible to concentrate or separate it to the desired concentration. There are many problems in practical use, such as the need to combine this method with other methods, the equipment becomes larger, and equipment costs become excessive. In addition, the permeation rate of water and organic compounds through a polymer membrane (unit membrane area, il 1st membrane thickness,
(expressed as clear transmission per unit hour) is small, the membrane area must be made very large, the membrane thickness must be extremely thin, or a composite membrane must be used, which also increases the size of the apparatus. This poses practical problems such as reduced film formability, film strength, and durability.

本発明でHう透過速度とは、C1i位而積、す11位膜
厚、中位時間当りの透過混合物量でN kg・F/l/
・hrの単位で表す。一方、分離係数(α)は、供給液
中の水と有機物との比に対する、透過気体中の水と有機
物との混合比である。即ち、αす= (X/Y)1+ 
/ (X/Y)、である。ここで、X、Yは2成分系で
の水及び有機物のそれぞれの組成を、また、P及びfは
透過気体及び供給液を表す。
In the present invention, the H permeation rate is defined as the C1i volume, the 11th film thickness, and the amount of permeated mixture per medium time, N kg・F/l/
- Expressed in units of hr. On the other hand, the separation coefficient (α) is the mixing ratio of water and organic matter in the permeate gas to the ratio of water and organic matter in the feed liquid. That is, αs = (X/Y)1+
/ (X/Y). Here, X and Y represent the respective compositions of water and organic matter in a two-component system, and P and f represent the permeate gas and the feed liquid.

〈発明が解決しようとする課題〉 本発明の目的は、パーベーパレーション法によって水−
有機液体混合液から水を分離するにあたり、従来の膜で
は透過速度及び分離係数を同時に高められなかった問題
点を解決し1つ、製膜性の優れた高分子膜を提供するも
のである。
<Problem to be solved by the invention> The purpose of the present invention is to solve the problem of water by pervaporation method.
The present invention solves the problem that conventional membranes cannot simultaneously increase the permeation rate and separation coefficient when separating water from an organic liquid mixture, and provides a polymer membrane with excellent film formability.

〈問題点を解決するための手段〉 本発明者らは、良好な製膜性と膜強度を保持しつつ、高
い分離性と透過性を有する浸透気化用分離膜について鋭
意研究した結果、以ドの分離膜がこの目的を達成するこ
とがわかった。
<Means for Solving the Problems> As a result of intensive research into pervaporation separation membranes that have high separation performance and permeability while maintaining good film formability and membrane strength, the present inventors have developed the following solutions. separation membranes were found to achieve this objective.

すなわち本発明はビス(3−アミノフェニル)スルホン
20モル%〜80モル%及びビス[4−(4−アミノフ
ェノキシ)フェニル]スルホン80モル%〜20モル%
をジアミン成分とし、イ酸成分とする芳香族ポリアミド
共重合体からなることを特徴とする浸透気化用分離膜で
ある。
That is, the present invention comprises 20 mol% to 80 mol% of bis(3-aminophenyl)sulfone and 80 mol% to 20 mol% of bis[4-(4-aminophenoxy)phenyl]sulfone.
This is a separation membrane for pervaporation characterized by being made of an aromatic polyamide copolymer having a diamine component and an sulfuric acid component.

ここで本発明の内容を更に詳しく説明するために、浸透
気化法による液体の分離機構について説明する。即ち、
浸透気化法による液体の分離機構は膜への液体の溶解と
拡散によると説明されている。
Here, in order to explain the content of the present invention in more detail, a liquid separation mechanism using a pervaporation method will be explained. That is,
The liquid separation mechanism by pervaporation is explained as being based on the dissolution and diffusion of the liquid into the membrane.

一般に、膜透過後のA成分のB成分に対する重j、)比
を透過前のA成分のB成分に対する重晴比で除した分離
係数αnはA成分とB成分の膜への溶解度の比と膜内部
での拡散速度の比の積で表される。分離係数α会を上げ
るためにはA成分とB成分の溶解度の比か、又は拡散速
度の比のどちらか又は両方の比を高める必要がある。
In general, the separation coefficient αn, which is calculated by dividing the weight ratio of component A to component B after permeation by the weight ratio of component A to component B before permeation, is determined by the ratio of the solubility of component A and component B in the membrane and the membrane It is expressed as the product of the ratio of internal diffusion rates. In order to increase the separation coefficient α, it is necessary to increase either or both of the solubility ratio and diffusion rate ratio of component A and component B.

溶解性は主に透過分子と膜との分子間相!f作用(化学
的相溶性)によって決まるものである。膜素材と分離対
象物との化学的相溶性の尺度として、溶解度パラメータ
ーが取りl−げられている。膜素材の選択にあたって膜
素材と透過分子との化学的相溶性の高い物質、あるいは
極性の類似した膜素材を選ぶのがよく、供給液中の分離
対象物(透過分子)が親水性の場合には、溶解度パラメ
ーターの大きい、極性の高い膜素材が、疎水性の場合に
は逆の膜素材が適している言われている。つまり、水−
エタノールの分離には前者の膜素材が適している。
Solubility is mainly in the intermolecular phase between permeable molecules and the membrane! It is determined by the f effect (chemical compatibility). A solubility parameter is used as a measure of chemical compatibility between a membrane material and an object to be separated. When selecting a membrane material, it is best to choose a substance that has high chemical compatibility with the membrane material and the permeating molecules, or a membrane material with similar polarity. It is said that a highly polar membrane material with a large solubility parameter is suitable, while the opposite membrane material is suitable for hydrophobic membranes. In other words, water-
The former membrane material is suitable for separating ethanol.

しかしながら、このような素材の多くは供給液に溶解あ
るいは膨潤してしまい、その素材を中種で使用すると膜
の耐久性などで問題が生じてくる。
However, many of these materials dissolve or swell in the supply liquid, and when such materials are used as intermediate materials, problems arise in terms of membrane durability and the like.

そこで製膜後、イオン結合や、電γ線、プラズマ照射に
より架橋構造を導入したり、非極性の素材とのブロック
構造にしたり、複合膜化することにより、耐久性を付与
することが多い。
Therefore, after film formation, durability is often imparted by introducing a crosslinked structure through ionic bonding, electric gamma rays, or plasma irradiation, creating a block structure with non-polar materials, or forming a composite film.

拡散速度は透過分子の形、大きさ、凝集状態及び膜の自
由体積によって決まる。分離係数αaを]ユげるために
は、供給液の透過分子の形状が大きく違っていなければ
ならない。−・般的には形状の小さい分子が拡散速度が
大きい。一方、膜の自由体積は巨視的な孔ではないが分
子尺度でみた分子間隙で定義されるものである。自由体
積の大きな膜では透過分Y・の大きさの差による拡散速
度の差が小さく、自由体積の小さな膜では透過分子の大
きさの差による拡散速度の差が大きい。
The rate of diffusion is determined by the shape, size, aggregation state of the permeating molecules and the free volume of the membrane. In order to reduce the separation factor [alpha]a, the shape of the permeating molecules in the feed liquid must be significantly different. −・Generally speaking, molecules with smaller shapes have a higher diffusion rate. On the other hand, the free volume of a membrane is not defined by macroscopic pores, but by molecular gaps on a molecular scale. In a membrane with a large free volume, the difference in diffusion rate due to the difference in the size of the permeated fraction Y. is small, and in a membrane with a small free volume, the difference in the diffusion rate due to the difference in the size of the permeated molecules is large.

透過分子の大きさを利用して分離係数を1−、げるため
には、膜の自由体積を小さくする必要がある。
In order to increase the separation coefficient by 1 - by utilizing the size of permeable molecules, it is necessary to reduce the free volume of the membrane.

膜の自由体積を小さくするためには、架橋構造や結晶構
造を導入して、微密な三次元網目構造を形成する方法が
とられている。
In order to reduce the free volume of a film, methods have been used to introduce a cross-linked structure or a crystal structure to form a fine three-dimensional network structure.

本発明者らは、各種の高分子膜について、水溶性有機物
、特にアルコールを含有する水溶液の分離性能をパーベ
ーパレーション法で検討した結果、ビス(3−アミノフ
ェニル)スルホン及びビス[4−(4−アミノフェノキ
シ)フェニル]スルホンをジアミン成分としイソフタル
酸成分を主酸成分とした芳香族ポリアミドの共重合体が
、架橋構造の導入や複合膜化することなく rr+−膜
素材で良好な製膜性と高い分離係数及び透過速度を有す
ることを見い出した。
The present inventors investigated the separation performance of various polymer membranes for aqueous solutions containing water-soluble organic substances, especially alcohols, using the pervaporation method, and found that bis(3-aminophenyl)sulfone and bis[4-( A copolymer of aromatic polyamide containing 4-aminophenoxy)phenyl]sulfone as a diamine component and isophthalic acid component as the main acid component can form a good film using rr+- membrane material without introducing a crosslinked structure or forming a composite film. It was found that it has high separation coefficient and permeation rate.

以下に本発明について更に詳細に説明する。The present invention will be explained in more detail below.

本発明の芳香族ポリアミドポリマーに用いられるジアミ
ンは、ビス(3−アミノフェニル)スルホン及びビス[
:4− (4−アミノフェノキシ)フェニルコスルホン
である。ビス[4−(4−アミノフェノキシ)フェニル
]スルホンの使用量は、両者の合計量に対し、20〜8
0モル%である。
The diamines used in the aromatic polyamide polymer of the present invention include bis(3-aminophenyl)sulfone and bis[
:4-(4-aminophenoxy)phenylcosulfone. The amount of bis[4-(4-aminophenoxy)phenyl]sulfone used is 20 to 8
It is 0 mol%.

80モル%より多い場合は、分離係数が著しく低下し、
20モル%より少ない場合は透過速度が著しく低下する
。ビス[:4− (4−アミノフェノキシ)フェニル]
スルホンが20〜80モル%の範囲において分離係数、
透過速度共に優れた性能を示す。好ましくは、ビス[4
−(4−アミノフェノキシ)フェニル]スルホンが30
〜70モル%の範囲が特に優れている。
When it is more than 80 mol%, the separation coefficient decreases significantly,
When the amount is less than 20 mol%, the permeation rate decreases significantly. Bis[:4-(4-aminophenoxy)phenyl]
Separation coefficient in the range of 20 to 80 mol% of sulfone,
Shows excellent performance in terms of permeation rate. Preferably, bis[4
-(4-aminophenoxy)phenyl]sulfone is 30
A range of 70 mol % is particularly good.

酸成分としては、主としてイソフタル酸成分が用いられ
るが、テレフタル酸成分又は、両者の混合物を用いても
構わない。他に芳香族ジカルボン酸成分を用いることが
できるが、その使用量は全酸成分に対し、20モル%以
下が好ましい。
As the acid component, an isophthalic acid component is mainly used, but a terephthalic acid component or a mixture of both may also be used. In addition, an aromatic dicarboxylic acid component can be used, but the amount used is preferably 20 mol % or less based on the total acid components.

ポリマーは、ジアミンとジカルボン酸クロリドとの反応
により得られる。反応の方法は溶液重合法や、界面重合
法が用いられる。該ポリマーから15られる分離膜の形
状は平膜、スパイラル型あるいは中空糸型等特に制限は
ないが、分離性能、特に透過速度を向上させるために、
膜は非対称構造をとることが望ましい。
The polymer is obtained by reacting a diamine with a dicarboxylic acid chloride. A solution polymerization method or an interfacial polymerization method is used for the reaction. The shape of the separation membrane made from the polymer is not particularly limited, such as flat membrane, spiral type, or hollow fiber type, but in order to improve separation performance, especially permeation rate,
It is desirable that the membrane has an asymmetric structure.

該ポリマーは、N−メチルピロリドン、N、 N−ジメ
チルホルムアミドあるいはN、N−ジメチルアセトアミ
ド等適当な極性溶媒に溶解する。また、非対称構造を形
成する際の遅凝固剤であるグリコール類等と上記溶媒と
の混合溶媒にも溶解する。従って非対称膜を得るには例
えば、該ポリマーをN−メチルピロリドンと遅凝固剤で
あるグリコール類との混合液に溶解した後、ガラス板り
に流延、一定時間放置後水等該ポリマーの非溶媒中へP
2漬すれば良い。
The polymer is dissolved in a suitable polar solvent such as N-methylpyrrolidone, N,N-dimethylformamide or N,N-dimethylacetamide. It is also dissolved in a mixed solvent of the above-mentioned solvent and glycols, etc., which are slow solidifying agents when forming an asymmetric structure. Therefore, in order to obtain an asymmetric membrane, for example, the polymer is dissolved in a mixture of N-methylpyrrolidone and glycols, which are slow-coagulating agents, and then cast onto a glass plate, and after being left for a certain period of time, water etc. P into the solvent
You only need to pickle it twice.

このようにして作製された膜は主に水/有機物、混合物
、例えばメタノール、エタノール、1−プロパツール、
2−プロパツール、n−ブタノール等のアルコール類、
アセトン、メチルエチルケトン等のケトン類、テトラヒ
ドロフラン、ジオキサン等のエーテル類、ギ酸、酢酸等
の有機酸、ホルムアルデヒド、アセトアルデヒド、プロ
ピオンアルデヒド等のアルデヒド類、ピリジンやピリコ
ン等のアミン類の群からなる1又は2以−1−の化合物
を含む水溶液の浸透気化法による分離に用いられるが、
水と該有機物との蒸気混合物の蒸気透過法による分離に
用いることも出来る。
The membranes prepared in this way are mainly composed of water/organic substances, such as methanol, ethanol, 1-propanol,
Alcohols such as 2-propanol, n-butanol,
One or more of the following: ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, organic acids such as formic acid and acetic acid, aldehydes such as formaldehyde, acetaldehyde and propionaldehyde, and amines such as pyridine and pyricone. -1- It is used for the separation of aqueous solutions containing compounds by pervaporation,
It can also be used to separate a vapor mixture of water and the organic substance by vapor permeation.

く作用〉 本発明のポリマーから得られた膜は、芳香族ポリアミド
であることより、熱安定性に優れておりまた、製膜性も
良好である。護膜の示す高い分離係数及び透過速度の理
由は明らかではないが、芳香族ポリアミド分子構造にお
ける適度な屈曲性と水素結合の作用により、水と打機物
の分離に適した分子間隙(自由体積)が形成されている
とif&定される。叉、芳香族ポリアミド中には親水性
のアミド結合やカルボン酸基、アミノ基等も含まれてお
り、供給液中の水との親和性が大きいために水の透過速
度が41機物の透過速度より大きいためと考えられる。
Effects> Since the film obtained from the polymer of the present invention is an aromatic polyamide, it has excellent thermal stability and also has good film formability. The reasons for the high separation coefficient and permeation rate of the protective film are not clear, but due to the moderate flexibility and hydrogen bonding in the aromatic polyamide molecular structure, the molecular gap (free volume) is ) is formed, it is determined if&. Furthermore, the aromatic polyamide contains hydrophilic amide bonds, carboxylic acid groups, amino groups, etc., and has a high affinity for water in the feed solution, so the water permeation rate is higher than that of 41 organisms. This is thought to be because it is larger than the speed.

〈実施例〉 以下に実施例で本発明を具体的に説明するが、これによ
って本発明が限定されるものではない。
<Examples> The present invention will be specifically explained below using Examples, but the present invention is not limited thereto.

(1)製膜方法 ポリマー3gを12gのジメチルアセトアミド(DMA
C)に溶解し、ドクターナイフを用いてガラス板上に流
延し、80℃で加熱乾燥後ガラス板から膜をはがし、均
質膜を得た。史に護膜を濾紙にはさみ、160℃で加熱
減圧乾燥を16時間行い熱処理を施した。
(1) Film forming method 3 g of polymer was mixed with 12 g of dimethylacetamide (DMA).
C) and cast onto a glass plate using a doctor knife, and after heating and drying at 80°C, the film was peeled off from the glass plate to obtain a homogeneous film. The protective film was sandwiched between filter papers, and heat treatment was performed by heating and drying under reduced pressure at 160° C. for 16 hours.

■ 浸透気化性能の測定法 浸透気化性能の測定は、製科研式浸透気化測定装置を用
いた。
■Measurement method of pervaporation performance The permeation vaporization performance was measured using a Seikagakuken type pervaporation measuring device.

水/水溶性有機化合物混合液の供給側は大気圧下、透過
側はQ、3n+I1g以下の減圧のときの膜の有効面積
は19.6−であった。膜を透過した水と有機化合物は
液体窒素で凝縮させて採集した。透過液中に内部標準と
してn−プロパツールを加え、 T e l)−ガスクロマトグラフィーにより透過速度
及び分離係数を求めた。なおエタノ一ルに対する水の分
離係数α  は次のよE 、Oil うに定義したものである。
The effective area of the membrane was 19.6- when the feed side of the water/water-soluble organic compound mixture was under atmospheric pressure and the permeate side was under reduced pressure of Q, 3n+I1 g or less. Water and organic compounds that passed through the membrane were condensed with liquid nitrogen and collected. n-propatool was added to the permeate as an internal standard, and the permeation rate and separation coefficient were determined by TEL)-gas chromatography. The separation coefficient α of water with respect to ethanol is defined as E and Oil as follows.

H2OP牙チH柑 αEL011− 但し、上式のXELOH,Xl120は供給液のエタノ
ール、水の重量%を、またYEtOH,yn2oは透過
液のエタノール、水の重量%を表す。
However, in the above formula, XELOH and Xl120 represent the weight percent of ethanol and water in the feed liquid, and YEtOH and yn2o represent the weight percent of ethanol and water in the permeate.

実施例1 撹拌器、温度計、窒素導入管及び試料投入口付のIQの
四ツL1フラスコ中にビス(3−アミノフェニル)スル
ホン22.8g (0,09J)及びビス[4−(4−
アミノフェノキシ)フェニル]スルホン39.8g (
0,99J)を入れ、窒素ガスを導入する。脱水したN
−メチルピロリドン500−を加え撹拌する。完全に溶
解した後、水浴で内温か4℃になるまで冷却する。試料
投入口からイソフタル酸ジクロリド粉末37.4g(0
,18m1ll)を投入し、1時間水浴で冷却したまま
撹拌する。
Example 1 22.8 g (0,09 J) of bis(3-aminophenyl)sulfone and bis[4-(4-
aminophenoxy)phenyl]sulfone 39.8g (
0.99 J) and introduced nitrogen gas. Dehydrated N
-Methylpyrrolidone 500- is added and stirred. After completely dissolving, cool in a water bath until the internal temperature reaches 4°C. 37.4 g of isophthalic acid dichloride powder (0
, 18 ml) and stirred for 1 hour while cooling in a water bath.

その後、室温で2時間反応された後、3Qのメタノール
中に注ぐことにより、ポリマーの固体を得た。該ポリマ
ーはミキサーを用いて粉砕、水洗を繰り返した後、減圧
乾燥を行い乾燥した。得られたポリマーをL記製膜法に
従い製膜し、浸透気化性能の測定を行った。水とエタノ
ールの分離係数(α  )は950、透過速度は0.1
4(kgtOH 争μm/I・h)であった。
Thereafter, the mixture was reacted at room temperature for 2 hours, and then poured into 3Q methanol to obtain a solid polymer. The polymer was repeatedly pulverized using a mixer, washed with water, and then dried under reduced pressure. The obtained polymer was formed into a film according to the film forming method described in L, and the permeation vaporization performance was measured. Separation coefficient (α) of water and ethanol is 950, permeation rate is 0.1
4 (kgtOH μm/Ih).

実施例2 実施例1と同様にして、ビス(3−アミノフェニル)ス
ルホン37.2g (0,15soQ)及びビス[4−
(4−アミノフェノキシ)フェニル]スルホン21.8
g (0,05soQ)をジアミン成分とし、イソフタ
ル酸ジクロリド40.6g(0,2mQ)を酸成分とし
て重合を行った。得られたポリマーを上記の方法に従い
製膜し、浸透気化性能1と同様にして、ビス(3−アミ
ノフェニル)スルホン9.9g (0,04J)及びビ
ス[4−(4−アミノフェノキシ)フェニル]スルホン
58.2g (0,13J)をジアミン成分とし、イソ
フタル酸ジクロリド34.5g (0,171[10)
を酸成分として重合を行った。得られたポリマーを上記
の方法に従い製膜し、浸透気化性能の測定を行った。水
とエタノールの分離係数(α  )は415、透過速度
は0.34(kg・ tOH P請/ll・hr)であった。
Example 2 In the same manner as in Example 1, 37.2 g of bis(3-aminophenyl)sulfone (0,15soQ) and bis[4-
(4-aminophenoxy)phenyl]sulfone 21.8
Polymerization was carried out using 40.6 g (0.2 mQ) of isophthalic acid dichloride as the diamine component and 40.6 g (0.2 mQ) of isophthalic acid dichloride as the acid component. The obtained polymer was formed into a film according to the above method, and 9.9 g (0.04 J) of bis(3-aminophenyl)sulfone and bis[4-(4-aminophenoxy)phenyl ] Sulfone 58.2g (0,13J) as diamine component, isophthalic acid dichloride 34.5g (0,171 [10)
Polymerization was carried out using as an acid component. The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured. The separation coefficient (α) between water and ethanol was 415, and the permeation rate was 0.34 (kg·tOHP/1·hr).

実施例4 実施例1で得た膜を史に180℃で16時間減圧乾燥を
行った。浸透気化性能を測定した結果、水とエタノール
の分離係数(α  )は6618、E、011 透過速度は0.18(kg・μm/♂・h)であった。
Example 4 The membrane obtained in Example 1 was dried under reduced pressure at 180° C. for 16 hours. As a result of measuring the pervaporation performance, the separation coefficient (α) between water and ethanol was 6618, E, 011, and the permeation rate was 0.18 (kg·μm/♂·h).

比較例1 実施例1と同様にして、ビス(3−アミノフェニル)ス
ルホン55.0g (0,22oQ)をジアミン成分と
し、イソフタル酸ジクロリド45.0g(0,22J)
を酸成分として重合を行った。
Comparative Example 1 In the same manner as in Example 1, 55.0 g (0,22oQ) of bis(3-aminophenyl)sulfone was used as the diamine component, and 45.0 g (0,22J) of isophthalic acid dichloride was added.
Polymerization was carried out using as an acid component.

得られたポリマーをL記の方法に従い製膜し、浸透気化
性能の測定を行った。水とエタノールの分離係数(α 
 )は193、透過速度は0.08E、OH (kg・μm/♂・h)であった。
The obtained polymer was formed into a film according to the method described in L, and the permeation vaporization performance was measured. Separation coefficient of water and ethanol (α
) was 193, and the permeation rate was 0.08E, OH (kg・μm/♂・h).

比較例2 実施例1と同様にしてビス[:4− (4−アミノフェ
ノキシ)フェニルコスルホン88.1g(0,18J)
をジアミン成分とし、イソフタル酸ジクロリド31.9
g (0,16J)を酸成分として重合を杼った。得ら
れたポリマーを上記の方法に従い製膜し、浸透気化性能
の測定を行った。
Comparative Example 2 88.1 g (0.18 J) of bis[:4-(4-aminophenoxy)phenylcosulfone] was prepared in the same manner as in Example 1.
is the diamine component, isophthalic acid dichloride 31.9
Polymerization was carried out using g (0.16 J) as the acid component. The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured.

水とエタノールの分離係数(α  )は50、透 tO
H 過速度は0.72(kg・μ躊/♂・h)であった。
The separation coefficient (α) between water and ethanol is 50, permeation tO
H overspeed was 0.72 (kg·μ h/male·h).

比較例3 実施例1と同様にしてビスC4−(3−アミノフェノキ
シ)フェニル]スルホン88.1g(0,18azQ)
をジアミン成分とし、イソフタル酸ジクロリド31.9
g (0,16oQ)を酸成分として重合を行った。得
られたポリマーを上記の方法に従い製膜し、浸透気化性
能の測定を行った。
Comparative Example 3 88.1 g (0,18azQ) of bisC4-(3-aminophenoxy)phenyl]sulfone was prepared in the same manner as in Example 1.
is the diamine component, isophthalic acid dichloride 31.9
Polymerization was carried out using g (0,16oQ) as an acid component. The obtained polymer was formed into a film according to the method described above, and its pervaporation performance was measured.

水とエタノールの分離係数(α  )は376、E、O
H 透過速度は0.05(kg・μIII/I41h)であ
った。
The separation coefficient (α) of water and ethanol is 376, E, O
The H 2 permeation rate was 0.05 (kg·μIII/I41 h).

第1表からも明らかなように、ビス(3−アミノフェニ
ル)スルホンとビス[4−(4−アミノフェノキシ)フ
ェニル]スルホンをジアミン成分として用いた芳香族ポ
リアミドは、それぞれビス(3−アミノフェニル)スル
ホン又はビス[4−(4−アミノフェノキシ)フェニル
]スルホンを中種でジアミン成分として用いた芳香族ポ
リアミドと比べ、非常に高い一2通気化性能を示す。
As is clear from Table 1, the aromatic polyamides using bis(3-aminophenyl)sulfone and bis[4-(4-aminophenoxy)phenyl]sulfone as the diamine component are bis(3-aminophenyl)sulfone, respectively. ) or bis[4-(4-aminophenoxy)phenyl]sulfone as the diamine component.

第1表 〈発明の効果〉 本発明の膜を用いれば、従来の膜を用いた分離方法に比
べて高い分離係数を維持しつつ、大きい透過速度で、f
T機液体混合物を効率よく浸透気化法で分離することが
出来る。又、架橋反応や、複合膜化を杼うことなく、9
独素材で製膜することが可能である。そのため、分離シ
ステムのコンパクト化、合理化、処理能力の増大、低コ
スト化が図られ、本発明は化学工業などの分i!It精
製のプロセスの短縮化や省エネルギー化への膜分離方法
の実用化に有効であり、産業上の有用性が極めて大きい
ものである。
Table 1 <Effects of the Invention> By using the membrane of the present invention, it is possible to maintain a higher separation coefficient than separation methods using conventional membranes and to achieve f
The T-machine liquid mixture can be efficiently separated by pervaporation. In addition, without crosslinking reaction or forming a composite film, 9
It is possible to make a film using German materials. Therefore, the separation system can be made more compact, rationalized, processing capacity can be increased, and costs can be reduced. It is effective in shortening the It purification process and in practical application of membrane separation methods for energy saving, and has extremely great industrial utility.

Claims (1)

【特許請求の範囲】[Claims] ビス(3−アミノフェニル)スルホン20モル%〜80
モル%及びビス[4−(4−アミノフェノキシ)フェニ
ル]スルホン80モル%〜20モル%をジアミン成分と
し、イソフタル酸成分および/またはテレフタル酸を主
酸成分とする芳香族ポリアミド共重合体からなることを
特徴とする浸透気化用分離膜。
Bis(3-aminophenyl)sulfone 20 mol% ~ 80
Consisting of an aromatic polyamide copolymer containing 80 mol% to 20 mol% of bis[4-(4-aminophenoxy)phenyl]sulfone as a diamine component and an isophthalic acid component and/or terephthalic acid as the main acid component. A separation membrane for pervaporation characterized by the following.
JP63129447A 1988-05-28 1988-05-28 Osmotic vaporation film Granted JPH01299604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129447A JPH01299604A (en) 1988-05-28 1988-05-28 Osmotic vaporation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129447A JPH01299604A (en) 1988-05-28 1988-05-28 Osmotic vaporation film

Publications (2)

Publication Number Publication Date
JPH01299604A true JPH01299604A (en) 1989-12-04
JPH0556176B2 JPH0556176B2 (en) 1993-08-18

Family

ID=15009704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129447A Granted JPH01299604A (en) 1988-05-28 1988-05-28 Osmotic vaporation film

Country Status (1)

Country Link
JP (1) JPH01299604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562826A (en) * 1991-10-26 1996-10-08 Hoechst Aktiengesellschaft Semipermeable, porous, asymmetric polyether amide membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562826A (en) * 1991-10-26 1996-10-08 Hoechst Aktiengesellschaft Semipermeable, porous, asymmetric polyether amide membranes

Also Published As

Publication number Publication date
JPH0556176B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US5296144A (en) Composite membrane of a hydrophilic asymmetric membrane coated with an organosiloxane block copolymer
NL8002844A (en) PROCESS FOR PREPARING A SELECTIVE PERMEABLE MEMBRANE AND THE MEMBRANES SO OBTAINED.
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
JPS6127086B2 (en)
JPS584561B2 (en) Kanjiyouporiniyosono Fuseihan Umaku
US4410568A (en) Process for preparing selective permeable membrane
US4529793A (en) Selective permeable membranes comprising a polyquinazolone-based polymer
JPH01299604A (en) Osmotic vaporation film
JPH01299606A (en) Separation film for pervaporation
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPS63283705A (en) Selective semipermeable membrane of polyamideimide
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH0556177B2 (en)
JPS6151928B2 (en)
JPS62140603A (en) Liquid separation membrane
JPH0556179B2 (en)
JPH0516290B2 (en)
JP2782770B2 (en) Pervaporation separation method of organic matter aqueous solution
JPH0559777B2 (en)
JPH0235921A (en) Pervaporation process for organic substance water solution
JP3018093B2 (en) Polyimide water selective separation membrane
JPH0423569B2 (en)
JPS637804A (en) Separation membrane for organic substance aqueous solution
JP2782769B2 (en) Pervaporation separation method of organic matter aqueous solution
JPS6261602A (en) Liquid separation membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term