JPH0129888B2 - - Google Patents

Info

Publication number
JPH0129888B2
JPH0129888B2 JP3533382A JP3533382A JPH0129888B2 JP H0129888 B2 JPH0129888 B2 JP H0129888B2 JP 3533382 A JP3533382 A JP 3533382A JP 3533382 A JP3533382 A JP 3533382A JP H0129888 B2 JPH0129888 B2 JP H0129888B2
Authority
JP
Japan
Prior art keywords
weight
water
fibers
acrylic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3533382A
Other languages
Japanese (ja)
Other versions
JPS58156014A (en
Inventor
Toshihiro Yamamoto
Masahito Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3533382A priority Critical patent/JPS58156014A/en
Publication of JPS58156014A publication Critical patent/JPS58156014A/en
Publication of JPH0129888B2 publication Critical patent/JPH0129888B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水中分繊性及び耐熱性が良好な難燃性
を有するアクリル系合成繊維の製造方法に関する
ものである。 一般にアクリル合成繊維を使用して紙又は不織
布その他これに類似する製品を製造するとき、最
初に起る困難は、例えば水中に於ける短繊維が分
離しないことにあり叩解工程を経ても短繊維が分
繊しないため棒状のまま存在し抄紙製品の地合、
成紙強力とも満足すべきものが得られていない。 またアクリル系合成繊維とパルプとの混抄紙
や、アクリル系合成繊維から出来た不織布に加熱
溶融したアスフアルトを含浸塗覆するルーフイン
グ材用途に用いる場合はアクリル系合成繊維の耐
熱性が要求される。一般に乾熱160℃で10%以下
の直線収縮率であることが、これら耐熱性を要す
る分野に望まれるアクリル系合成繊維の耐熱性で
あると言われている。 通常アクリル系合成繊維を湿式紡糸にて得る場
合、紡糸、延伸、水洗、乾燥をするが、乾燥工程
の途中、即ち、恒率乾燥期から減率乾燥期へ移り
変わるころまでは、水膨潤ゲル状であり繊維−繊
維間の膠着、融着もおこつていない。即ちこの時
点までの繊維を使用すればミクロポイドは著しく
多いが水中分繊性は著しく良好である。しかるに
乾燥工程の減率乾燥期に入ると繊維は、いわゆる
水膨潤ゲル状から焼きつぶしにより緻密化されミ
クロボイドも殆ど消失されると共に繊維−繊維間
の膠着、融着がおこり最終製品まで分繊不良糸と
して残る。この繊維−繊維間の膠着、融着を防止
するため水洗工程後通常油剤を付与し乾燥工程を
通すが紡績にかかる繊維グレードまでの分繊性は
向上するが、抄紙用グレードの水中分繊性良好な
繊維を得るには到つていない。また、乾燥工程上
りの繊維は乾熱160℃で約20%以上収縮するため
収縮工程をもうけ耐熱性を向上させることが必要
であるが、この収縮工程において繊維は耐熱性は
向上するが、繊維−繊維間の膠着、融着度合は著
しく悪化し、抄紙用としてはますます不適化する
ため通常アクリル系合成繊維は耐熱性を要求され
る分野、たとえばアスフアルトル−フイング材な
どの用途に殆ど使用されていないのが実状であ
る。 こうしたアクリル系合成繊維の水中分繊性を向
上改良するため特公昭39−197号公報及び特公昭
51−28728号公報などでは紡糸、延伸、水洗した
水膨潤ゲル状のまま製品として使用することを提
案しているが、なるほど水中分繊性は十分である
が、いずれもカツト時切断点が融着しやすい点、
ミクロボイド中に含む空気が抜けきれず繊維が水
面上部に浮き上がつてしまうという水中分散性が
悪い点、成紙強力が低下するなどの欠点があるば
かりか、耐熱性が不足し、例えば160℃の乾燥で
20%以上も収縮するなど用途が限定される。 即ち水中分繊性が十分良好でしかも耐熱性の良
いアクリル系合成繊維は、未だ得られていないと
言つて良い。 本発明者らは従来の欠陥を排除すべく鋭意研究
の結果、本発明を完成させたものである。 本発明の目的は水中分繊性及び耐熱性が良好な
難燃性を有するアクリル系合成繊維と工業的容易
かつ安価に製造する方法を提供するにある。 本発明方法は、少なくとも40重量%のアクリロ
ニトリルと、20〜60重量%の塩化ビニリデン又は
アクリル系重合体混合物と、前記共重合体又は前
記混合物100重量%に対し0.5〜5重量部のアンチ
モン、アルミニウム、錫及び亜鉛からなる群より
選ばれた少なくとも1種の金属の化合物とを含有
する紡糸原液を湿式紡糸し、延伸、水洗後緊張乾
燥した後、繊維重量に対し水分を10〜200重量%
付与し、次いで100〜140℃の湿熱で緊張熱処理す
ることを特徴とする。 本発明に適用するアクリル系共重合体は少なく
とも40重量%のアクリロニトリルと20〜60重量%
の塩化ビニリデン又は塩化ビニルを含有するもの
で、この他に20重量%以下の共重合可能なモノマ
ーを共重合させたものも含まれる。これらの共重
合可能なモノマーとしては、例えばアクリル酸メ
チル、メタクリル酸メチル、アクリル酸エチル等
のアクリル酸エステル又はメタクリル酸のアルキ
ルエステル類、アクリルアミド及びメタクリルア
ミド等のアミド類及びそれらのN−モノ置換ある
いはN、Nジ置換アミド類、酢酸ビニル、或いは
スチレンスルホン酸、アリルスルホン酸、メタリ
ルスルホン酸、2アクリルアミド、2メチルプロ
パンスルホン酸及びそれらの塩などのスルホン酸
基を含有するモノマーなどが挙げられる。スルホ
ン酸基を含有するモノマーを0.3〜1.2重量%共重
合せしめると無数の微少なボイドの発生を抑止す
ることにより緻密な繊維が得られる。 アクリル系重合体混合物は2種以上のアクリル
系共重合体を混合したもので、この混合物にはい
ずれも共重合されたアクリロニトリル40重量%以
上と、20〜60重量%の塩化ビニリデン又は塩化ビ
ニルを含有するものである。通常は塩化ビニリデ
ン又は塩化ビニルの含有率の異なる2種のアクリ
ル系共重合体を混合せしめる。これらのアクリル
系共重合体混合物にはアクリル酸メチル、アリル
スルホン酸などの前記共重合可能なモノマーを共
重合したアクリル系共重合体も使用し得る。これ
らのアクリル系共重合体混合物は共重合されたア
ニオン性モノマーを0.5〜3重量%を含有せしめ
ればボイド発生を防止し、染色性を向上させるこ
とができる。 又、本発明のアクリル系重合体混合物には重合
体総量に対し2〜30重量%の酢酸セルローズを含
有せしめることができる。アクリル系重合体又は
重合体混合物に酢酸セルローズを例えばジメチル
ホルムアミド溶媒中で混合すればアクリル系重合
体を海とし酢酸セルローズが島となるいわゆる海
島に相分離し、該重合体溶液を紡糸すれば酢酸セ
ルローズが繊維軸方向に筋状に分散した多孔性の
アクリル系合成繊維が得られる。得られた繊維が
多孔性であるため見掛け比重は空孔率をVとすれ
ばアクリル系合成繊維の真比率÷(1+V)と軽
量化され、繊維使用量がその分減らすことが出来
るばかりか、巨大孔隙構造主体の多孔性繊維であ
るため水が毛細管現象で繊維内部へ即座に浸入し
親水性繊維同様水中分散性(水中分繊性を異り水
中で分散する性質)が特に良好である。 本発明に適用するアクリル系共重合体又はアク
リル系重合体混合物中の塩化ビニリデン又は塩化
ビニルの量が60重量%を越え、アクリロニトリル
の量が40重量%未満となると、強伸度などの糸質
が低下すると共に繊維の耐熱性、白度が低下す
る。一方、塩化ビニリデン又は塩化ビニルの量が
20重量%未満では難燃性が低下するので避けなけ
ればならない。 本発明に適用するアンチモン、アルミニウム、
錫及び亜鉛からなる群より選ばれた少なくとも1
種の金属化合物は三酸化アンチモン、五酸化アン
チモン、アルミナ、酸化錫、酸化亜鉛などの金属
酸化物、及びホウ酸亜鉛、メタ錫酸などが挙げら
れるが三酸化アンチモン、五酸化アンチモン、ホ
ウ酸亜鉛及びメタ錫酸が好ましい。これらの金属
化合物はアクリル系共重合体又はアクリル系重合
体混合物100重量部に対し0.5〜5重量部、好まし
くは1〜3重量部である。これらの金属化合物の
配合量が0.5重量部未満では難燃性が不充分であ
り、一方、5重量部を越えると糸質の低下ばかり
でなく、過性及び紡糸延伸性等の作業性も低下
する。前記金属化合物は予め紡糸原液中に分散め
しめることもできるが、又紡糸直前に急速混練す
ることもできる。 本発明の紡糸原液及び紡糸浴(凝固浴)の溶剤
としてはジメチルスルホキシド、ジメチルホルム
アミド、ジメチルアセトアミドなどの有機溶剤の
ほか、濃硝酸、塩化亜鉛水溶液、ロダンソーダ水
溶液などの無機系溶剤があるが、特に限定されな
い。また、紡糸原液中には、紡糸原液がゲル化し
ない範囲の水分を添加しても良い。紡糸は凝固浴
として前記有機溶剤の水溶液又はイソプロピルア
ルコール、メチルアルコール、ケロシン等の有機
溶剤が使用し得るし、又は前記無機系溶剤も使用
し得るが、特に重合体の溶剤に使用する溶剤の水
溶液が溶剤回収の点から経済的であり好ましい。
また溶剤回収が経済的でしかも取扱い性の面から
は、ジメチルホルムアミド、ジメチルスルホキシ
ド、ジメチルアセトアミドなどの有機溶剤が好ま
しい。しかし無機系溶剤に比し紡糸工程での繊維
の緻密化が行われにくくその為乾燥工程でのボイ
ドの焼きつぶしを完成するためより強烈な条件で
乾燥するので繊維−繊維間の膠着融着がおこりや
すい。しかし有機溶剤を使用した場合でも紡糸一
浴の温度を15℃以下として紡出することより強烈
な条件下で乾燥をしても、繊維−繊維間の膠着、
融着がかなり緩和され乾燥工程後、水を付与する
ことにより完全に繊維−繊維間が離れ水中分繊維
性の良好な繊維が得られ好ましい。 有機溶剤水溶液を紡糸浴として利用した場合、
紡糸一浴の温度が15℃を超えると水中分繊性が
段々不良となり好ましくない。 紡糸は通常のアクリル系合成繊維と同様な条件
で行なえばよい。即ち数段の浴槽を通し順次延伸
次いで水洗を行う。しかる後に次の乾燥工程での
膠着防止、静電気トラブル防止などの目的で通常
油剤を付与するが繊維内部へ大部分はもぐり込む
為乾燥工程でのトラブルのない必要最少限を付与
すればよい。 次の乾燥工程では、通常のアクリル繊維と同様
緊張乾燥を行ない繊維に対して水分率が2重量%
以下にすることが好ましい。 乾燥工程では、恒率乾燥期から減率乾燥期の移
り変わるころまでは水膨潤ゲル状であるが、減率
乾燥期に入ると繊維はいわゆる水膨潤ゲル状から
焼きつぶしによりミクロボイドが消去され緻密化
される。しかし水分率2重量%を超えた状態で
は、繊維中にミクロボイドが残存し好ましくな
い。 乾燥工程を出た繊維に対し10〜200重量%の水
を付与することが本発明の必須条件である。水を
繊維に与える方法はシヤワー方式で繊維にふりか
けても良いし、浴槽に浸漬給水しても良い。ま
た、水中に油剤を含んでいても、また、水の温度
は何度であろうと何ら差しつかえない。即ち乾燥
後の繊維に10〜200重量%の水を付与すれば乾燥
工程で出来た繊維−繊維間の膠着、融着が殆んど
消失し、水中分繊性の良好な繊維が得えらること
は驚くべきである。また、乾燥後の繊維に水を付
与しないと、乾燥工程で出来た繊維−繊維間の膠
着、融着が更に次の湿熱処理工程にて強固にな
り、水中分繊性の極度に悪い繊維しか得られない
が、乾燥後の繊維に水を付与すると次の湿熱処理
工程に於いても繊維−繊維間の膠着、融着が起ら
ず水中分繊性の十分良好な繊維が得られる。それ
故繊維に水を付与する工程は乾燥後が一番ベスト
である。 乾燥後の繊維に付与する水の量は10〜200重量
%が良く、10重量%より下であるとその分繊効果
は十分でなく200重量%を超えるとその分繊効果
が飽和に達するばかりか後の工程が水浸しになり
不適当である。好ましい水の量は50〜150重量%
である。 次に乾燥後の水を付与した繊維は100〜140℃の
湿熱で緊急熱処理することも本発明の必須条件で
ある。紡糸での延伸率にもより若干異なるが、乾
燥工程後のアクリル系合成繊維は例えば160℃で
の乾熱で20〜30%の収縮を有するのが通常である
が、100〜140℃の湿熱で十分収縮させるかまたは
延伸後十分収縮させると潜在収縮力を消去した耐
熱性の良い繊維が得られる。 湿熱が100℃未満では十分収縮をせず、また、
140℃を超えると、収縮効果が飽和に達するばか
りか経済的でない。また熱処理が緊張熱処理であ
ることが必要である。熱処理の時、繊維が弛緩状
態であつたり重なつた状態であると、繊維表面上
に細かい皺が出来る。この皺は抄紙時繊維−繊維
間の分散いわゆる水中分散性を悪くし好ましくな
い。好ましい緊張熱処理はローラー間で10〜30%
収縮させることである。 かくして得られた、アクリル系合成繊維は乾熱
160℃で10%以下しか収縮せず、しかも水中分繊
性良好な抄紙用に適した性質を有している。 以下実施例を示して本発明を詳細に説明する。
なお、実施例中に用いる部、及び%は重量部、重
量%を表わす。また、水中分繊性は、5m/mカ
ツトした0.2gのアクリル系合成繊維を500c.c.の水
の入つたビーカーに入れ、ガラス棒で十分撹拌し
て肉眼観察する。即ち繊維−繊維間の膠着、融着
した棒状のものが全くない状態を5級とし棒状の
ものが10本増えるにしたがつて1級低下する評価
法とする。したがつて1級は40本以上存在する状
態をいう。 また、水中分散性は2m/mにカツトした0.2
gのアクリル系合成繊維を500c.c.の水の入つたビ
ーカーに入れてガラス棒で十分撹拌して5分間放
置をする。放置後ビーカー全面に均一に分散して
いるのを5級、上部又は下部に凝集しているのを
1級としその間を5級階評価とした。 難燃性テストはJIS L−1092 A−1法にて行
ない、また耐熱性テストは乾熱160℃、30分での
収縮率を測定し、10%以下であれば合格(〇)10
%より大であると不合格(×)とした。 実施例 1 アクリロニトリル(以下ANを略称する):塩
化ビニリデン:アリルスルホン酸ソーダ=57:
41:2(%)の組成をもつアクリル系共重合体の
ジメチルホルムアミド(以下DMFと略称する)
溶液にアクリル系共重合体に対し三酸化アンチモ
ンを2.5%ブレンドし、アクリル系共重合体濃度
24.5%の紡糸原液を得た。該原液をDMF:水=
55:45(%)15℃の凝固溶中に0.06mmφの口金を
用い紡出し、紡糸後1次延伸を5倍行ない、水洗
後油剤を付着させ130℃の熱ローラー型乾燥機に
て第1表のように乾燥(1次)し、水を第1表方
式にて水分率を変えて付与させ、105℃の湿熱で
1.5倍延伸し、130℃での湿熱で0.8倍収縮させ1.5d
のノークリンプトウ状態の繊維を得た。これを乾
燥しギロチンカツターにて5m/mに切断し水中
分繊性、2m/mに切断して水中分散性を測定し
た。
The present invention relates to a method for producing a flame-retardant acrylic synthetic fiber with good underwater splitting properties and heat resistance. Generally, when using acrylic synthetic fibers to produce paper, nonwoven fabrics, and similar products, the first difficulty that arises is that the short fibers do not separate in water, for example, even after the beating process. Because the fibers are not divided, they remain in a rod-like form, resulting in the formation of paper products.
Even with the strength of the paper, I have not been able to obtain anything satisfactory. In addition, heat resistance of acrylic synthetic fibers is required when used for mixed papers of acrylic synthetic fibers and pulp, or for roofing materials in which nonwoven fabrics made from acrylic synthetic fibers are impregnated and coated with heated and melted asphalt. . Generally, it is said that a linear shrinkage rate of 10% or less under dry heat at 160°C is the heat resistance desired for acrylic synthetic fibers in these fields that require heat resistance. Normally, when acrylic synthetic fibers are obtained by wet spinning, they are spun, stretched, washed, and dried. Therefore, neither fiber-to-fiber adhesion nor fusion occurred. That is, if the fibers up to this point are used, the number of micropoid particles will be extremely large, but the fiber splitting properties in water will be extremely good. However, when entering the decreasing rate drying period of the drying process, the fibers change from a so-called water-swollen gel state to densification by burning, and most of the microvoids disappear, as well as adhesion and fusion between fibers, resulting in poor fiber separation until the final product. It remains as a thread. In order to prevent this fiber-to-fiber adhesion and fusion, an oil agent is usually applied after the water washing process and the drying process is performed, but the splitting properties up to the fiber grade required for spinning are improved, but the underwater splitting properties of papermaking grade are improved. It has not yet been possible to obtain good fibers. In addition, the fibers after the drying process shrink by about 20% or more at dry heat of 160℃, so it is necessary to add a shrinking process to improve the heat resistance. -The degree of adhesion and fusion between fibers deteriorates significantly, making them increasingly unsuitable for papermaking.Acrylic synthetic fibers are usually used in fields that require heat resistance, such as asphalt torfing materials. The reality is that it has not been done. In order to improve the underwater splitting properties of such acrylic synthetic fibers, Japanese Patent Publication No. 39-197 and Japanese Patent Publication No.
Publication No. 51-28728 and other publications propose using the water-swollen gel-like product after spinning, stretching, and washing with water, but although the fiber splitting properties in water are sufficient, in both cases the cutting point at the time of cutting is fused. Easy to wear,
Not only do they have disadvantages such as poor dispersibility in water, in which the air contained in the microvoids cannot escape completely and the fibers float to the top of the water surface, and paper forming strength is reduced, but they also lack heat resistance, e.g. With the drying of
Its uses are limited as it shrinks by more than 20%. That is, it can be said that an acrylic synthetic fiber with sufficiently good splitting properties in water and good heat resistance has not yet been obtained. The present inventors completed the present invention as a result of intensive research to eliminate the defects of the conventional technology. An object of the present invention is to provide a flame-retardant acrylic synthetic fiber with good splitting ability in water and heat resistance, and a method for producing it industrially easily and inexpensively. The method of the present invention comprises at least 40% by weight of acrylonitrile, 20-60% by weight of vinylidene chloride or an acrylic polymer mixture, and 0.5-5 parts by weight of antimony and aluminum based on 100% by weight of said copolymer or said mixture. A spinning dope containing at least one metal compound selected from the group consisting of tin and zinc is wet-spun, stretched, washed with water and strain-dried, and then the water content is 10 to 200% by weight based on the weight of the fiber.
It is characterized in that it is applied and then subjected to tension heat treatment with moist heat at 100 to 140°C. The acrylic copolymer applicable to the present invention contains at least 40% by weight of acrylonitrile and 20 to 60% by weight of acrylonitrile.
It contains vinylidene chloride or vinyl chloride, and also includes those copolymerized with 20% by weight or less of copolymerizable monomers. Examples of these copolymerizable monomers include acrylic esters such as methyl acrylate, methyl methacrylate, and ethyl acrylate, or alkyl esters of methacrylic acid, amides such as acrylamide and methacrylamide, and N-monosubstituted thereof. Examples include N, N-disubstituted amides, vinyl acetate, or monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamide, 2-methylpropanesulfonic acid, and salts thereof. It will be done. When 0.3 to 1.2% by weight of a monomer containing a sulfonic acid group is copolymerized, dense fibers can be obtained by suppressing the generation of countless minute voids. Acrylic polymer mixture is a mixture of two or more types of acrylic copolymers, and this mixture contains at least 40% by weight of copolymerized acrylonitrile and 20 to 60% by weight of vinylidene chloride or vinyl chloride. It contains. Usually, vinylidene chloride or two types of acrylic copolymers having different vinyl chloride contents are mixed. For these acrylic copolymer mixtures, acrylic copolymers obtained by copolymerizing the above copolymerizable monomers such as methyl acrylate and allylsulfonic acid may also be used. When these acrylic copolymer mixtures contain 0.5 to 3% by weight of copolymerized anionic monomers, void generation can be prevented and dyeability can be improved. Further, the acrylic polymer mixture of the present invention can contain cellulose acetate in an amount of 2 to 30% by weight based on the total amount of the polymer. When cellulose acetate is mixed with an acrylic polymer or a polymer mixture in a dimethylformamide solvent, for example, the acrylic polymer becomes a sea and the cellulose acetate becomes an island. A porous acrylic synthetic fiber in which cellulose is dispersed in a striped manner in the fiber axis direction is obtained. Since the resulting fibers are porous, their apparent specific gravity is reduced to the true ratio of acrylic synthetic fibers divided by (1+V), where the porosity is V, and the amount of fiber used can be reduced by that amount. Because it is a porous fiber with a large pore structure, water immediately penetrates into the fiber by capillary action, and like hydrophilic fibers, it has particularly good dispersibility in water (the property of dispersing in water with a difference in fibrillation in water). If the amount of vinylidene chloride or vinyl chloride in the acrylic copolymer or acrylic polymer mixture applied to the present invention exceeds 60% by weight and the amount of acrylonitrile is less than 40% by weight, yarn quality such as strength and elongation may deteriorate. Along with this decrease, the heat resistance and whiteness of the fiber also decrease. On the other hand, the amount of vinylidene chloride or vinyl chloride
If it is less than 20% by weight, the flame retardancy will be reduced and should be avoided. Antimony, aluminum applied to the present invention,
At least one selected from the group consisting of tin and zinc
Species of metal compounds include metal oxides such as antimony trioxide, antimony pentoxide, alumina, tin oxide, zinc oxide, and zinc borate, metastannic acid, etc. Antimony trioxide, antimony pentoxide, zinc borate and metastannic acid are preferred. These metal compounds are used in an amount of 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, per 100 parts by weight of the acrylic copolymer or acrylic polymer mixture. If the amount of these metal compounds is less than 0.5 parts by weight, the flame retardancy will be insufficient, while if it exceeds 5 parts by weight, not only will the quality of the yarn deteriorate, but also the workability such as hyper-strengthening and spinning drawability will decrease. do. The metal compound can be dispersed in the spinning dope in advance, or can be rapidly kneaded immediately before spinning. Solvents for the spinning dope and spinning bath (coagulation bath) of the present invention include organic solvents such as dimethyl sulfoxide, dimethyl formamide, and dimethyl acetamide, as well as inorganic solvents such as concentrated nitric acid, zinc chloride aqueous solution, and rhodan soda aqueous solution. Not limited. Further, water may be added to the spinning dope in an amount that does not cause the spinning dope to gel. For spinning, an aqueous solution of the above-mentioned organic solvent or an organic solvent such as isopropyl alcohol, methyl alcohol, kerosene, etc. can be used as a coagulation bath, or the above-mentioned inorganic solvent can also be used, but in particular, an aqueous solution of the solvent used as the solvent for the polymer is preferable because it is economical from the point of view of solvent recovery.
Further, organic solvents such as dimethylformamide, dimethylsulfoxide, and dimethylacetamide are preferred from the viewpoint of economical solvent recovery and ease of handling. However, compared to inorganic solvents, it is difficult to densify the fibers during the spinning process. Therefore, in order to complete the burning out of voids during the drying process, drying is performed under more intense conditions, which prevents adhesion and fusion between fibers. It's easy to get angry. However, even when an organic solvent is used, even if the temperature of the spinning bath is set to 15°C or lower and drying is performed under more intense conditions, fiber-to-fiber agglutination,
The fusion is considerably relaxed, and by adding water after the drying step, the fibers are completely separated from each other and fibers with good water content are obtained, which is preferable. When an organic solvent aqueous solution is used as a spinning bath,
If the temperature of the spinning bath exceeds 15°C, the fiber splitting property in water becomes progressively poorer, which is not preferable. Spinning may be carried out under the same conditions as for ordinary acrylic synthetic fibers. That is, the film is sequentially stretched through several stages of bathtubs and then washed with water. After that, an oil agent is usually applied for the purpose of preventing sticking and static electricity problems in the next drying process, but since most of it penetrates into the fibers, it is only necessary to apply the minimum necessary amount to avoid problems in the drying process. In the next drying process, tension drying is performed in the same way as normal acrylic fibers to reduce the moisture content to 2% by weight.
It is preferable to do the following. In the drying process, the fibers are in a water-swollen gel-like state until the transition from the constant-rate drying period to the decreasing-rate drying period, but once the waning-rate drying period begins, the fibers change from the so-called water-swelling gel-like state to densification as microvoids are removed by burning. be done. However, if the moisture content exceeds 2% by weight, microvoids remain in the fibers, which is not preferable. It is an essential condition of the present invention that 10 to 200% by weight of water be added to the fibers after the drying process. Water can be applied to the fibers by sprinkling it on the fibers using a shower method, or by immersing the fibers in a bathtub. Further, even if the water contains oil, there is no problem whatever the temperature of the water. In other words, if 10 to 200% by weight of water is added to the dried fibers, most of the adhesion and fusion between the fibers produced in the drying process will disappear, and fibers with good splitting properties in water can be obtained. That is surprising. In addition, if water is not added to the fibers after drying, the adhesion and fusion between the fibers formed in the drying process will become even stronger in the next moist heat treatment process, resulting in only fibers with extremely poor splitting properties in water. However, if water is added to the fibers after drying, fibers with sufficiently good splitting properties in water can be obtained without causing fiber-to-fiber adhesion or fusion even in the subsequent moist heat treatment step. Therefore, it is best to apply water to the fibers after drying. The amount of water applied to the fiber after drying is preferably 10 to 200% by weight; if it is less than 10% by weight, the splitting effect will not be sufficient, and if it exceeds 200% by weight, the splitting effect will reach saturation. This is inappropriate as the subsequent steps will be flooded with water. The preferred amount of water is 50-150% by weight
It is. Next, it is an essential condition of the present invention that the fibers to which water has been applied after drying are subjected to emergency heat treatment with moist heat at 100 to 140°C. Although it varies slightly depending on the stretching rate during spinning, acrylic synthetic fibers after the drying process typically shrink by 20 to 30% when dry heated at 160°C, but when heated with wet heat at 100° to 140°C. If the fiber is sufficiently shrunk or after being stretched, a fiber with good heat resistance that eliminates latent shrinkage force can be obtained. If the moist heat is less than 100℃, it will not shrink sufficiently, and
When the temperature exceeds 140°C, not only the shrinkage effect reaches saturation but also it is not economical. Further, it is necessary that the heat treatment is a tension heat treatment. During heat treatment, if the fibers are in a relaxed or overlapping state, fine wrinkles will form on the fiber surface. These wrinkles are undesirable because they impair fiber-to-fiber dispersion, so-called water dispersibility, during paper making. The preferred tension heat treatment is 10-30% between rollers
It is to contract. The acrylic synthetic fiber thus obtained is dried by dry heat.
It shrinks by less than 10% at 160°C, and has properties suitable for paper making with good fiber splitting properties in water. The present invention will be explained in detail below with reference to Examples.
Note that parts and percentages used in the examples represent parts by weight and percentages by weight. In addition, the ability to split fibers in water is determined by placing 0.2 g of acrylic synthetic fiber cut at 5 m/m into a beaker containing 500 c.c. of water, thoroughly stirring with a glass rod, and observing with the naked eye. That is, the evaluation method is such that a state in which there are no fiber-to-fiber adhesion or fused rod-like objects is grade 5, and as the number of rod-like objects increases by 10, the grade decreases by one grade. Therefore, 1st grade refers to the state in which there are 40 or more. In addition, the water dispersibility was 0.2 m/m.
Put g of acrylic synthetic fiber into a beaker containing 500 c.c. of water, stir thoroughly with a glass rod, and leave for 5 minutes. After standing, uniform dispersion over the entire surface of the beaker was graded 5, and agglomeration at the top or bottom was grade 1, and the grades in between were graded 5. The flame retardancy test was conducted using the JIS L-1092 A-1 method, and the heat resistance test was conducted by measuring the shrinkage rate in 30 minutes at 160℃ dry heat, and if it was 10% or less, it passed (〇) 10
If it was larger than %, it was judged as a failure (×). Example 1 Acrylonitrile (hereinafter abbreviated as AN): Vinylidene chloride: Sodium allylsulfonate = 57:
Dimethylformamide (hereinafter abbreviated as DMF), an acrylic copolymer with a composition of 41:2 (%)
Blend 2.5% antimony trioxide to the acrylic copolymer in the solution to adjust the acrylic copolymer concentration.
A 24.5% spinning stock solution was obtained. The stock solution was mixed with DMF: water =
55:45 (%) Spun using a 0.06 mm diameter spinneret during coagulation and melting at 15°C, first stretched 5 times after spinning, washed with water, coated with oil, and heated in a hot roller dryer at 130°C for the first time. Dry (primary) as shown in the table, apply water at different moisture percentages according to the method shown in Table 1, and heat with moist heat at 105℃.
Stretched 1.5 times and shrunk 0.8 times with moist heat at 130℃ for 1.5d.
A fiber in a no-crimp tow state was obtained. This was dried and cut into pieces of 5 m/m using a guillotine cutter to measure fiber splitting properties in water, and cut into pieces of 2 m/m to measure dispersibility in water.

【表】 くなかつた。
実施例 2 AN:塩化ビニル:アリルスホン酸ソーダ=
60:30:10(%)のアクリル系共重合体を2部、
AN:塩化ビニル:アリルスルホン酸ソーダ=
42:57:1(%)のアクリル系共重合体を22部及
び第2表のような金属の化合物をDMF80部に溶
解混合し紡糸原液を得た。 該紡糸原液をDMF:水=60:40(%)10℃の凝
固溶中に0.06m/mφの口金を用い紡出し、紡糸
後1次延伸を6倍行ない水洗後油剤を付着させ、
130℃の熱ローラー型乾燥機にて水分率0.5%にな
るまで乾燥後、浸漬方式にて30℃で水100%付与
させ、次いで130℃での湿熱で0.85倍収縮させ2d
のノークリンプトウ状態の繊維を得た。これを乾
燥させ、ギロチンカツターにて0.7m/mに切断
し、フロツク加工して350g/m2目付のカーテン
を得た。これをJIS L−1091 A−1法(45゜ミク
ロバーナー法)で燃焼テストを行なつた。
[Table] Kunakatsuta.
Example 2 AN: Vinyl chloride: Sodium allylsulfonate =
2 parts of 60:30:10 (%) acrylic copolymer,
AN: Vinyl chloride: Sodium allylsulfonate =
22 parts of a 42:57:1 (%) acrylic copolymer and the metal compounds shown in Table 2 were dissolved and mixed in 80 parts of DMF to obtain a spinning stock solution. The spinning stock solution was spun using a 0.06 m/mφ spinneret in a coagulation solution of DMF: water = 60:40 (%) at 10°C, and after spinning, the first stretching was performed 6 times, and after washing with water, an oil agent was attached.
After drying in a heated roller dryer at 130℃ to a moisture content of 0.5%, 100% water was applied at 30℃ using an immersion method, and then the product was shrunk by 0.85 times with moist heat at 130℃ for 2 d.
A fiber in a no-crimp tow state was obtained. This was dried, cut into pieces of 0.7 m/m using a guillotine cutter, and subjected to flock processing to obtain a curtain with a weight of 350 g/m. This was subjected to a combustion test using the JIS L-1091 A-1 method (45° micro burner method).

【表】 実施例 3 AN:塩化ビニリデン:メタリルスルホン酸ソ
ーダ=55:43:2(%)の組成をもつアクリル系
共重合体のジメチルスルホキシド溶液にアクリル
系共重合体に対し三酸化アンチモンを2%ブレン
ドし、アクリル系共重合体濃度23.5%の紡糸原液
を得た。該原液をジメチルスルホキシド:水=
55:45(%)25℃の凝固溶中に0.065m/mφの口
金を用い紡出し、紡糸後1次延伸を6倍行ない、
水洗後油剤を付着させ130℃の熱ローラー型乾燥
機にて0.5%の水分率になるまで乾燥させ30℃の
水を80%付与し、次いで第3表の如く温度を変え
て緊張熱処理をし、2dのノークリンプトウ状態
の繊維を得た。これを乾燥し、ギロチンカツター
にて5m/mに切断し水中分繊性を測定し、また
乾熱160℃での収縮率を測定した。
[Table] Example 3 AN: Antimony trioxide was added to the acrylic copolymer in a dimethyl sulfoxide solution of an acrylic copolymer with a composition of vinylidene chloride: sodium methallyl sulfonate = 55:43:2 (%). A spinning stock solution having an acrylic copolymer concentration of 23.5% was obtained by blending 2%. The stock solution was dimethyl sulfoxide:water=
55:45 (%) Spun using a 0.065 m/mφ spinneret during coagulation and melting at 25°C, and after spinning, primary stretching was performed 6 times,
After washing with water, apply the oil and dry in a heated roller dryer at 130°C until the moisture content reaches 0.5%. Apply 80% water at 30°C, then apply tension heat treatment at different temperatures as shown in Table 3. , a 2d non-crimped tow fiber was obtained. This was dried and cut into 5 m/m pieces using a guillotine cutter to measure fiber splitting ability in water, and the shrinkage rate at 160° C. in dry heat.

【表】【table】

Claims (1)

【特許請求の範囲】 1 少なくとも40重量%のアクリロニトリルと20
〜60重量%の塩化ビニリデン又は塩化ビニルを含
有するアクリル系共重合体又はアクリル系重合体
混合物と、前記共重合体又は前記混合物100重量
部に対し0.5〜5重量部のアンチモン、アルミニ
ウム、錫及び亜鉛からなる群より選ばれた少なく
とも1種の金属の化合物とを含有する紡糸原液を
湿式紡糸し、延伸、水洗後緊張乾燥した後、繊維
重量に対し水分を10〜200重量%付与し、次いで
100〜140℃の湿熱で緊張熱処理することを特徴と
する水中分繊性及び耐熱性が良好な難燃性を有す
るアクリル系合成繊維の製造方法。 2 アクリル系共重合体が0.5〜3重量%のアニ
オン性モノマーを含有する特許請求の範囲第1項
記載の方法。 3 アクリル系重合体混合物が塩化ビニリデン又
は塩化ビニルの含有率の異なる2種のアクリル系
共重合体の混合物である特許請求の範囲第1項記
載の方法。 4 アクリル系共重合体混合物が0.5〜3重量%
の重合したアニオン性モノマーを含有する特許請
求の範囲第1項記載の方法。 5 アクリル系重合体混合物が重合体総量に対し
2〜30重量%の酢酸セルローズを含有する特許請
求の範囲第1項記載の方法。 6 前記金属の化合物を1〜3重量部配合する特
許請求の範囲第1項記載の方法。 7 湿式紡糸の溶媒がジメチルホルムアミド、ジ
メチルスルホキシド、ジメチルアセトアミド等の
有機溶媒であり、かつ紡糸一浴の該有機溶媒水溶
液の温度が15℃以下である特許請求の範囲第1項
記載の方法。 8 緊張乾燥をした繊維の水分率が2重量%以下
である特許請求の範囲第1項記載の方法。 9 緊張乾燥後水を付与した繊維の水分率が50〜
150重量%である特許請求の範囲第1項記載の方
法。 10 緊張熱処理が10〜30%の収縮を与えるもの
である特許請求の範囲第1項記載の方法。
[Claims] 1. At least 40% by weight of acrylonitrile and 20% by weight of acrylonitrile.
An acrylic copolymer or acrylic polymer mixture containing ~60% by weight of vinylidene chloride or vinyl chloride, and 0.5 to 5 parts by weight of antimony, aluminum, tin and A spinning dope containing at least one metal compound selected from the group consisting of zinc is wet-spun, stretched, washed with water, strain-dried, and then added with 10 to 200% water by weight based on the weight of the fiber.
A method for producing a flame-retardant acrylic synthetic fiber with good splitting properties in water and good heat resistance, the method comprising carrying out tension heat treatment with moist heat at 100 to 140°C. 2. The method according to claim 1, wherein the acrylic copolymer contains 0.5 to 3% by weight of anionic monomer. 3. The method according to claim 1, wherein the acrylic polymer mixture is a mixture of two types of acrylic copolymers having different contents of vinylidene chloride or vinyl chloride. 4 0.5 to 3% by weight of acrylic copolymer mixture
2. The method of claim 1, comprising a polymerized anionic monomer. 5. The method according to claim 1, wherein the acrylic polymer mixture contains 2 to 30% by weight of cellulose acetate based on the total amount of the polymer. 6. The method according to claim 1, wherein the metal compound is blended in an amount of 1 to 3 parts by weight. 7. The method according to claim 1, wherein the solvent for wet spinning is an organic solvent such as dimethylformamide, dimethylsulfoxide, dimethylacetamide, etc., and the temperature of the aqueous solution of the organic solvent in the spinning bath is 15° C. or lower. 8. The method according to claim 1, wherein the moisture content of the strain-dried fibers is 2% by weight or less. 9 The moisture content of the fibers to which water has been applied after tension drying is 50~
150% by weight. 10. The method according to claim 1, wherein the tension heat treatment provides a shrinkage of 10 to 30%.
JP3533382A 1982-03-05 1982-03-05 Production of acrylic synthetic fiber Granted JPS58156014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3533382A JPS58156014A (en) 1982-03-05 1982-03-05 Production of acrylic synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3533382A JPS58156014A (en) 1982-03-05 1982-03-05 Production of acrylic synthetic fiber

Publications (2)

Publication Number Publication Date
JPS58156014A JPS58156014A (en) 1983-09-16
JPH0129888B2 true JPH0129888B2 (en) 1989-06-14

Family

ID=12438902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3533382A Granted JPS58156014A (en) 1982-03-05 1982-03-05 Production of acrylic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS58156014A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110940A (en) * 1983-11-16 1985-06-17 鐘淵化学工業株式会社 Composite fire retardant fiber
JPS62162012A (en) * 1986-01-07 1987-07-17 Kanebo Ltd Production of modacryl fiber of high flame retardancy
JP2004300602A (en) * 2003-03-31 2004-10-28 Kanebo Ltd Non-crimped shortcut acrylic synthetic fiber
CN102066625B (en) 2008-07-24 2013-03-13 株式会社钟化 Flame-retardant synthetic fiber, flame-retardant fiber assembly, processes for production of both, and textile goods

Also Published As

Publication number Publication date
JPS58156014A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US4336214A (en) Process for hygroscopic, fibres and filaments of synthetic polymers
US4810449A (en) Process for the production of hydrophilic polyacrylonitrile filaments or fibers
US4383086A (en) Filaments and fibers of acrylonitrile copolymer mixtures
US4316937A (en) Water absorbent acrylic fiber
JPH0129888B2 (en)
US4442173A (en) Novel water-absorbing acrylic fibers
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
US4356134A (en) Process for the production of hydrophilic fibres and filaments of synthetic polymers
JP3728862B2 (en) Water-absorbing acrylic fiber
US4999245A (en) Multi-layered conjugated acrylic fibers and the method for their production
US4185059A (en) Process for the preparation of hydrophilic fibres and filaments from synthetic polymers
IE44270B1 (en) Gloss-stable modacrylic fibres and a process for their production
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPS6324084B2 (en)
JPH05148709A (en) Acrylic modified cross section fiber and its production
DE3021889A1 (en) POROESE, FIRE-COMBUSTIBLE SYNTHETIC ACRYLIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF
JP2601775B2 (en) Flame retardant acrylic composite fiber
IE44494B1 (en) Hydrohilic fibres and filaments of synthetic polymers
JP2017179627A (en) High full-dull fine-denier acrylic fiber
JPH0299609A (en) Production method for novel acrylic synthetic fiber
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JPS6234847B2 (en)
JPH02277810A (en) Flame-retardant high-shrinkage modacrylic fiber
JPH01104828A (en) Acrylic modified cross-section fiber
SU235239A1 (en) METHOD OF OBTAINING MODIFIED FIBER MATERIALS