JPH01297128A - Exhaust gas treatment - Google Patents

Exhaust gas treatment

Info

Publication number
JPH01297128A
JPH01297128A JP63126260A JP12626088A JPH01297128A JP H01297128 A JPH01297128 A JP H01297128A JP 63126260 A JP63126260 A JP 63126260A JP 12626088 A JP12626088 A JP 12626088A JP H01297128 A JPH01297128 A JP H01297128A
Authority
JP
Japan
Prior art keywords
exhaust gas
tower
ozone
hydrogen fluoride
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63126260A
Other languages
Japanese (ja)
Other versions
JP2668795B2 (en
Inventor
Seiichi Wada
誠一 和田
Masakazu Ishihara
正和 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAJIE KOGYO KK
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
RAJIE KOGYO KK
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAJIE KOGYO KK, Mitsubishi Kakoki Kaisha Ltd filed Critical RAJIE KOGYO KK
Priority to JP63126260A priority Critical patent/JP2668795B2/en
Publication of JPH01297128A publication Critical patent/JPH01297128A/en
Application granted granted Critical
Publication of JP2668795B2 publication Critical patent/JP2668795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To treat ozone, nitrogen oxide, hydrogen fluoride, etc., which generate due to processing by irradiation by treating exhaust gas generated at a radiation projecting equipment in a two-stage treatment system, of which the first stage washes the exhaust gas in a wet state and the second stage adsorbs and decomposes it in a dry state. CONSTITUTION:Gas discharged from radiation projecting equipment using electron ray is treated by a washing tower 20 which washes the gas with an alkali solution such as an aqueous sodium hydroxide in a wet state. At the tower 20, mainly hydrogen fluoride and nitrogen pentoxide are removed. The exhaust gas discharged from the washing tower 20 is introduced in an activated charcoal adsorption tower 40, where mainly the ozone is removed by dry adsorption decomposition. Then the treated exhaust gas is released to the atmosphere from a smoke stack 60 through a damper 51, an exhaust fan for the exhaust gas and a damper 52. At that time, the temperature of the exhaust gas whose humidity is increased by the washing tower 20, is increased by an exhaust gas heater 30 provided in an intermediate flow path. Thus the condensation of moisture in the activated charcoal of the activated charcoal adsorption tower 40 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば医療用具、医薬品、食品などの滅菌、
殺菌、発芽防止などに用いられている放射線照射設備か
ら排出される排ガスを処理する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to the sterilization of medical tools, pharmaceuticals, foods, etc.
This invention relates to a method for treating exhaust gas emitted from radiation irradiation equipment used for sterilization, germination prevention, etc.

〔従来の技術〕[Conventional technology]

従来、放射線照射設備は、例えば医療用具、医薬品、食
品などの滅菌、殺菌、発芽防止などに用いられており、
−船釣に”Coを線源としたγ線照射設備である。
Traditionally, radiation irradiation equipment has been used, for example, to sterilize, sterilize, and prevent germination of medical tools, pharmaceuticals, and foods.
- Gamma ray irradiation equipment using Co as a radiation source for boat fishing.

しかし、近年、”Co線源の供給不安定を反映して電子
線照射が検討されている。
However, in recent years, reflecting the unstable supply of Co ray sources, electron beam irradiation has been considered.

これらの照射処理は、通常、空気中で行われるが、空気
中で行うと空気中の酸素、あるいは窒素の一部が反応し
てオゾンやN0x(窒素酸化物)が発生ずる。また、弗
素樹脂などのフッ素原子を含有する製品を照射すると、
フッ素原子が遊離し、主にフン化水素(HF)が発生す
る。
These irradiation treatments are usually performed in the air, but when performed in the air, some of the oxygen or nitrogen in the air reacts to generate ozone and NOx (nitrogen oxides). In addition, when irradiating products containing fluorine atoms such as fluororesin,
Fluorine atoms are liberated and mainly hydrogen fluoride (HF) is generated.

また、塩化ビニル樹脂などの塩素原子を含有する製品で
は塩素原子が遊離し、塩化水素(HCρ)が生成する。
Furthermore, in products containing chlorine atoms such as vinyl chloride resin, chlorine atoms are liberated and hydrogen chloride (HCρ) is generated.

前記照射処理後、生成ガスによる照射室内の腐食や製品
の品質低下などを防止するため、室内換気が行われる。
After the irradiation treatment, the room is ventilated to prevent corrosion in the irradiation chamber and deterioration of product quality due to generated gas.

この換気排ガスは、主としてオゾン処理を対象とし、水
酸化ナトリウム溶液などのアルカリ洗浄か、または活性
炭分解が単独工程としておのおの用いられて処理され、
大気中へ排出されている。
This ventilation exhaust gas is primarily targeted for ozone treatment, and is treated using alkaline cleaning such as sodium hydroxide solution or activated carbon decomposition as a separate step, respectively.
Emitted into the atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放射線照射設備では、線量率が低く、オゾン、N
OXおよびフッ化水素などの発生速度が低いため、単独
工程でも充分であったが、高線量率の電子線照射が行わ
れる場合などには、短時間に多量のオゾン、N Oxお
よびフッ化水素などが発生し、単独工程では処理できな
くなってきている。
Conventional radiation irradiation equipment has low dose rates, ozone, N
Since the generation rate of OX and hydrogen fluoride is low, a single process was sufficient, but when high dose rate electron beam irradiation is performed, large amounts of ozone, NOx and hydrogen fluoride are generated in a short period of time. etc., and it is becoming impossible to process them in a single process.

また、アルカリ洗浄工程では、排ガス中のフッ化水素、
およびNOXのうちのミニ酸化窒素CNz os )の
ほとんどが吸収除去できるが、残りのN Oxおよびオ
ゾンの大半は除去できない。
In addition, in the alkaline cleaning process, hydrogen fluoride in the exhaust gas,
Most of the mininitric oxides CNz os and NOx) can be absorbed and removed, but most of the remaining NOx and ozone cannot be removed.

これは、空気中の二酸化炭素がアルカリ溶液に先に吸収
され炭酸イオン(co、3”−)を生成し、これが阻害
因子となるためである。
This is because carbon dioxide in the air is first absorbed by the alkaline solution and produces carbonate ions (co, 3''-), which act as an inhibiting factor.

さらに、活性炭分解工程では、オゾンの活性炭分解は下
記式にみられるように発熱反応であるため、排ガス中の
オゾンとNOxが共存する場合に、一定濃度範囲または
温度が110℃以上などの条件により爆発や突然が起き
る。
Furthermore, in the activated carbon decomposition process, since activated carbon decomposition of ozone is an exothermic reaction as shown in the equation below, when ozone and NOx coexist in the exhaust gas, it is possible to Explosions and sudden events occur.

C+0.−→CO+0□+253.2kJC+ 203
−→CO,+202+678.9kJこの反応は、活性
化エネルギーが大きいために反応速度が遅く、活性炭表
面にオゾンが蓄積され易い、また、オゾンは発熱反応に
より分解して酸素となる。
C+0. -→CO+0□+253.2kJC+ 203
-→CO, +202+678.9 kJ This reaction has a large activation energy, so the reaction rate is slow, and ozone is likely to accumulate on the activated carbon surface, and ozone is decomposed into oxygen by an exothermic reaction.

20、−→30□+286kJ 従って、オゾンが高濃度はど、活性炭の温度上昇は大き
くなる。このとき、活性炭が前記所定温度を超えると、
前述したように局部的にオゾンが蓄積されている部分で
突然燃焼や着火が起きる。
20, -→30□+286kJ Therefore, the higher the ozone concentration, the greater the temperature rise of activated carbon. At this time, when the activated carbon exceeds the predetermined temperature,
As mentioned above, combustion and ignition occur suddenly in areas where ozone is locally accumulated.

また、オゾン濃度が高いほど、低濃度N Oxでも前述
したような爆発が発生ずる。
Furthermore, the higher the ozone concentration, the more likely an explosion as described above will occur even with a low concentration of NOx.

これを防止するため、通常、活性炭にシリカアルミナゲ
ルやゼオライトなどが添加されているが、これらの添加
剤をフン化水素が劣化させる。
To prevent this, silica alumina gel, zeolite, etc. are usually added to activated carbon, but hydrogen fluoride degrades these additives.

本発明は、このような従来の技術的課題を背景になされ
たもので、安全性が高く、かつ排ガス中に含まれる多種
の有害物質のシステム的処理ができ、従って排ガスの処
理効率の向上ができる排ガス処理方法を提供することを
目的とする。
The present invention was developed against the background of such conventional technical problems, and is highly safe and capable of systematic treatment of various harmful substances contained in exhaust gas, thereby improving the efficiency of exhaust gas treatment. The purpose is to provide an efficient exhaust gas treatment method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、放射線照射設備から排出される排ガスを処理
する方法において、まずこの排ガスを湿式洗浄処理工程
で洗浄処理し、そののち乾式吸着分解処理工程で吸着分
解処理する排ガス処理方法を提供するものである。
The present invention provides a method for treating exhaust gas discharged from radiation irradiation equipment, in which the exhaust gas is first cleaned in a wet cleaning treatment step, and then adsorbed and decomposed in a dry adsorption decomposition treatment step. It is.

本発明において、放射線照射設備とは、例えば医療用具
、医薬品および食品などの滅菌、殺菌あるいは発芽防止
などに用いられる、例えば電子線などの放射線を照射さ
せるための設備である。
In the present invention, radiation irradiation equipment is equipment for irradiating radiation such as electron beams, which is used, for example, to sterilize, sterilize, or prevent germination of medical tools, pharmaceuticals, and foods.

また、この放射線照射設備から排出される排ガスとは、
そのまま大気放出させると周囲の作業環境や大気lη染
公害の問題を生じる恐れがある、例えばオゾン、NOX
あるいはフッ化水素などを含むガスである。
In addition, the exhaust gas emitted from this radiation irradiation equipment is
If released into the atmosphere as it is, there is a risk of causing pollution problems in the surrounding working environment and the atmosphere, such as ozone and NOX.
Alternatively, it is a gas containing hydrogen fluoride or the like.

これらのガスの発生は、放射線照射設備内で電子線など
を照射することにより、空気中の酸素、窒素の一部が反
応してオゾンやNo、(窒素酸化物)が発生し、また例
えばフッ素樹脂製品を照射することで、フッ素原子が遊
離し、主にフッ化水素として空気中に拡散することで発
生するものである。
These gases are generated by irradiating electron beams in radiation irradiation equipment, which causes some of the oxygen and nitrogen in the air to react and generate ozone and NO (nitrogen oxides). Fluorine atoms are liberated when resin products are irradiated, and are mainly diffused into the air as hydrogen fluoride.

本発明に適用される廃ガスの組成としては、例えばフッ
化水素120ppm以下、二酸化炭素400〜500p
pm、−酸化炭素2〜3ppm。
The composition of the waste gas applied to the present invention is, for example, 120 ppm or less of hydrogen fluoride, 400 to 500 ppm of carbon dioxide.
pm, - 2-3 ppm carbon oxide.

オゾン1100pp以下、およびNNOx501)p以
下程度のものを挙げることができる。
Examples include ozone of 1100 pp or less and NNOx of 501) p or less.

本発明の排ガス処理方法における湿式洗浄処理工程とは
、主にフッ化水素およびミニ酸化窒素の除去のための処
理工程で、主に水酸化ナトリウム水溶液などのアルカリ
溶液による洗浄であるか、亜硫酸塩溶液なども採用でき
る。
The wet cleaning process in the exhaust gas treatment method of the present invention is mainly a process for removing hydrogen fluoride and mininitrogen oxides, and is mainly a cleaning process using an alkaline solution such as an aqueous sodium hydroxide solution, or a process using a sulfite solution. Solutions can also be used.

HF+Na0H−NaF+Hz O Nt 05 +2NaOH−2NaN()+ +H20
この工程で排ガスが洗浄されることにより、前記溶液と
定量的にフッ化水素あるいはミニ酸化窒素が反応して、
排ガス中からほとんど除去される。
HF+Na0H-NaF+Hz O Nt 05 +2NaOH-2NaN()+ +H20
By cleaning the exhaust gas in this step, hydrogen fluoride or mini nitrogen oxide reacts quantitatively with the solution.
Most of it is removed from exhaust gas.

このとき、オゾンやミニ酸化窒素以外のNOXも若干で
はあるが、同時に除去される。
At this time, NOx other than ozone and mini nitrogen oxides are also removed at the same time, albeit to a small extent.

また、本発明の排ガス処理方法における乾式吸着分解処
理工程とは、オゾンの除去のための処理工程で、主にオ
ゾン処理能力の高い活性炭を用いるものが好ましいが、
活性炭にシリカ、アルミナあるいは酸化鉄などを併用し
たものでもよい。
In addition, the dry adsorption decomposition treatment step in the exhaust gas treatment method of the present invention is a treatment step for removing ozone, and it is preferable that activated carbon, which has a high ozone treatment ability, is mainly used.
Activated carbon may be combined with silica, alumina, or iron oxide.

なお、活性炭を採用した場合には、前述した利点のほか
に運転保守が容易でかつ安価で好ましい。
In addition to the above-mentioned advantages, it is preferable to use activated carbon because it is easy to operate and maintain and is inexpensive.

なお、NOXが共存する場合には、爆発などの危険性も
あるが、この排ガス中のNOXは、前記湿式洗浄処理工
程で一部除去されているため、通常、低濃度であり、そ
の危険性はほとんどない。
Note that if NOX coexists, there is a risk of explosion, but NOX in this exhaust gas is partially removed in the wet cleaning process, so it is usually at a low concentration and the risk is low. There are almost no

この分解機構は複雑であるが、主に03の吸着作用、O
lの触媒作用、および03の分解作用(燃焼)が行われ
る。
This decomposition mechanism is complicated, but mainly depends on the adsorption effect of 03, O
The catalytic action of 1 and the decomposition action (combustion) of 03 take place.

03−0□+O(触媒作用) C+2O−Cot  (分解作用) c+o3−20□十〇ot(分解作用)また、この乾式
分解処理工程において、N OxもNo以外は除去され
るが、これはほとんど吸着作用による。
03-0□+O (catalytic action) C+2O-Cot (decomposition action) c+o3-20□10ot (decomposition action) In addition, in this dry decomposition process, all NOx other than No is removed, but this is mostly Due to adsorption action.

以下、図面を参照してさらに詳細に説明する。A more detailed explanation will be given below with reference to the drawings.

まず、本発明の排ガス処理方法に使用される排ガス処理
装置を説明すると、この排ガス処理装置は、第1図に示
すように排ガス給気ファン10、洗浄塔(湿式洗浄処理
工程)20、排ガスヒータ30、活性炭吸着塔(乾式吸
着分解処理工程)40、排ガス排気ファン50、煙突6
0を備えている。
First, the exhaust gas treatment apparatus used in the exhaust gas treatment method of the present invention will be explained. As shown in FIG. 30, activated carbon adsorption tower (dry adsorption decomposition process) 40, exhaust gas exhaust fan 50, chimney 6
0.

前記排ガス給気ファン10は、図示しない放射線照射設
備から排気された排ガスを洗浄塔20へ導入させるため
の給気ファンである。
The exhaust gas supply fan 10 is an air supply fan for introducing exhaust gas exhausted from radiation irradiation equipment (not shown) into the cleaning tower 20.

なお、この放射線照射設備と排ガス給気ファン10との
間にダンパー11が、またこの排ガス給気ファン10と
洗浄塔20との間にダンパー12がおのおの配置されて
おり、またこの排ガス給気ファン10で送風される排ガ
スは、洗浄塔20の下部内に送られる。
Note that a damper 11 is disposed between the radiation irradiation equipment and the exhaust gas supply fan 10, and a damper 12 is disposed between the exhaust gas supply fan 10 and the cleaning tower 20. The exhaust gas blown at 10 is sent into the lower part of the cleaning tower 20.

前記洗浄塔20は、本発明の湿式洗浄処理工程を行う主
にフッ化水素およびミニ酸化窒素を洗浄するための充填
塔からなり、例えば前述した水酸化ナトリウム溶液など
の洗浄液が循環ポンプ21により上下循環供給されてい
る。
The cleaning tower 20 is a packed tower mainly for cleaning hydrogen fluoride and mini-nitrogen oxide, which performs the wet cleaning treatment process of the present invention. It is supplied in circulation.

なお、洗浄能力が低下した洗浄液は、この循環ポンプ2
1による循環経路から図示しない排液処理設備へ排出さ
れる。
Note that the cleaning liquid whose cleaning ability has decreased is removed from this circulation pump 2.
The liquid is discharged from the circulation path No. 1 to a wastewater treatment facility (not shown).

前記排ガスヒータ30は、洗浄塔20で湿度が上がった
排ガスをそのまま活性炭吸着塔40へ送風させた場合に
生じる活性炭への水分凝縮による変形を防止させるため
のヒータである。
The exhaust gas heater 30 is a heater for preventing deformation of activated carbon due to moisture condensation that occurs when the exhaust gas whose humidity has increased in the cleaning tower 20 is directly blown to the activated carbon adsorption tower 40.

この排ガスヒータ30は必ずしも必要ではないが、゛活
性炭への水分凝縮を防止させるために設置した方が好ま
しい。
Although this exhaust gas heater 30 is not necessarily required, it is preferable to install it in order to prevent moisture condensation on the activated carbon.

前記活性炭吸着塔40は、本発明の乾式吸着分解処理工
程を行う03の吸着分解塔で、例えば活性炭にシリカア
ルミナゲルを混入した粒子が内部に充填されている。
The activated carbon adsorption tower 40 is an adsorption and decomposition tower 03 that performs the dry adsorption and decomposition process of the present invention, and is filled with particles of activated carbon mixed with silica alumina gel, for example.

なお、この図面では1塔の活性炭吸着塔40を示してい
るが、2塔以上設置し順次に使用することもできる 前記排ガス排気ファン50は、洗浄塔20および活性炭
吸着塔40で処理された処理済の排ガスを煙突60を介
して大気排出させるための排気ファンである。
Note that although this drawing shows one activated carbon adsorption tower 40, the exhaust gas exhaust fan 50, which can be installed in two or more towers and used sequentially, is used to remove the waste gas treated by the cleaning tower 20 and the activated carbon adsorption tower 40. This is an exhaust fan for discharging finished exhaust gas to the atmosphere through a chimney 60.

なお、活性炭吸着塔40とこの排ガス排気ファン50と
の間にダンパー51が、またこの排ガス排気ファン50
と煙突60との間にダンパー52がおのおの配置されて
いる。
Note that a damper 51 is provided between the activated carbon adsorption tower 40 and this exhaust gas exhaust fan 50;
A damper 52 is arranged between the chimney 60 and the chimney 60, respectively.

次に、この排ガス処理装置を使用した排ガス処理方法を
説明すると、まず全てのダンパー11.12.51.5
2を開口させ、排ガス給気ファン10、循環ポンプ21
、排ガスヒータ30および排ガス排気ファン50を作動
させる。
Next, to explain the exhaust gas treatment method using this exhaust gas treatment device, first, all dampers 11.12.51.5
2 are opened, and the exhaust gas supply fan 10 and the circulation pump 21 are opened.
, the exhaust gas heater 30 and the exhaust gas exhaust fan 50 are operated.

これにより、図示しない放射線照射設備から排出された
排ガスは、ダンパー11、排ガス給気ファン10および
ダンパー12を介して洗浄塔20内に送風される。
As a result, exhaust gas discharged from the radiation irradiation equipment (not shown) is blown into the cleaning tower 20 via the damper 11, the exhaust gas supply fan 10, and the damper 12.

この洗浄塔20内では、wi環ポンプ21により上下循
環されている水酸化ナトリウム溶液などの洗浄液に排ガ
スが接触することによりフ・ノ化水素およびミニ酸化窒
素などが吸収され、これにより排ガス中からほとんどの
フン化水素およびミニ酸化窒素が除去される。このとき
、多少のオゾンおよび残りのN Oxの一部も除去され
る。
In the cleaning tower 20, the exhaust gas comes into contact with a cleaning liquid such as a sodium hydroxide solution that is circulated up and down by the wi-ring pump 21, so that hydrogen fluoride and mininitrogen oxide are absorbed from the exhaust gas. Most hydrogen fluorides and mininitric oxides are removed. At this time, some ozone and some of the remaining NOx are also removed.

そののち、この洗浄塔20でフッ化水素、ミニ酸化窒素
などが除去された排ガスは、活性炭吸着塔40に送風さ
れる間に排ガスヒータ30で所定温度(相対湿度で60
〜70%)まで暖められ、この活性炭吸着塔40での活
性炭の水分凝縮による変形が防止される。
Thereafter, the exhaust gas from which hydrogen fluoride, mini-nitrogen oxide, etc. have been removed in the cleaning tower 20 is heated to a predetermined temperature (60% relative humidity) by the exhaust gas heater 30 while being blown to the activated carbon adsorption tower 40.
~70%), and deformation of the activated carbon due to water condensation in the activated carbon adsorption tower 40 is prevented.

次にまた、この排ガスヒータ30で暖められた排ガスは
、この活性炭吸着塔40内に送風され、ここでオゾンお
よび残りのNOXが吸着分解される。
Next, the exhaust gas heated by the exhaust gas heater 30 is blown into the activated carbon adsorption tower 40, where ozone and remaining NOX are adsorbed and decomposed.

次にまた、この活性炭吸着塔40内でオゾンおよび残り
のNOXが除去された処理後の排ガスは、ダンパー51
、排ガス排気ファン50およびダンパー52を介して煙
突60に送られ、この煙突60から大気解放される。
Next, the treated exhaust gas from which ozone and remaining NOX have been removed in the activated carbon adsorption tower 40 is transported to a damper 51.
, the exhaust gas is sent to a chimney 60 via an exhaust fan 50 and a damper 52, and released from the chimney 60 to the atmosphere.

このため、安全性が高く、かつ排ガス中に含まれる例え
ばフン化水素、オゾンおよびNOXなどの多種の有害物
質のシステム的処理ができ、従って排ガスの処理効率の
向上ができる。
Therefore, it is highly safe, and various harmful substances contained in the exhaust gas, such as hydrogen fluoride, ozone, and NOX, can be systematically treated, and the efficiency of exhaust gas treatment can therefore be improved.

〔実施例〕〔Example〕

以下、本発明を実施例を挙げさらに具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 第1図に示すリドガス処理装置を用いて第1表の成分か
らなる排ガスを処理させた。
Example 1 Exhaust gas consisting of the components shown in Table 1 was treated using the lid gas treatment apparatus shown in FIG.

なお、排ガス量は5,000イ/H(フッ素樹脂製品照
射後の排ガス)であり、また湿式洗浄処理工程では、洗
浄液に10重量%程度の水酸化ナトリウム水溶液が使用
され、さらに乾式分解処理工程では、活性炭にシリカア
ルミナゲルを混入したものが使用されている。
The amount of exhaust gas is 5,000 I/H (exhaust gas after irradiation of fluororesin products), and in the wet cleaning process, a 10% by weight aqueous sodium hydroxide solution is used as the cleaning solution, and in the dry decomposition process. In this case, activated carbon mixed with silica alumina gel is used.

その結果を第1表に示す。The results are shown in Table 1.

第1表からも明らかなように、まず排ガスを湿式洗浄処
理工程で処理することにより、はとんどのフン化水素が
除去され、また多少のオゾンおよびN Oxの除去もさ
れ、そののちの乾式分解処理工程では爆発などの危険も
なくほとんどのオゾンも除去されることが分かる。
As is clear from Table 1, by first treating the exhaust gas in a wet cleaning process, most of the hydrogen fluoride and some ozone and NOx are also removed, and then the dry cleaning process It can be seen that most of the ozone is removed during the decomposition process without any risk of explosion.

第1表 比較例1 実施例1と同様に第1図に示す排ガス処理装置を用いて
同一成分からなる5、000rrr/Hの排ガスを乾式
吸着分解処理工程だけで処理した。
Table 1 Comparative Example 1 As in Example 1, using the exhaust gas treatment apparatus shown in FIG. 1, exhaust gas of 5,000 rrr/H consisting of the same components was treated only through the dry adsorption and decomposition treatment process.

その結果を第2表に示す。The results are shown in Table 2.

第2表から明らかなように、湿式洗浄処理工程でフッ化
水素が除去されていないため、多量のフン化水素が残存
している。
As is clear from Table 2, since hydrogen fluoride was not removed in the wet cleaning process, a large amount of hydrogen fluoride remained.

また、多量のNo、が乾式吸着分解処理工程に存在する
ことにより、爆発などの危険があった。
Furthermore, the presence of a large amount of No. in the dry adsorption and decomposition process poses a risk of explosion.

第2表 〔発明の効果〕 本発明は、このようなものであるため、安全性が高く、
かつ排ガス中に含まれる多種の有害物質のシステム的処
理ができ、従って排ガスの処理効率の向上ができるとい
う効果が得られる。
Table 2 [Effects of the invention] Because the present invention is as described above, it is highly safe;
Moreover, it is possible to systematically treat various harmful substances contained in the exhaust gas, and therefore the efficiency of treating the exhaust gas can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の排ガス処理方法に使用される排ガス処
理装置の全体図である。 20;洗浄塔(湿式洗浄処理工程) 40;活性炭吸着塔(乾式吸着分解処理工程)特許出願
人    三菱化工機株式会社同      ラジエ工
業株式会社
FIG. 1 is an overall view of an exhaust gas treatment apparatus used in the exhaust gas treatment method of the present invention. 20; Washing tower (wet cleaning treatment process) 40; Activated carbon adsorption tower (dry adsorption and decomposition treatment process) Patent applicant Mitsubishi Kakoki Co., Ltd. Radie Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)放射線照射設備から排出される排ガスを処理する
方法において、まずこの排ガスを湿式洗浄処理工程で洗
浄処理し、そののち乾式吸着分解処理工程で吸着分解処
理する排ガス処理方法。
(1) A method for treating exhaust gas discharged from radiation irradiation equipment, in which the exhaust gas is first cleaned in a wet cleaning process, and then adsorbed and decomposed in a dry adsorption and decomposition process.
JP63126260A 1988-05-24 1988-05-24 Exhaust gas treatment method Expired - Lifetime JP2668795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126260A JP2668795B2 (en) 1988-05-24 1988-05-24 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126260A JP2668795B2 (en) 1988-05-24 1988-05-24 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH01297128A true JPH01297128A (en) 1989-11-30
JP2668795B2 JP2668795B2 (en) 1997-10-27

Family

ID=14930781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126260A Expired - Lifetime JP2668795B2 (en) 1988-05-24 1988-05-24 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2668795B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124873A (en) * 1974-03-20 1975-10-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124873A (en) * 1974-03-20 1975-10-01

Also Published As

Publication number Publication date
JP2668795B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP5735761B2 (en) Toxic substance decontamination equipment
EP0408772A1 (en) Exhaust gas cleaning method
JP2554802B2 (en) Treatment method of difficult-to-treat activated carbon by ionizing radiation irradiation
JPS62163730A (en) Treatment of exhaust gas
JPH01297128A (en) Exhaust gas treatment
JPH09206558A (en) Device for removing harmful material in gas
EP0242941B1 (en) Process and apparatus for the deodorization of air
US5108565A (en) Method for removing harmful gas from refuse combustion exhaust gas
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JP2002361044A (en) Method for treating waste gas and liquid chemicals
JP2838775B2 (en) Freshness keeping device
JP4405722B2 (en) Disinfection gas decomposition and removal equipment
KR101537029B1 (en) Chlorine dioxide processing structure, chlorine dioxide processing apparatus, sterilization apparatus and environment purification apparatus
KR970020150A (en) Removal method of harmful components in incinerator flue gas and device
JP4482962B2 (en) Detoxification method of sulfur hexafluoride
JPH04327853A (en) Method for removing fumigation gas facility for fumigation process
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JPH0483515A (en) Method for decomposing fluorocarbon type cooling medium
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JPH0857255A (en) Fluorocarbon decomposing apparatus
JPH0649133B2 (en) Method for removing nitrogen oxides in exhaust gas
JPS6388022A (en) Removal of mercury in exhaust gas
JPH08197046A (en) Device for decomposing organic chlorine compound in water
JPS5933409B2 (en) Method for treating gas containing odor components and ozone

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term