JPH01296618A - Heat treatment of iii-v compound semiconductor substrate - Google Patents

Heat treatment of iii-v compound semiconductor substrate

Info

Publication number
JPH01296618A
JPH01296618A JP12589088A JP12589088A JPH01296618A JP H01296618 A JPH01296618 A JP H01296618A JP 12589088 A JP12589088 A JP 12589088A JP 12589088 A JP12589088 A JP 12589088A JP H01296618 A JPH01296618 A JP H01296618A
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
semiconductor substrate
iii
continuously supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12589088A
Other languages
Japanese (ja)
Inventor
Michihisa Kono
通久 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12589088A priority Critical patent/JPH01296618A/en
Publication of JPH01296618A publication Critical patent/JPH01296618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to conduct a highly uniform heat treatment having a few deformation and crystal defects in a short period by a method wherein a substrate is heat-treated in the state wherein the circumferential part of a III-V compound semiconductor substrate is continuously supported by a supporting means. CONSTITUTION:A 2-inch GaAs substrate 3 is continuously supported on the circumferential part only by the Si supporting member 4 provided in a quartz glass furnace core tube 2. The heating by a halogen lamp 1 is started in the above-mentioned state, and a heat treatment is conducted for a short period. To be more precise, as the contact between the substrate 3 and the supporting member 4 is limited to the circumferential part only of the substrate 3, and as it is continuously supported, the effect of the supporting member 4 in the center part of the substrate is removed, and at the same time, stress is dispersed by its own weight due to a continuous supporting. As a result, an active layer having excellent uniformity can be obtained while the generation of deformation and crystal defects of the substrate 3 is being suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は■−v族半導体基板の熱処理方法に関し、さら
に詳しくは■−v族半導体基板を均一に熱処理する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for heat treating a ■-V group semiconductor substrate, and more particularly to a method for uniformly heat treating a ■-V group semiconductor substrate.

[従来の技術とその課題] 近年、■−v族半導体を用いた高速デジタル集積回路の
開発が進むにつれて、短時間アニール法の重要性が益々
高まってきている。
[Prior Art and its Problems] In recent years, as the development of high-speed digital integrated circuits using ■-v group semiconductors has progressed, the importance of short-time annealing methods has been increasing.

すなわち、ヘテロ接合バイポーラ・トランジスタや、ヘ
テロ接合電界効果トランジスタなどの異種接合デバイス
の製造プロセスにおいてコンタクト抵抗低減を目的とし
たイオン注入が行われており、これらのデバイスの製造
においては、微細構造をもつ異種接合に大きな結晶損傷
を与えない熱処理法が要求される。この目的に現在最も
適した方法が短時間アニール法で必る。また、同アニー
ル法は、電界効果トランジスタの性能を高めるために重
要な、浅く高濃度の動作層の形成にも適している。即ち
、この方法を用いることにより、動作層の不純物の再分
布が抑えられるばかりでなく、高い電気的活性化率が得
られることが知られている。
In other words, ion implantation is performed for the purpose of reducing contact resistance in the manufacturing process of heterojunction devices such as heterojunction bipolar transistors and heterojunction field effect transistors. A heat treatment method that does not cause significant crystal damage to dissimilar junctions is required. The currently most suitable method for this purpose is the short-time annealing method. The annealing method is also suitable for forming shallow, highly doped active layers, which are important for improving the performance of field-effect transistors. That is, it is known that by using this method, not only the redistribution of impurities in the active layer can be suppressed, but also a high electrical activation rate can be obtained.

通常、イオン注入された■−v族半導体基板を短時間ア
ニールする方法としては、第3図に示すように、アニー
ルすべき■−v族半導体基板33を3本ないし4本の石
英製の支持ピン35の上に設置する方法が知られている
。同図において、31はランプ、32は石英ガラス製炉
心管である。しかし、第3図に示した基板の支持方法を
用いた場合においては、■−v族半導体基板33の自重
による応力が石英製支持ピン35に接触する基板部分に
集中する結果となる。そのために、例えば900 ’C
を超える高温で短時間熱処理を行った場合には、石英製
支持ピン35と接触する部分を中心として■−V族半導
体基板33が変形を起したり、変形に至らない場合にも
転位網などの結晶欠陥が導入され易いという欠点があっ
た。
Normally, as a method for short-time annealing of an ion-implanted ■-V group semiconductor substrate, as shown in FIG. A method of installing it on the pin 35 is known. In the figure, 31 is a lamp, and 32 is a quartz glass furnace tube. However, when the substrate supporting method shown in FIG. 3 is used, the stress due to the weight of the ■-V group semiconductor substrate 33 is concentrated on the portion of the substrate that contacts the quartz support pins 35. For that, e.g. 900'C
When heat treatment is performed for a short time at a high temperature exceeding It has the disadvantage that crystal defects are easily introduced.

[課題を解決するための手段] 本発明は、■−v族半導体基板の周辺部を支持具により
連続的に支持した状態で該基板の熱処理を行うことを特
徴とする■−■族半導体基板の熱処理方法である。
[Means for Solving the Problems] The present invention provides a ■-V group semiconductor substrate, characterized in that heat treatment is performed on the ■-V group semiconductor substrate while the peripheral portion of the substrate is continuously supported by a support tool. This is a heat treatment method.

[作用] 本発明では、例えばイオン注入した■−v族半導体基板
を支持具により周辺部だけを連続的に支持して熱処理す
る。
[Operation] In the present invention, for example, an ion-implanted -V group semiconductor substrate is heat-treated by continuously supporting only the peripheral portion using a support tool.

■−V族半導体基板と支持具との接触は該基板の周辺部
に限られており、かつ連続的に支持されているので、従
来のように基板中央部を支持ピンのようにスポット的な
支持を行うのと異なって、基板中央部における支持具の
影響がなくなると共に、連続的な支持により自重による
ストレスが分散される。
■-Contact between the group V semiconductor substrate and the support is limited to the periphery of the substrate, and the substrate is continuously supported. Unlike support, the influence of the support at the center of the board is eliminated, and the stress due to its own weight is dispersed by continuous support.

このため、基板の変形の発生や結晶欠陥の導入を抑制し
つつ、均一性の優れた活性層を得ることができる。
Therefore, an active layer with excellent uniformity can be obtained while suppressing deformation of the substrate and introduction of crystal defects.

[実施例] 以下、本発明の実施例について図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

本実施例では、面方位< 100>不純物無添加半絶縁
性2インチGaAs基板に100keVで29Si+を
5×1012cm−2室温で注入した試料について説明
するが、他の■−v族半導体基板、例えばInP、 I
nGaAs。
In this example, a sample in which 5 x 1012 cm-2 of 29Si+ is implanted at 100 keV and at room temperature into a semi-insulating 2-inch GaAs substrate with plane orientation <100> without any impurities will be described. InP, I
nGaAs.

AI!GaAS、 #InAS、 InGaASP等の
■−v族半導体基板についても本発明は同様に適用可能
である。また、基板の寸法についても本実施例では2イ
ンチ直径基板を例に挙げて説明するが、異なる基板直径
についても同様の原理が適用できる。
AI! The present invention is similarly applicable to ■-v group semiconductor substrates such as GaAS, #InAS, and InGaASP. Further, the dimensions of the substrate will be explained using a 2-inch diameter substrate as an example in this embodiment, but the same principle can be applied to substrates of different diameters.

第1図に示すように、アニールすべき2インチGaAs
基板3は石英ガラス製炉心管2内に設置されたSi製の
支持具4により、その周辺部だけを連続的に支持されて
いる。このような状態でハロゲンランプ1からの加熱を
開始し、950 ’C15秒間の短時間熱処理を行った
。熱処理後、光学顕微鏡およびX線トポグラフィを用い
て基板の変形や結晶欠陥の発生状況を調べたが、試料に
異常は認められなかった。第2図は、上記実施例の方法
による短時間熱処理で得られた試料におけるシート抵抗
の基板面内径方向分布を示したものである。同図かられ
かるように、本実施例では均一なシート抵抗力イ5が得
られており、シート抵抗値の径方向のばらつきは3%以
内でおった。
As shown in Figure 1, the 2-inch GaAs to be annealed
The substrate 3 is continuously supported only at its peripheral portion by a Si support 4 installed in the quartz glass furnace tube 2. In this state, heating from the halogen lamp 1 was started, and a short-time heat treatment was performed at 950'C for 15 seconds. After the heat treatment, the deformation of the substrate and the occurrence of crystal defects were examined using an optical microscope and X-ray topography, but no abnormality was observed in the sample. FIG. 2 shows the distribution of sheet resistance in the radial direction within the substrate surface in a sample obtained by short-time heat treatment according to the method of the above embodiment. As can be seen from the figure, in this example, a uniform sheet resistance force A5 was obtained, and the variation in the sheet resistance value in the radial direction was within 3%.

従って本発明の方法を用いることにより、従来方法に比
べて短時間熱処理時に基板の変形や結晶欠陥の発生が少
なく抑えられ、しかも注入イオンの活性化率の基板面内
でのばらつきが十分小さく抑えられることが確認された
Therefore, by using the method of the present invention, the deformation of the substrate and the occurrence of crystal defects during short-time heat treatment can be suppressed to a minimum compared to conventional methods, and the variation in the activation rate of implanted ions within the substrate surface can be suppressed to a sufficiently small level. It was confirmed that

[発明の効果] 以上説明したように、本発明の熱処理方法によれば、大
口径のm−v族半導体基板に対しても熱処理による基板
の変形や結晶欠陥の少ない高均一な短時間熱処理が実現
できる。
[Effects of the Invention] As explained above, according to the heat treatment method of the present invention, highly uniform short-time heat treatment with less substrate deformation and crystal defects due to heat treatment can be performed even on large-diameter m-v group semiconductor substrates. realizable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための説明図、第
2図は本発明の方法で得られた試料におけるシート抵抗
の基板面内径方向分布を示す図、第3図は従来の短時間
熱処理方法を示す説明図である。 1・・・ハロゲンランプ 2.32・・・石英ガラス製炉心管 3・・・2インチGaAs基板
FIG. 1 is an explanatory diagram for explaining one embodiment of the present invention, FIG. 2 is a diagram showing the distribution of sheet resistance in the substrate surface inner radial direction in a sample obtained by the method of the present invention, and FIG. FIG. 3 is an explanatory diagram showing a short-time heat treatment method. 1... Halogen lamp 2.32... Quartz glass furnace tube 3... 2 inch GaAs substrate

Claims (1)

【特許請求の範囲】[Claims] (1)III−V族半導体基板の周辺部を支持具により
連続的に支持した状態で該基板の熱処理を行うことを特
徴とするIII−V族半導体基板の熱処理方法。
(1) A method for heat treatment of a III-V group semiconductor substrate, characterized in that heat treatment is performed on the III-V group semiconductor substrate while the peripheral portion of the substrate is continuously supported by a support.
JP12589088A 1988-05-25 1988-05-25 Heat treatment of iii-v compound semiconductor substrate Pending JPH01296618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12589088A JPH01296618A (en) 1988-05-25 1988-05-25 Heat treatment of iii-v compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12589088A JPH01296618A (en) 1988-05-25 1988-05-25 Heat treatment of iii-v compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH01296618A true JPH01296618A (en) 1989-11-30

Family

ID=14921452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12589088A Pending JPH01296618A (en) 1988-05-25 1988-05-25 Heat treatment of iii-v compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH01296618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162823A1 (en) * 2014-04-24 2015-10-29 住友電気工業株式会社 Semiconductor laminate and light-receiving element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162823A1 (en) * 2014-04-24 2015-10-29 住友電気工業株式会社 Semiconductor laminate and light-receiving element
JP2015211053A (en) * 2014-04-24 2015-11-24 住友電気工業株式会社 Semiconductor laminate and light-receiving element

Similar Documents

Publication Publication Date Title
JPS62501320A (en) Semiconductor with shallow hyper-doped region and its processing method using implanted impurities
JPS6066814A (en) Method of producing semiconductor device
JPS618931A (en) Manufacture of semiconductor device
JPH01296618A (en) Heat treatment of iii-v compound semiconductor substrate
JPH04130731A (en) Manufacture of semiconductor integrated circuit device
JPH04123435A (en) Manufacture of semiconductor device
JPH1074922A (en) Manufacturing method of sot substrate
KR100545990B1 (en) How to remove metal impurities in silicon wafer
JP3295171B2 (en) Semiconductor substrate manufacturing method
JPH01260835A (en) Heat treatment of iii-v compound semiconductor substrate
JPS6037122A (en) Annealing method of semiconductor substrate
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JPH0963978A (en) Heat treatment method for compound semiconductor board
JPH02185037A (en) Short-time thermal treatment equipment
JPH01260834A (en) Heat treatment of iii-v compound semiconductor substrate
JPH01220822A (en) Manufacture of compound semiconductor device
JPS5994815A (en) Production of semiconductor device
KR100340589B1 (en) Increasing method of electron lifetime in silicon wafer
JPH04293241A (en) Manufacture of semiconductor substrate
KR100349184B1 (en) Wafer attach method
JPS63116435A (en) Manufacture of mos semiconductor device
JPS59101825A (en) Manufacture of semiconductor device and heat treatment apparatus therefor
JPH10289883A (en) Method and apparatus for heat treatment of semi-insulative gaas wafer
JPH01102924A (en) Heat treatment of semiconductor substrate
JPS62271420A (en) Treatment equipment for semiconductor substrate