JPH01294803A - Flat metal powder and production thereof - Google Patents

Flat metal powder and production thereof

Info

Publication number
JPH01294803A
JPH01294803A JP63126472A JP12647288A JPH01294803A JP H01294803 A JPH01294803 A JP H01294803A JP 63126472 A JP63126472 A JP 63126472A JP 12647288 A JP12647288 A JP 12647288A JP H01294803 A JPH01294803 A JP H01294803A
Authority
JP
Japan
Prior art keywords
powder
surface area
flat
specific surface
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63126472A
Other languages
Japanese (ja)
Other versions
JP2571263B2 (en
Inventor
Yujiro Mizusaki
雄二郎 水崎
Hirozumi Izawa
伊沢 宏純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KIYABOTSUTO SUUPAA METAL KK
Resonac Holdings Corp
Original Assignee
SHOWA KIYABOTSUTO SUUPAA METAL KK
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KIYABOTSUTO SUUPAA METAL KK, Showa Denko KK filed Critical SHOWA KIYABOTSUTO SUUPAA METAL KK
Priority to JP63126472A priority Critical patent/JP2571263B2/en
Publication of JPH01294803A publication Critical patent/JPH01294803A/en
Application granted granted Critical
Publication of JP2571263B2 publication Critical patent/JP2571263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain finely rugged flat Ta powder having a large surface area and a relatively large thickness by pulverizing Ta foil formed by reducing a Ta halide with hydrogen. CONSTITUTION:A Ta halide is reduced with hydrogen to deposit and grow fine Ta particles on a substrate. The grown fine Ta particles are stripped and the resulting Ta foil is pulverized to obtain flat Ta powder having such surface properties as >=3 flatness and 4 ratio of the specific surface area based on the projection area measured with a laser diffraction particle size analyzer to the surface area measured by the BET method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属扁平粉の製造に係り、より詳細には、特に
表面積が大きく、高容i電解コンデンサーとして好適な
Tai平粉とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of flat metal powder, and more particularly, to Tai flat powder, which has a particularly large surface area and is suitable for use as a high-capacity electrolytic capacitor, and a method for producing the same. Regarding.

(従来の技術) タンタル(Ta)は耐熱性、耐食性に優れているため、
その金属粉又は合金粉は焼結体にして各種の高温材料や
耐食材料に使用されており、特に電解コンデンサーの陽
極に好適な材料である。
(Conventional technology) Tantalum (Ta) has excellent heat resistance and corrosion resistance, so
The metal powder or alloy powder is made into a sintered body and used in various high-temperature materials and corrosion-resistant materials, and is particularly suitable for the anode of an electrolytic capacitor.

従来より、タンタル電解コンデンサーにはTa粉の焼結
体又はタンタル箔が用いられている。
Conventionally, sintered bodies of Ta powder or tantalum foils have been used in tantalum electrolytic capacitors.

タンタル焼結体には、一般的には表面積が大きく高容量
の得られるTa粉が使われており、そのためのTa粉は
一般的に以下■〜■のような方法で製造されている(特
公昭52−41465号公報参照)。
Ta powder, which has a large surface area and a high capacity, is generally used for tantalum sintered bodies, and the Ta powder for this purpose is generally produced by the following methods (in particular). (See Publication No. 52-41465).

■に2TaF、を適当な希釈塩と共に溶融した後、Na
と反応させる方法。得られた粉末は3次元的に成長した
密度の低い凝集粉である。
After melting 2TaF and an appropriate diluting salt in
How to react. The obtained powder is a three-dimensionally grown agglomerated powder with low density.

■Taインゴットに水素を吸蔵させて脆化させ、機械的
に粉砕する方法。得られた粉末は砕石状の単粒子である
。通常は、これに熱を加えて凝集させて使用される。
■A method of absorbing hydrogen into a Ta ingot to make it brittle and mechanically crushing it. The obtained powder is a crushed stone-like single particle. Usually, it is used by applying heat to coagulate it.

■前記■又は■の方法で作った粉末をボールミル等の粉
砕機で長時間粉砕することにより扁平化する方法。扁平
粉は粉末の焼結時における耐収縮性が良い(前記公報参
照)。
■A method of flattening the powder produced by the method (■) or (■) above by crushing it for a long time using a crusher such as a ball mill. Flat powder has good shrinkage resistance during powder sintering (see the above publication).

(発明が解決しようとする課題) しかしながら、従来法により得られるTa扁平粉、すな
わちボールミル粉砕粉は、表面が平滑であるので、静電
容量を増大するために粉末の比表面積を増すには、0.
3〜0.5μm程度の極端に薄いものが必要である。と
ころが、このようにして得られた扁平粉は、見掛は密度
が低すぎたり、粉体としての流動性、圧粉体特性等が良
くなかったり、更には熱処理時の変形が大きいという欠
点がある。
(Problems to be Solved by the Invention) However, Ta flat powder obtained by the conventional method, that is, ball mill pulverized powder, has a smooth surface, so in order to increase the specific surface area of the powder to increase the capacitance, it is necessary to 0.
An extremely thin material of about 3 to 0.5 μm is required. However, the flat powder obtained in this way has disadvantages such as an apparently too low density, poor fluidity as a powder, poor compact properties, etc., and further deformation during heat treatment. be.

しかも、ボールミル粉砕粉をエツチング等により表面を
粗面化することは一般に困難とされている。
Moreover, it is generally considered difficult to roughen the surface of ball mill pulverized powder by etching or the like.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、成る程度の厚みがある扁平粉であっ
ても十分な凹凸をもった表面を呈する比表面積の大きな
Ta扁平粉を提供し、またその製造方法を提供すること
を目的とするものである。
The present invention has been made in order to solve the problems of the prior art described above. The purpose of this invention is to provide a method for producing the same.

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、比表面積の大
きなTa粉として1表面に細かい凹凸をもった扁平粉で
あって、この凹凸の効果により成る程度の厚み(0,5
〜3.0μm)のある膚平粉であっても十分な比表面積
のTa扁平粉を製造し得る方法について鋭意研究を重ね
た。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a Ta powder having a large specific surface area, which is a flat powder with fine irregularities on one surface, and which is formed by the effect of the irregularities. Thickness (0,5
We have conducted intensive research on a method for producing Ta flat powder with a sufficient specific surface area even if the Ta flat powder has a diameter of 3.0 μm).

その結果、Ta化合物の気相還元法によりTa微粒子の
連続体としてのTa箔を作成し、これを粉砕するならば
、比表面積の大きいTa夏平粉を得ることができること
を見い出したものである。
As a result, we discovered that if we create a Ta foil as a continuum of fine Ta particles using the vapor-phase reduction method of Ta compounds, and then crush this, we can obtain Ta xiaping powder with a large specific surface area. .

すなわち、本発明に係る金属扁平粉は、Ta微粉であっ
て、扁平度が3以上であり、かつ、レーザー回折粒度分
析計で求めた投影面積に基づく比表面積とBET法によ
る表面積との比が4以上である表面性状を有することを
特徴とするものである。
That is, the flat metal powder according to the present invention is Ta fine powder, has an oblateness of 3 or more, and has a ratio of a specific surface area based on a projected area determined by a laser diffraction particle size analyzer to a surface area determined by the BET method. It is characterized by having a surface quality of 4 or more.

また、かNる金属扁平粒の製造方法は、Taのハロゲン
化物を水素還元し、生成したTa微粒子を基板上に析出
、成長させた後、基板から剥離してTa微粒子の連続体
としてのTa箔を得て、このTa箔を粉砕してT a 
li平粉を得ることを特徴とするものである。
In addition, in the method for producing flat metal grains, Ta halide is reduced with hydrogen, the generated Ta fine particles are precipitated and grown on a substrate, and then peeled off from the substrate to form a continuum of Ta fine particles. Obtain a foil and crush this Ta foil to
This method is characterized by obtaining li flat powder.

以下に本発明を更に説明する。The invention will be further explained below.

従来、−船釣に行われている機械的な粉砕法によるTa
扁平粉は、表面が平滑であるので比表面積が小さく、比
表面積を大きくしようとすると極端に薄くする必要があ
り、粉体としての性状(流動性、圧粉体特性等)、熱処
理時の変形等の問題が生じるという問題があった。
Conventionally, Ta is produced by the mechanical crushing method used for boat fishing.
Flat powder has a smooth surface, so it has a small specific surface area.If you want to increase the specific surface area, it must be made extremely thin, and the properties of the powder (flowability, green compact properties, etc.), deformation during heat treatment, etc. There was a problem that problems such as the following occurred.

この点、本発明によるTa扁平粉は、表面に細かい凹凸
を有するので成る程度厚みがあっても十分な表面積が確
保できる。その扁平度(アスペクト比)並びに比表面積
は以下の如く特定されるものである。
In this respect, since the Ta flat powder according to the present invention has fine irregularities on the surface, a sufficient surface area can be ensured even if it is somewhat thick. Its flatness (aspect ratio) and specific surface area are specified as follows.

扁平度としては、実質的に扁平粉として十分な耐熱収縮
性を得るために、3以上、すなわち平均厚さに対して平
均径が3倍以上である必要がある。
In order to obtain sufficient heat shrinkage resistance as a substantially flat powder, the flatness needs to be 3 or more, that is, the average diameter must be 3 times or more the average thickness.

比表面積としては、前述の如く表面に細かい凹凸を有す
るほど良く、定量的には、凹凸の度合いはレーザー回折
法による投影面積に基づき測定した比表面積とBET法
による比表面積の比が4倍以上である必要がある。
As for the specific surface area, as mentioned above, the finer the unevenness on the surface, the better. Quantitatively, the degree of unevenness is determined by the ratio of the specific surface area measured based on the projected area by laser diffraction method to the specific surface area measured by BET method is 4 times or more. It must be.

ここで、レーザー回折法による比表面積は、第1図に示
すように、扁平粉(、)につきレーザー回折粒度分析計
で同図(b−1)〜(b−3)の如く投影された投影像
(A視、B視、C視)の面積(図中、斜線部)を求める
が、これを更に同図(c−1)〜(c −3)の如く球
形に換算した面積を本発明における比表面積と定義する
。したがって、このように定義される比表面積の数値は
、現実の値と多少異なるものの、粉全体の大きさを表わ
す指標となる。
Here, as shown in Figure 1, the specific surface area determined by the laser diffraction method is calculated using a laser diffraction particle size analyzer for flat powder (,) as shown in Figure 1 (b-1) to (b-3). The area (shaded area in the figure) of the images (view A, view B, view C) is determined, and this is further converted into a spherical area as shown in (c-1) to (c-3) in the same figure. is defined as the specific surface area at Therefore, although the numerical value of the specific surface area defined in this way differs somewhat from the actual value, it serves as an index representing the size of the entire powder.

一方、BET法による比表面積とは、第2図に示すよう
にN2ガス分子の吸着する表面をすべて表面積として積
算した値であり、粉末表面の細かい凹凸による比表面積
の増加分が示される。
On the other hand, the specific surface area determined by the BET method is the value obtained by integrating all the surfaces on which N2 gas molecules are adsorbed as shown in FIG. 2, and indicates the increase in the specific surface area due to fine irregularities on the powder surface.

本発明では、このBET法による比表面積のみでは表面
の細かい凹凸を表わすことが困難であることを考慮し、
曲者のレーザー回折法による投影面積に基づく比表面積
に対し、後者のBET法に基づく比表面積の比にて評価
することとしたものである。この評価法によれば、従来
、−船釣に行われている機械的な粉砕法によるTa扁平
粉の場合、この比率を4倍以上にすることが困難である
が1本発明によれば、4倍以上にすることが可能となり
、耐熱収縮性を十分に改善し得る扁平粉の厚さと、高い
8斌を与えるBET比表面積を両立させることができる
In the present invention, considering that it is difficult to express fine surface irregularities using only the specific surface area by this BET method,
The evaluation was made using the ratio of the specific surface area based on the latter BET method to the specific surface area based on the projected area based on the curved laser diffraction method. According to this evaluation method, it is difficult to increase this ratio to 4 times or more in the case of Ta flat powder produced by the mechanical crushing method conventionally used for boat fishing, but according to the present invention, It becomes possible to increase the thickness by 4 times or more, and it is possible to achieve both a flat powder thickness that can sufficiently improve heat shrinkage resistance and a BET specific surface area that provides a high 8 cm.

次に、上記要件を満たすTaM乎粉製粒相成長法を利用
して製造する方法について説明する。
Next, a manufacturing method using a TaM powder granulation phase growth method that satisfies the above requirements will be described.

本方法は、要するに、Taハ[」ゲン化物を水素還元し
、SiO□等の適当な基材上に析出させて微粒子箔化し
、これを剥離して粉砕する工程によるものである。具体
的には以下の工程によるが、特に、粉砕は、水素還元に
よるTa箔が水素化されており、脆性が大きいため、簡
単に行うことができる。
In short, this method is based on the steps of hydrogen reduction of Ta genide, precipitating it on a suitable substrate such as SiO□ to form a fine particle foil, and peeling and pulverizing this. Specifically, the process is as follows, but in particular, pulverization can be easily performed because the Ta foil is hydrogenated by hydrogen reduction and is highly brittle.

■Ta塩化物の作成 まず、ハロゲンガスとして塩素を使用し、Taの塩化物
を作成するプロセスについて説明する。
■ Creation of Ta chloride First, we will explain the process of creating Ta chloride using chlorine as the halogen gas.

Taと塩素ガスの反応は、発熱反応であり、200℃以
上で反応が起きる塩化物発生部分は、低温で塩素ガス流
量をコントロールしながら塩化物を発生させるため、通
常、200〜600℃の温度範囲で温調するのが良く、
約400℃が望ましい。
The reaction between Ta and chlorine gas is an exothermic reaction, and the chloride-generating part where the reaction occurs above 200°C is usually heated at a temperature of 200 to 600°C in order to generate chloride while controlling the chlorine gas flow rate at a low temperature. It is better to control the temperature within a range,
Approximately 400°C is desirable.

この場合、出発材料のTaとしては、従来法で得られた
低純度のものでよく、不純物量は勿論のこと、他の性状
も特に留意する必要はなく、重版のものでよい。
In this case, the starting material Ta may be one of low purity obtained by a conventional method, and there is no need to pay special attention to the amount of impurities or other properties, and a reprinted one may be used.

■Ta塩化物の還元 得られたTa塩化物は、ガス状であり、キャリアーガス
(例、Ar)によって搬送し、還元反応部分(反応炉)
に供給される。この塩化物ガスは沸点が低く、凝縮する
ことなく容易に反応炉に導入できる。なお、塩化物ガス
濃度は粉末粒径に影響を及ぼすので、キャリアーガス流
量及び塩素流量は粒径を最適にするように選択するのが
よい。
■Reduction of Ta chloride The obtained Ta chloride is in a gaseous state and is transported by a carrier gas (e.g. Ar) to the reduction reaction part (reactor).
supplied to This chloride gas has a low boiling point and can be easily introduced into the reactor without condensing. Note that since the chloride gas concentration affects the powder particle size, the carrier gas flow rate and the chlorine flow rate are preferably selected to optimize the particle size.

次いで、Ta塩化物ガスは反応炉で反応温度に加温され
る。反応温度は800〜1100℃の範囲とする。従来
、Nb等の高融点金属を水素還元する場合、反応温度を
1300〜1500℃程度に設定する場合が多いが1反
応温度が高いと耐火物の還元が起こり、粉末中の酸素含
有量が極端に増すことになる。この点、本発明における
反応温度は1100℃以下であるので、耐火物の酸化が
防止され“ると共に気密性の高い石英管を使用可能とな
るため、反応原料として予めTa塩化物を作成して酸素
含有量を事前に低減させる効果と相俟って、粉末中の酸
素含有量を著しく下げることができる。含有酸素量は粉
末の取出し時に空気酸化によって生じる酸化物量分だけ
に留まる程度である。なお、反応温度が500℃未満で
は反応速度が遅くなりすぎ、粉末中の塩化物量が増すの
で好ましくない。
The Ta chloride gas is then heated to reaction temperature in a reactor. The reaction temperature is in the range of 800 to 1100°C. Conventionally, when reducing high melting point metals such as Nb with hydrogen, the reaction temperature is often set at about 1300 to 1500°C, but if the reaction temperature is high, the refractory will be reduced and the oxygen content in the powder will be extremely high. It will increase to In this regard, since the reaction temperature in the present invention is 1100°C or less, oxidation of the refractory is prevented and a highly airtight quartz tube can be used. Therefore, Ta chloride is prepared in advance as a reaction raw material. Together with the effect of pre-reducing the oxygen content, it is possible to significantly reduce the oxygen content in the powder.The amount of oxygen contained is only the amount of oxides produced by air oxidation when the powder is taken out. In addition, if the reaction temperature is less than 500°C, the reaction rate becomes too slow and the amount of chloride in the powder increases, which is not preferable.

Ta塩化物の水素ガスによる反応は、次式2式% により行われるが、この反応式の平衡関係より、水素ガ
スの流量は、1100℃でH,/’l’aモル比が16
/1.800℃のときは64/1(95%収率)となる
。しかし、本発明者の実験結果により、純度の良いTa
粉を得るためにはH2/Taモル比が30/1以上が必
要であり、多いほど良好な結果が得られることが判明し
た。しかし、5゜0倍以上になると水素の流速が大きく
なりすき、反応に寄与しないで流出する分が多くなるた
め、これ以上の水素ガスは不要である。
The reaction of Ta chloride with hydrogen gas is carried out according to the following formula 2. From the equilibrium relationship of this reaction formula, the flow rate of hydrogen gas is such that at 1100°C, the H,/'l'a molar ratio is 16
/1.When the temperature is 800°C, it is 64/1 (95% yield). However, according to the inventor's experimental results, Ta
It has been found that in order to obtain powder, the H2/Ta molar ratio needs to be 30/1 or more, and the higher the H2/Ta molar ratio, the better the results. However, if it becomes 5.0 times or more, the flow rate of hydrogen increases, and more hydrogen gas flows out without contributing to the reaction, so no more hydrogen gas is needed.

還元反応で生じたTaは、装置内に投首した、5in2
板等の適当な素材上に微粒子の連続体としての凹凸の表
面をもつ箔を形成する。
The Ta generated in the reduction reaction was placed in a 5in2
A foil with an uneven surface as a continuum of fine particles is formed on a suitable material such as a plate.

■粉砕 還元反応で得られた微粒子の連続体としての凹凸表面を
有するTa箔は、次いで粉砕するが、このTa箔は水素
化されているので、スタンプミル又はボールミルを用い
て簡単に粉砕することができる。得られたTa粉は表面
に細かい凹凸をもち、厚みのある扁平微粉であって、前
述の所定の表面性状(3以上の扁平塵、4以上の比表面
積値)を備えており、非常に大きな表面積を有している
ものである。
■The Ta foil, which has an uneven surface and is a continuum of fine particles obtained by the pulverization reduction reaction, is then pulverized, but since this Ta foil is hydrogenated, it can be easily pulverized using a stamp mill or a ball mill. I can do it. The obtained Ta powder is a thick flat fine powder with fine irregularities on the surface, and has the above-mentioned predetermined surface properties (flat dust of 3 or more, specific surface area value of 4 or more), and has a very large surface area. It has a surface area.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第3図は本発明法の実施に用いる装置の一例を示してい
る。図中、1はAr供給ボンベ、2はH。
(Example) FIG. 3 shows an example of an apparatus used to carry out the method of the present invention. In the figure, 1 is an Ar supply cylinder and 2 is H.

供給ボンベ、3はCQ2供給ボンベ、4は脱酸器、5は
脱水器、6は流量計、7はCQ2ライン、8はキャリア
Arライン、9は第2Arライン、10はH2ライン、
11は反応管、12は塩化物発生炉、13は充填層、1
4は還元反応炉、15はH2ガスノズル、16は粉末回
収フィルター、17はHCQ吸収塔、18は電気伝導度
測定セル、19は蒸着用基材であり、Ta粉の塩化物化
並びに該塩化物の水素還元、生成箔及び粉末回収塔が連
続的に実施できる装置構成を有している。
Supply cylinder, 3 is CQ2 supply cylinder, 4 is deoxidizer, 5 is dehydrator, 6 is flow meter, 7 is CQ2 line, 8 is carrier Ar line, 9 is second Ar line, 10 is H2 line,
11 is a reaction tube, 12 is a chloride generating furnace, 13 is a packed bed, 1
4 is a reduction reactor, 15 is an H2 gas nozzle, 16 is a powder recovery filter, 17 is an HCQ absorption tower, 18 is an electrical conductivity measurement cell, and 19 is a base material for vapor deposition, which is used to convert Ta powder into chloride and to remove the chloride. It has an equipment configuration that allows hydrogen reduction, product foil, and powder recovery tower to be carried out continuously.

まず、Ta原料として、市販の+321のTa粗粉(0
2含有量は約2500ppm)を準備し、これを塩化物
発生炉12の充填層13にセットした。セット後、Ar
ガスで充分に雰囲気置換を行った。
First, as a Ta raw material, commercially available +321 Ta coarse powder (0
2 content of about 2500 ppm) was prepared and set in the packed bed 13 of the chloride generating furnace 12. After setting, Ar
The atmosphere was sufficiently replaced with gas.

次いで、CQ、ガス流量0.05NQ/win、キャリ
アArガス流量0 、5 N Q /min、第2Ar
ガス流量2.5NQ/minにて各ガスをラインに供給
すると共に、H2ガスを流量10 N u/min (
約0.4so Q /win)にてH,/Taモル比が
約400倍になるようにH2ガスノズル15より還元反
応炉14に供給し、更に塩化物発生炉11の塩化温度を
500℃、還元反応炉14の反応温度を1000 ’C
にセットして反応を開始した。
Next, CQ, gas flow rate 0.05NQ/win, carrier Ar gas flow rate 0, 5NQ/min, second Ar
Each gas was supplied to the line at a gas flow rate of 2.5 NQ/min, and H2 gas was supplied at a flow rate of 10 N u/min (
H2 gas is supplied to the reduction reactor 14 from the H2 gas nozzle 15 so that the H,/Ta molar ratio is approximately 400 times (approximately 0.4 so The reaction temperature of the reactor 14 is set to 1000'C.
was set to start the reaction.

これにより、Ta粗粉は充填層内にて塩化揮発(TaC
f!、2蒸発速度I X 10−3so Q /In1
n)、生じた塩化物ガスはキャリアArガスによって還
元反応炉14に導かれ、H2ガスノズル15からの水素
ガスにより還元され、金属微粒子と塩化水素ガスが生成
される。
As a result, Ta coarse powder is chlorinated and volatilized (TaC) in the packed bed.
f! , 2 evaporation rate I X 10-3so Q /In1
n) The generated chloride gas is led to the reduction reactor 14 by the carrier Ar gas and reduced by the hydrogen gas from the H2 gas nozzle 15 to produce metal fine particles and hydrogen chloride gas.

生成された金属微粒子は蒸着用基材19にM!2置され
た透明石英製プレート上に付着し1粒子同志が焼結成長
して箔状となった。
The generated metal fine particles are deposited on the deposition substrate 19 M! The particles adhered to two transparent quartz plates and grew by sintering, forming a foil-like shape.

冷却後、このプレートを取り出し、箔を剥離した。After cooling, the plate was removed and the foil was peeled off.

以上の工程で得られた箔を、タンタルライニングしたス
タンプミルにて30分間粉砕したところ、350t11
!iを通過する粉末が90%得られた。
When the foil obtained in the above process was crushed for 30 minutes in a tantalum-lined stamp mill, 350t11
! 90% of the powder passing i was obtained.

なお、比較のため、従来より行われているNa還元によ
るTa粉について、これをボールミルにて粉砕した。
For comparison, Ta powder obtained by conventional Na reduction was ground in a ball mill.

第1表は、それぞれ得られたTa粉について、レーザー
回折法で求めた投影面積に基づく比表面積とBET法に
よる表面積を測定した結果を示している。
Table 1 shows the results of measuring the specific surface area based on the projected area determined by the laser diffraction method and the surface area by the BET method for each of the obtained Ta powders.

第1表 第1表より明らかなとおり1本発明例のTa粉と比較例
のボールミル粉砕Ta粉がともにBET法による表面積
が同じである場合、本発明で定義されるレーザー回折法
に基づく比表面積は、本発明例の方が遥かに小さいこと
がわかる。これは耐熱収縮性を改善する上で非常に大き
な効果をもたらすものである。それらの比は、本発明例
の場合、7.46であり、比較例の場合、2.78であ
る。
Table 1 As is clear from Table 1, if both the Ta powder of the present invention example and the ball-milled Ta powder of the comparative example have the same surface area as determined by the BET method, then the specific surface area as determined by the laser diffraction method defined in the present invention It can be seen that is much smaller in the example of the present invention. This has a very large effect on improving heat shrinkage resistance. Their ratio is 7.46 in the case of the invention example and 2.78 in the case of the comparative example.

因みに、本発明例のTa粉を走査型電子顕微鏡でWA察
したところ、第4図(a)に面部、(b)に端部を示す
ように、表面に細かい凹凸が多数あることが確認された
。また、このTa粉の全体は、第5図(a)に示すよう
に、比較的厚みのある肩平粉であることもわかる。一方
、比較例のボールミル粉砕Ta粉は、第5図(b)に示
す如く扇平粉ではあるものの、厚みがなく、表面に凹凸
が殆どない平滑面をもっていることがわかる。
Incidentally, when the Ta powder of the present invention was inspected using a scanning electron microscope, it was confirmed that there were many fine irregularities on the surface, as shown in FIG. 4 (a) and the end, respectively. Ta. Further, it can be seen that the Ta powder as a whole is a relatively thick flat shoulder powder, as shown in FIG. 5(a). On the other hand, as shown in FIG. 5(b), the ball mill-pulverized Ta powder of the comparative example is a fan-flat powder, but it is not thick and has a smooth surface with almost no irregularities.

なお、扁平塵は、本発明例、比較例共に10以上であっ
た。
In addition, the flat dust was 10 or more in both the present invention example and the comparative example.

(発明の効果) 以上詳述したように、本発明によるTa扁平粉は、細か
い凹凸をもった大きな表面積を有し、しかも比較的厚み
があるので、耐熱収縮性に優れると共に粉体としての流
動性、圧粉体特性等に優れ、高容量電解コンデンサー用
に好適である。
(Effects of the Invention) As detailed above, the Ta flat powder according to the present invention has a large surface area with fine irregularities and is relatively thick, so it has excellent heat shrinkage resistance and has excellent flowability as a powder. It has excellent properties such as hardness and powder compact properties, and is suitable for use in high-capacity electrolytic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における比表面積を説明する図であって
、(a)は扁平粉の斜視図であり、(b−1)〜(b 
−3)はそれぞれ(a)でのA視、B視、C視の投影像
、 (c−1)〜(c−3)はそれぞれ(a)でのA視
、B視、C視の球形換算面積を示し、 第2図はBET法による比表面積を説明する図であり。 第3図は本発明法の実施に用いる装置の一例を示す説明
図であり、 第4図及び第5図はTa扁平粉の粒子構造を示す走査型
電子顕微鏡写真であり、第4図(a)は本発明例の粒子
面部、第4図(b)は端部を示し、第5図(a)は本発
明例の粒子全体を示し、第5図(b)は比較例の粒子全
体を示している。 1・・・Ar供給ボンベ、2・・・H2供給ボンベ、3
・・CQ2供給ボンベ、4・・・脱酸器、5・・・脱水
器、6・・・流量計、7・・・CQ2ライン、8・・・
キャリアArライン、9・・・第2Arライン、10・
・・H2ライン、11・・・反応管、12・・・塩化物
発生炉、13・・・充填層、14・・・還元反応炉、1
5・・・H2ガスノズル、16・・・粉末回収フィルタ
ー、17・・・HCQ吸収塔。 18・・・電気伝導度測定セル、19・・・蒸着用基材
。 特許出願人   昭和電工株式会社 同     昭和キャボットスーパー メタル株式会社 代理人弁理士  中  村   尚 第1図(Q) (b−1)   (b−2)  (b−3)(c−1)
   (c−2)  (c−3)第 4 図 (α) 、夛 5[4 (06:
FIG. 1 is a diagram illustrating the specific surface area in the present invention, in which (a) is a perspective view of flat powder, (b-1) to (b
-3) are projection images of A, B, and C views in (a), respectively; (c-1) to (c-3) are spherical images of A, B, and C views in (a), respectively. The converted area is shown, and FIG. 2 is a diagram illustrating the specific surface area by the BET method. FIG. 3 is an explanatory diagram showing an example of an apparatus used for carrying out the method of the present invention, and FIGS. 4 and 5 are scanning electron micrographs showing the particle structure of Ta flat powder. ) shows the surface part of the particle of the invention example, FIG. 4(b) shows the end part, FIG. 5(a) shows the whole particle of the invention example, and FIG. 5(b) shows the whole particle of the comparative example. It shows. 1... Ar supply cylinder, 2... H2 supply cylinder, 3
... CQ2 supply cylinder, 4... Deoxidizer, 5... Dehydrator, 6... Flow meter, 7... CQ2 line, 8...
Carrier Ar line, 9... 2nd Ar line, 10...
... H2 line, 11... Reaction tube, 12... Chloride generating furnace, 13... Packed bed, 14... Reduction reactor, 1
5... H2 gas nozzle, 16... Powder collection filter, 17... HCQ absorption tower. 18... Electric conductivity measurement cell, 19... Base material for vapor deposition. Patent Applicant: Showa Denko K.K. Showa Cabot Super Metal Co., Ltd. Representative Patent Attorney Hisashi Nakamura Figure 1 (Q) (b-1) (b-2) (b-3) (c-1)
(c-2) (c-3) Figure 4 (α), 5 [4 (06:

Claims (2)

【特許請求の範囲】[Claims] (1)Ta微粉であって、扁平度が3以上であり、かつ
、レーザー回折粒度分析計で求めた投影面積に基づく比
表面積とBET法による表面積との比が4以上である表
面性状を有することを特徴とする金属扁平粉。
(1) It is Ta fine powder, and has a surface texture in which the flatness is 3 or more and the ratio of the specific surface area based on the projected area determined by a laser diffraction particle size analyzer to the surface area determined by the BET method is 4 or more. Flat metal powder characterized by:
(2)Taのハロゲン化物を水素還元し、生成したTa
微粒子を基板上に析出、成長させた後、基板から剥離し
てTa微粒子の連続体としてのTa箔を得て、このTa
箔を粉砕してTa扁平粉を得ることを特徴とする金属扁
平粉の製造方法。
(2) Ta produced by hydrogen reduction of Ta halide
After the fine particles are deposited and grown on the substrate, they are peeled off from the substrate to obtain a Ta foil as a continuum of Ta fine particles.
A method for producing flat metal powder, which comprises pulverizing foil to obtain Ta flat powder.
JP63126472A 1988-05-24 1988-05-24 Flat metal powder and method for producing the same Expired - Lifetime JP2571263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126472A JP2571263B2 (en) 1988-05-24 1988-05-24 Flat metal powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126472A JP2571263B2 (en) 1988-05-24 1988-05-24 Flat metal powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01294803A true JPH01294803A (en) 1989-11-28
JP2571263B2 JP2571263B2 (en) 1997-01-16

Family

ID=14936065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126472A Expired - Lifetime JP2571263B2 (en) 1988-05-24 1988-05-24 Flat metal powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2571263B2 (en)

Also Published As

Publication number Publication date
JP2571263B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US7585486B2 (en) Production of high-purity niobium monoxide and capacitor production therefrom
JP4836136B2 (en) Sputtering target for producing metal glass film and method for producing the same
JP2021515105A (en) Spherical tantalum powder, products containing it, and methods for producing them
JP3814841B2 (en) Method for producing metal oxide powder
CN104772473A (en) Preparation method of fine-particle spherical titanium powder for three-dimensional (3D) printing
JPH06511517A (en) Flaky tantalum powder and its usage
JP4837675B2 (en) High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
TW201806854A (en) Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds
JP2022513817A (en) Spherical niobium alloy powder, products containing it, and methods for producing them
KR100888911B1 (en) Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
Chen et al. Novel process for preparing tungsten powder by hydrogen reduction of tungsten trioxide
TWI477437B (en) Nanosize structures composed of valve metals and valve metal suboxides and process for producing them
JP2004124257A (en) Metal copper particulate, and production method therefor
KR101102872B1 (en) Fabrication Method of Tantalum Powders by Self-propagating High-temperature Synthesis
JP3608316B2 (en) Indium oxide-tin oxide powder and method for producing the same
JPH10203807A (en) Boron nitride powder of turbostratic structure and its production
KR100420605B1 (en) Cabalt Metal Agglomerates, a Process of the Same and Their Use
JPH01294803A (en) Flat metal powder and production thereof
JP3198238B2 (en) Fine powder of titanium oxide and method for producing the same
JP2007045670A (en) Manufacturing method of metal carbide
Lee et al. Effect of powder synthesis atmosphere on the characteristics of iron nanopowder in a plasma arc discharge process
JPH0867503A (en) Production of hydrogenated titanium superfine particle
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JPH01222027A (en) Tantalum foil and its manufacture
Zhang et al. Deep decarburization of molybdenum and tungsten powders by wet hydrogen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12