JPH0867503A - Production of hydrogenated titanium superfine particle - Google Patents

Production of hydrogenated titanium superfine particle

Info

Publication number
JPH0867503A
JPH0867503A JP22745694A JP22745694A JPH0867503A JP H0867503 A JPH0867503 A JP H0867503A JP 22745694 A JP22745694 A JP 22745694A JP 22745694 A JP22745694 A JP 22745694A JP H0867503 A JPH0867503 A JP H0867503A
Authority
JP
Japan
Prior art keywords
titanium
plasma
hydrogen
ultrafine
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22745694A
Other languages
Japanese (ja)
Inventor
Katsuhisa Osaki
大崎勝久
Toyokichi Tanaka
田中豊吉
Hironori Tanizaki
谷崎裕則
Kunihiko Iwasaki
岩崎邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP22745694A priority Critical patent/JPH0867503A/en
Publication of JPH0867503A publication Critical patent/JPH0867503A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: To obtain superfine particles of hydrogenated titanium free from contamination due to impurities without a powdering step by reacting high- temperature hydrogen plasma with titanium, melting and evaporating titanium and simultaneously carrying out formation of superfine particles and hydrogenation reaction of the titanium. CONSTITUTION: This method for producing hydrogenated titanium superfine particles are to heat, melt and evaporate titanium using DC arc discharge, DC plasma jet and RF plasma as a plasma source and hydrogen-argon mixed gas as a plasma gas, respectively and simultaneously carry out formation of superfine titanium particles having <=1μm diameter and hydrogenation reaction of titanium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素化チタン超微粒子
を水素プラズマを用いた蒸発法により製造する方法に関
する。水素化チタン超微粒子はそのまま粉末冶金に用い
られたり、真空中で脱水素されてチタン超微粒子として
利用される。前者の場合、金属粉末と混合して焼結する
と水素化チタンの還元作用により緻密な焼結体が得られ
る。後者はゲッター材、接合材、焼結型固体式チタンコ
ンデンサ、粉末冶金などに利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine titanium hydride particles by an evaporation method using hydrogen plasma. The titanium hydride ultrafine particles are directly used for powder metallurgy, or dehydrogenated in vacuum to be used as titanium ultrafine particles. In the former case, when mixed with metal powder and sintered, a dense sintered body is obtained due to the reducing action of titanium hydride. The latter is used for getter materials, bonding materials, sintered solid titanium capacitors, powder metallurgy and the like.

【0002】[0002]

【従来の技術】従来技術として、純度99.9%、10
メッシュ以下のスポンジチタンを800℃、10−5m
mHgで脱ガスした後、400℃以上で高純度水素と反
応させ水素化チタンを作製する方法や、酸化チタンを9
00〜1000℃で水素化カルシウムで還元してさらに
水素と反応させ副生する酸化カルシウムを塩酸で除くこ
とにより水素化チタンを作製する方法がある。この場合
に反応させる水素は99.999%以上の純度である必
要があり、パラジウム合金膜を透過させるか、850℃
に加熱したスポンジチタン層を通過させることにより酸
素、窒素、水分を除去した露点湿度−70℃程度のもの
が使用される。こうして作製した水素化チタンは、機械
的に粉砕されて所望の粒度の水素化チタン粉末を得る。
この場合の粒度は、通常10〜100μmである。(チ
タニウム懇話会編、チタン等金属とその化合物、p.3
09(アグネ刊))
2. Description of the Related Art As prior art, the purity is 99.9%, 10
Titanium sponge below mesh is 800 ℃, 10-5m
After degassing with mHg, a method of producing titanium hydride by reacting with high-purity hydrogen at 400 ° C. or higher,
There is a method of producing titanium hydride by reducing with calcium hydride at 00 to 1000 ° C., further reacting with hydrogen, and removing calcium oxide by-produced with hydrochloric acid. In this case, the hydrogen to be reacted must have a purity of 99.999% or more, and the hydrogen can be passed through the palladium alloy film or at 850 ° C.
A dew-point humidity of about −70 ° C. is used in which oxygen, nitrogen and water are removed by passing through a titanium sponge layer which has been heated. The titanium hydride thus produced is mechanically crushed to obtain a titanium hydride powder having a desired particle size.
The particle size in this case is usually 10 to 100 μm. (Titanium Roundtable, Metals such as titanium and their compounds, p. 3
09 (published by Agne)

【0003】[0003]

【発明が解決しようとする課題】従来技術では、前述の
ように水素化チタン粉末の製造は、水素化反応、粉砕の
2工程を必要とする。水素化反応では前処理として高真
空中、800℃での脱ガスの後400℃高純度水素中で
の水素化といった方法が取られるために時間と高真空、
高純度水素が必要となる。また、粉砕工程では粉砕機か
らの不純物の混入が避けらず、粒度については、数十μ
mが一般的であり、粉砕という手法上10μm以下の粉
末を得るのは非常に困難であり、1μm以下の粉末の製
造は不可能である。
In the prior art, as mentioned above, the production of titanium hydride powder requires two steps of hydrogenation reaction and pulverization. In the hydrogenation reaction, pretreatment is performed in high vacuum, degassing at 800 ° C., and then hydrogenation in 400 ° C. high-purity hydrogen.
High-purity hydrogen is required. Also, in the crushing process, mixing of impurities from the crusher is unavoidable, and the particle size is tens of μm.
m is common, and it is very difficult to obtain a powder having a particle size of 10 μm or less due to a method of pulverization, and it is impossible to produce a powder having a particle size of 1 μm or less.

【0004】[0004]

【課題を解決するための手段】本発明は工程数を簡素化
し、反応時間を短縮、高真空、高純度水素は不要として
不純物の混入が無い1μm以下の水素化チタン超微粒子
を作製する方法を提案するものである。その方法は高温
の水素プラズマをチタンに作用させチタンの蒸発、凝縮
による超微粒子化と水素化反応を同時に起こさせること
を特徴とする。
The present invention provides a method for producing ultrafine titanium hydride particles of 1 μm or less in which the number of steps is simplified, the reaction time is shortened, high vacuum and high purity hydrogen are unnecessary, and impurities are not mixed. It is a proposal. The method is characterized in that a high-temperature hydrogen plasma is applied to titanium to cause ultrafine particles by evaporation and condensation of titanium and a hydrogenation reaction to occur simultaneously.

【0005】プラズマ源にはDCアーク放電、DCプラ
ズマジェット、RFプラズマを用いる。いずれの場合
も、装置はプラズマ(アーク放電)を発生させチタンの
水素化及び超微粒子化を行う超微粒子発生容器と発生し
た超微粒子を回収する超微粒子回収器、それに付帯する
設備から構成される。超微粒子発生容器は気密性に優れ
た水冷容器が用いられ、超微粒子回収器はサイクロンや
フィルターが用いられる。付帯する設備としては、プラ
ズマ電源、粉末搬送ガス供給系、装置冷却水循環系から
なる。
DC arc discharge, DC plasma jet, or RF plasma is used as the plasma source. In any case, the device is composed of an ultrafine particle generation container for generating plasma (arc discharge) for hydrogenation and ultrafine particle formation of titanium, an ultrafine particle collector for collecting the generated ultrafine particles, and equipment attached thereto. . A water-cooled container having excellent airtightness is used as the ultrafine particle generation container, and a cyclone or a filter is used as the ultrafine particle recovery device. The incidental equipment consists of a plasma power supply, a powder carrier gas supply system, and a device cooling water circulation system.

【0006】DCアーク放電を用いる場合、まず装置内
の雰囲気を水素−アルゴン混合雰囲気に置換する。次に
原料の塊状チタンをアークで溶融すると、そのアーク近
傍からチタンが蒸発し雰囲気の水素と反応して水素化チ
タン超微粒子となり、その超微粒子をガスで搬送し超微
粒子回収器で回収する。
When using DC arc discharge, the atmosphere in the apparatus is first replaced with a hydrogen-argon mixed atmosphere. Next, when the bulk titanium as a raw material is melted by an arc, titanium evaporates from the vicinity of the arc and reacts with hydrogen in the atmosphere to form titanium hydride ultrafine particles. The ultrafine particles are transported by gas and recovered by an ultrafine particle collector.

【0007】DCプラズマジェットを用いる場合、DC
アーク放電と同様に塊状チタンを溶融し水素化チタン超
微粒子を発生させる方法と、プラズマガスとして水素−
アルゴンガスをトーチから流しプラズマを発生させ、そ
こにチタン粉末を送入してプラズマ中でチタン粉末の蒸
発と水素化を起こさせる方法がある。
When using a DC plasma jet, DC
Similar to arc discharge, a method of melting massive titanium to generate titanium hydride ultrafine particles, and hydrogen as plasma gas
There is a method in which argon gas is flown from a torch to generate plasma, and titanium powder is fed into the plasma to cause vaporization and hydrogenation of titanium powder in the plasma.

【0008】RFプラズマを用いる場合、プラズマガス
として水素−アルゴンガスをトーチ上部から流し、高周
波プラズマを発生させ、その熱プラズマ反応部にチタン
粉末を送入してチタン粉末の蒸発と水素化を起こさせる
方法である。
When RF plasma is used, hydrogen-argon gas is flown as a plasma gas from the upper part of the torch to generate high frequency plasma, and titanium powder is fed into the thermal plasma reaction part to cause evaporation and hydrogenation of titanium powder. It is a method to let.

【0009】[0009]

【作用】本方法により従来法では出来ない1μm以下で
球形かつ高純度の水素化チタン超微粒子の作製を可能と
した。すなわち、従来法では粉砕するために粉末形状は
不定形であり粒度も1μm以上のものしか作製出来な
い。また不純物も混入し易いという欠点があったが、本
方法は、蒸発法であるため粒度は1μm以下、多くは
0. 1μm以下の超微粉が作製できる。密閉された容器
の中でチタンに水素プラズマを作用させて蒸発と水素化
反応を同時に起こさせるために不純物も混入し難い。
This method makes it possible to produce spherical and high-purity titanium hydride ultrafine particles of 1 μm or less, which cannot be obtained by the conventional method. That is, in the conventional method, since the powder is pulverized, the powder shape is indefinite and only the particle size of 1 μm or more can be produced. Further, although there is a drawback that impurities are easily mixed in, since this method is an evaporation method, it is possible to produce ultrafine powder having a particle size of 1 μm or less, most of which is 0.1 μm or less. Impurities are not easily mixed in because hydrogen plasma is applied to titanium in a closed container to cause evaporation and hydrogenation reaction at the same time.

【0010】[0010]

【実施例】【Example】

〔実施例1〕図1に示すDCアーク放電装置により水素
化チタン超微粒子を作製した。この装置は超微粉発生容
器にアーク放電電極と水冷試料台が設置されており、水
冷試料台上に塊状チタンを置き、装置内の雰囲気をまず
ロータリーポンプで1Paに排気した後、水素−アルゴ
ン混合ガスを導入し0. 1MPaとした。塊状チタンを
アークで溶融するとその試料表面から水素化チタン超微
粒子が発生し、それをキャリヤーガスで超微粒子回収器
に搬送し回収した。
Example 1 Titanium hydride ultrafine particles were produced by the DC arc discharge device shown in FIG. This equipment has an arc discharge electrode and a water-cooled sample stand installed in an ultrafine powder generation container, puts massive titanium on the water-cooled sample stand, first evacuates the atmosphere in the equipment to 1 Pa with a rotary pump, and then hydrogen-argon mixing Gas was introduced and the pressure was adjusted to 0.1 MPa. When lumpy titanium was melted by an arc, titanium hydride ultrafine particles were generated from the surface of the sample, which was transported to the ultrafine particle collector by a carrier gas and collected.

【0011】図2に雰囲気中の水素濃度と水素化チタン
超微粒子の発生量の関係を示す。アーク放電の条件は1
50A、40Vである。雰囲気中の水素濃度は任意に選
択できるが40%水素以下では発生量が極端に少なくな
り実用的ではない。
FIG. 2 shows the relationship between the hydrogen concentration in the atmosphere and the amount of titanium hydride ultrafine particles generated. The condition of arc discharge is 1
It is 50A and 40V. The hydrogen concentration in the atmosphere can be arbitrarily selected, but if the hydrogen concentration is 40% or less, the amount of hydrogen generated is extremely small, which is not practical.

【0012】図3にDSC曲線を示す。この図からは4
15℃から脱水素が始まることがわかる。
FIG. 3 shows the DSC curve. 4 from this figure
It can be seen that dehydrogenation begins at 15 ° C.

【0013】超微粉作製時のアーク放電の条件は150
A、40V、雰囲気は60%水素−40%アルゴンで得
られた水素化チタン超微粉のTEM写真とX線回折の結
果を図4と図5に示した。これらの図から粒度と生成相
がわかる。つまり、粒度は大きいもので0. 3μmで多
くが0. 1μmのほぼ球形の超微粒子であり、生成相は
TiH1.9 の水素化チタンとなっている。
The condition of arc discharge during the production of ultrafine powder is 150
A and 40 V, the atmosphere was 60% hydrogen-40% argon, and the results of TEM photographs and X-ray diffraction of the ultrafine titanium hydride powder were shown in FIGS. 4 and 5. From these figures, the grain size and generation phase can be seen. In other words, the particle size is large, 0.3 μm and mostly 0.1 μm, which are almost spherical ultrafine particles, and the production phase is titanium hydride of TiH1.9.

【0014】〔実施例2〕図6に示す様なDCプラズマ
ジェット装置により水素化チタン超微粒子を作製した。
この装置は超微粒子発生容器にDCプラズマジェットの
トーチが設置されている。そのトーチを図7に示す。操
業は、まず装置内をロータリーポンプで1Paに排気し
た後、アルゴンを導入し0. 1MPaとした。プラズマ
ガスとしてトーチノズルから30l/minの10%水
素−90%アルゴンを流しDCプラズマを点火した。プ
ラズマが安定した後、キャリヤーガス5l/minでパ
ウダーフィーダーからチタン粉末(<45μm)を投入
するとプラズマ中で溶融、蒸発、水素化が起こり水素化
チタン超微粒子が得られた。プラズマ出力はMAX3k
Wの電源を使用し常用2kWで使用している。チタン投
入量は3g/min以下であればプラズマは安定してお
り超微粒子発生状況は良好であるが、チタン投入量がそ
れ以上になると未蒸発の粉末が増加しトーチノズルの詰
まりの原因となった。この方法により作製した水素化チ
タン超微粒子のSEM像を図8に示した。
Example 2 Titanium hydride ultrafine particles were produced by a DC plasma jet apparatus as shown in FIG.
In this device, a DC plasma jet torch is installed in an ultrafine particle generating container. The torch is shown in FIG. In the operation, first, the apparatus was evacuated to 1 Pa by a rotary pump, and then argon was introduced to make the pressure 0.1 MPa. As the plasma gas, 30 l / min of 10% hydrogen-90% argon was flown from the torch nozzle to ignite the DC plasma. After the plasma was stabilized, when titanium powder (<45 μm) was introduced from a powder feeder with a carrier gas of 5 l / min, melting, evaporation and hydrogenation occurred in the plasma, and titanium hydride ultrafine particles were obtained. Plasma output is MAX 3k
It uses a W power source and uses it at a regular 2 kW. If the titanium input amount is 3 g / min or less, the plasma is stable and the generation of ultrafine particles is good. .. An SEM image of titanium hydride ultrafine particles produced by this method is shown in FIG.

【0015】〔実施例3〕図9に示す高周波プラズマ装
置により水素化チタン超微粒子を作製した。この装置は
超微粒子発生容器の上部にに高周波プラズマトーチが設
置されている。高周波の周波数は4MHzである。まず
装置内をロータリーポンプで1Paに排気した後、アル
ゴンを導入し0. 1MPaとした。プラズマガスとして
トーチ上部からアルゴンを流し高周波プラズマを点火し
た後水素を導入しプラズマガスが10〜20%水素−ア
ルゴンになるようにした。プラズマ出力はMAX50k
Wであるが常用35〜40kWで使用した。そのプラズ
マの上部からパウダーフィーダーによりチタン粉末を1
g/minで投入するとプラズマ中で溶融、蒸発、水素
化が起こり水素化チタン超微粒子が得られた。図10に
示した粒度分布から1μm以下の超微粒子となっている
ことがわかる。
Example 3 Titanium hydride ultrafine particles were produced by the high frequency plasma apparatus shown in FIG. In this device, a high-frequency plasma torch is installed above the ultrafine particle generation container. The frequency of the high frequency is 4 MHz. First, the apparatus was evacuated to 1 Pa by a rotary pump, and then argon was introduced to adjust the pressure to 0.1 MPa. As the plasma gas, argon was flown from the upper part of the torch to ignite the high frequency plasma, and then hydrogen was introduced so that the plasma gas became 10% to 20% hydrogen-argon. Plasma output is MAX 50k
Although it was W, it was normally used at 35-40 kW. From the top of the plasma, add 1 titanium powder with a powder feeder.
When charged at g / min, melting, evaporation and hydrogenation occurred in plasma, and titanium hydride ultrafine particles were obtained. From the particle size distribution shown in FIG. 10, it can be seen that the particles are ultrafine particles of 1 μm or less.

【0016】[0016]

【発明の効果】本発明は水素プラズマを利用することに
よりチタンを原料にして水素化チタン超微粒子を簡便に
作製する方法に関するものである。この方法により不純
物の混入がない球形で1μm以下の水素化チタン超微粒
子を作製できる。
The present invention relates to a method for easily producing ultrafine titanium hydride particles using titanium as a raw material by utilizing hydrogen plasma. By this method, it is possible to produce spherical titanium hydride ultrafine particles of 1 μm or less in which no impurities are mixed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 DCアーク放電装置の概要図FIG. 1 is a schematic diagram of a DC arc discharge device.

【図2】 雰囲気中水素濃度と水素化チタン超微粒子発
生量の関係
[Fig. 2] Relationship between hydrogen concentration in atmosphere and generation amount of titanium hydride ultrafine particles

【図3】 水素化チタン超微粒子のDSC測定結果FIG. 3 DSC measurement results of titanium hydride ultrafine particles

【図4】 DCアーク放電法で作製した水素化チタン超
微粒子のTEM像
FIG. 4 is a TEM image of titanium hydride ultrafine particles prepared by a DC arc discharge method.

【図5】 水素化チタン超微粒子のX線回折結果FIG. 5: X-ray diffraction results of titanium hydride ultrafine particles

【図6】 DCプラズマジェット装置の概要図FIG. 6 is a schematic diagram of a DC plasma jet device.

【図7】 DCプラズマジェットトーチの概要図FIG. 7 is a schematic diagram of a DC plasma jet torch.

【図8】 DCプラズマジェットで作製した水素化チタ
ン超微粒子のSEM像
FIG. 8 is an SEM image of titanium hydride ultrafine particles prepared by a DC plasma jet.

【図9】 高周波プラズマ装置の概要FIG. 9 Overview of high-frequency plasma device

【図10】高周波プラズマ法で作製した水素化チタン超
微粒子の粒度分布
FIG. 10: Particle size distribution of titanium hydride ultrafine particles prepared by the high frequency plasma method

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎邦彦 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社新材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihiko Iwasaki, 1 Nisshin Steel Co., Ltd., New Materials Research Center, 7-7 Takaya Shinmachi, Ichikawa City, Chiba Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素プラズマでチタンを加熱溶融するこ
とによりチタンを溶融、蒸発させて粒度1μm以下に超
微粒子化すると同時に水素化反応を起こさせることを特
徴とする水素化チタン超微粒子の製造方法。
1. A method for producing titanium hydride ultrafine particles, which comprises melting and evaporating titanium by heating and melting it with hydrogen plasma to form ultrafine particles having a particle size of 1 μm or less and at the same time causing a hydrogenation reaction. .
【請求項2】 水素プラズマ源にDCアーク放電または
DCプラズマジェットを用いて水素または水素−アルゴ
ン混合雰囲気中で塊状チタンを加熱溶解する請求項1に
記載の水素化チタン超微粒子の製造方法。
2. The method for producing ultrafine titanium hydride particles according to claim 1, wherein the bulk titanium is heated and melted in a hydrogen or hydrogen-argon mixed atmosphere using a DC arc discharge or a DC plasma jet as a hydrogen plasma source.
【請求項3】 水素プラズマ源にDCプラズマジェット
またはRFプラズマを用いてプラズマガスに水素−アル
ゴン混合ガスを使用しプラズマ中にチタン粉末を投入す
る請求項1に記載の水素化チタン超微粒子の製造方法。
3. The production of titanium hydride ultrafine particles according to claim 1, wherein DC plasma jet or RF plasma is used as a hydrogen plasma source, and hydrogen-argon mixed gas is used as a plasma gas to introduce titanium powder into the plasma. Method.
JP22745694A 1994-08-30 1994-08-30 Production of hydrogenated titanium superfine particle Withdrawn JPH0867503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22745694A JPH0867503A (en) 1994-08-30 1994-08-30 Production of hydrogenated titanium superfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22745694A JPH0867503A (en) 1994-08-30 1994-08-30 Production of hydrogenated titanium superfine particle

Publications (1)

Publication Number Publication Date
JPH0867503A true JPH0867503A (en) 1996-03-12

Family

ID=16861160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22745694A Withdrawn JPH0867503A (en) 1994-08-30 1994-08-30 Production of hydrogenated titanium superfine particle

Country Status (1)

Country Link
JP (1) JPH0867503A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771339A (en) * 2014-02-08 2014-05-07 宝鸡市泉兴钛业有限公司 Special high titanium hydride powder for preparing foamed aluminum and preparation method of special high titanium hydride powder
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
RU2616920C2 (en) * 2014-12-08 2017-04-18 Федеральное государственное бюджетное учреждение науки Институт энергетических проблем химической физики им. В.Л. Тальрозе Российской академии наук ИНЭПХФ РАН им. В.Л. Тальрозе Method for obtaining the nanopowder of titanide hydride
US10226821B2 (en) 2015-01-20 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
JP2019182710A (en) * 2018-04-12 2019-10-24 新東工業株式会社 Method of manufacturing tetrahydroborate, and tetrahydroborate
WO2020044596A1 (en) * 2018-08-27 2020-03-05 新東工業株式会社 Method for producing tetrahydroboric acid salt, device for producing tetrahydroboric acid salt, and tetrahydroboric acid salt

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
CN103771339A (en) * 2014-02-08 2014-05-07 宝鸡市泉兴钛业有限公司 Special high titanium hydride powder for preparing foamed aluminum and preparation method of special high titanium hydride powder
RU2616920C2 (en) * 2014-12-08 2017-04-18 Федеральное государственное бюджетное учреждение науки Институт энергетических проблем химической физики им. В.Л. Тальрозе Российской академии наук ИНЭПХФ РАН им. В.Л. Тальрозе Method for obtaining the nanopowder of titanide hydride
US10226821B2 (en) 2015-01-20 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
US10882114B2 (en) 2015-01-20 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
JP2019182710A (en) * 2018-04-12 2019-10-24 新東工業株式会社 Method of manufacturing tetrahydroborate, and tetrahydroborate
US11685664B2 (en) 2018-04-12 2023-06-27 Sintokogio, Ltd. Method for producing tetrahydroborate and tetrahydroborate
WO2020044596A1 (en) * 2018-08-27 2020-03-05 新東工業株式会社 Method for producing tetrahydroboric acid salt, device for producing tetrahydroboric acid salt, and tetrahydroboric acid salt
JP2020033201A (en) * 2018-08-27 2020-03-05 新東工業株式会社 Producing method of tetrahydroborate, producing apparatus of tetrahydroborate, and tetrahydroborate

Similar Documents

Publication Publication Date Title
US6676728B2 (en) Sputtering target, method of making same, and high-melting metal powder material
CN100438965C (en) Process for the synthesis, separation and purification of powder materials
Bardakhanov et al. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
JPS60175537A (en) Preparation of ultra-fine ceramic particles
CN101391307A (en) Preparation method of fine globular tungsten powder
CN104772473A (en) Preparation method of fine-particle spherical titanium powder for three-dimensional (3D) printing
JP2009242946A (en) Method for producing metallic titanium
JP4465662B2 (en) Method for producing metal powder and method for producing target material
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
JP2001342506A (en) Method for production of powder material and method for producing target material
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
US20050150759A1 (en) Powder and coating formation method and apparatus
JPH01275708A (en) Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride
JPH0867503A (en) Production of hydrogenated titanium superfine particle
JP2004124257A (en) Metal copper particulate, and production method therefor
CN111515408A (en) NiTi alloy powder and preparation method and application thereof
JPS63170212A (en) Production of hyper-fine powder of metal boride
JPH01306510A (en) Improvement for manufacturing super fine particle powder
Devaux et al. Production of ultrafine powders of Bi Sb solid solution
JPH04362105A (en) Production of fine intermetallic compound powder
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JP2005154834A (en) Ruthenium ultrafine powder and its production method
RU2672422C1 (en) Method of obtaining nanocrystalline titanium powder-molybdenum carbide powder
JPH04350106A (en) Alloy hiper fine particle and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106