JPH04350106A - Alloy hiper fine particle and production thereof - Google Patents

Alloy hiper fine particle and production thereof

Info

Publication number
JPH04350106A
JPH04350106A JP3121699A JP12169991A JPH04350106A JP H04350106 A JPH04350106 A JP H04350106A JP 3121699 A JP3121699 A JP 3121699A JP 12169991 A JP12169991 A JP 12169991A JP H04350106 A JPH04350106 A JP H04350106A
Authority
JP
Japan
Prior art keywords
plasma
alloy
gas
ultrafine
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121699A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Yamada
幸良 山田
Eisuke Kuroda
黒田 英輔
Tadashi Fuyuki
正 冬木
Satoshi Akiyama
聡 秋山
Yoshiaki Hamada
美明 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP3121699A priority Critical patent/JPH04350106A/en
Publication of JPH04350106A publication Critical patent/JPH04350106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain hiper fine particle of an alloy composition having a desired particle diameter by quenching a metal vaporized by plasma while feeding hydrogen gas into plasma flame which is surrounded with a sheath gas when vaporizing two or more kinds of metal different in b.p. and m.p. with high temp. plasma. CONSTITUTION:Two or more kinds of the metal different in b.p. and m.p. are vaporized with the high temp. plasma. In this time, 0.1-10l/min of hydrogen gas is fed into plasma flame which is throttled and is made to reductive. And, the flame is surrounded with 20-100l/min of an inert gas such as nitrogen, helium, argon, and xenon as a sheath gas. As the result, the hiper fine particle having alloy composition of above described metal and 85-650nm particle diameter is obtained by quenching the metal vaporized with plasma.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【従来の技術】合金の粉末はこれ迄に種々の用途、例え
ばメタリック顔料、触媒および触媒製造原料、焼結合金
製造材料、などに用いられており、通常、目標の組成に
金属を配合し、加熱し、合金塊を製造し、その後何らか
の手段により粉砕して製造されていた。この場合合金塊
の粉砕は機械的手段によって行なわれることから粉砕限
界以上の微細な粒子を製造することが出来ず数10μm
の直径を有する粒子の生成がこの方法にあっては限界で
あった。
BACKGROUND OF THE INVENTION Alloy powders have been used for various purposes, such as metallic pigments, catalysts and raw materials for producing catalysts, and materials for producing sintered alloys. It was produced by heating to produce an alloy ingot, and then pulverizing it by some means. In this case, since the alloy ingot is pulverized by mechanical means, it is not possible to produce particles as fine as the pulverization limit, which is several tens of μm in size.
The limit of this method was the production of particles with a diameter of .

【0002】金属を含む無機物質の超微粒子化の試みは
これまでに多くのものがなされ、熱分解法、ガス還元法
、沈殿法などの化学的方法の他にプラズマを用いる固体
物質の蒸発と固化による物理的な方法が行なわれている
。ところで合金の超微粒子の製造についてはこれ迄に上
記したプラズマを利用する方法や、真空蒸発法による2
種類の金属の蒸発と引き続く冷却、固化による合金の超
微粒子の製造の試みが数多くなされてはいるが、2つの
金属または3つ以上の金属の沸点、および融点が相違す
る場合には合金相を形成させることにきわめて困難性が
あり、普通は2つの金属または3つ以上の金属の夫々の
金属超微粒子の混合物が形成されまたその組成も大きく
変動してしまう欠点があった。かかる事情からこれまで
高温プラズマ法によっては沸点および融点の異なった2
つまたは3つ以上の金属の合金の超微粒子は得られなか
った。
[0002] Many attempts have been made to make ultrafine particles of inorganic substances including metals, and in addition to chemical methods such as thermal decomposition, gas reduction, and precipitation, there have also been evaporation of solid substances using plasma. A physical method using solidification is used. By the way, regarding the production of ultrafine particles of alloys, there have been two methods, such as the above-mentioned method using plasma and the vacuum evaporation method.
Numerous attempts have been made to produce ultrafine particles of alloys by evaporation of different metals followed by cooling and solidification. It is extremely difficult to form such metals, and usually a mixture of ultrafine metal particles of two metals or three or more metals is formed, and the composition thereof varies greatly. For this reason, up until now, depending on the high-temperature plasma method, two
Ultrafine particles of alloys of one or more metals were not obtained.

【0003】0003

【発明が解決しようとする課題】ところで焼結法によっ
て合金の成型物を製造しようとする場合、合金超微粒子
を焼結することにより全体が均一で欠陥のない成型物が
得られることが予想される。また金属または無機物質を
金属超微粒子をバインダーとして加熱および加圧下に接
合して成型物を製造する場合、金属または無機物質とバ
インダーである金属超微粒子との間の親和性が成型物の
強度に大きい影響を与える要素であることが知られてい
る。例えばダイヤモンド粉末に金属超微粒子をバインダ
ーとして加熱、加圧下に焼結する場合に、ダイヤモンド
粉末に濡れ性の良い金属超微粒子を用いることによって
好ましい焼結物が得られる。そしてこの場合の濡れ性の
加減変更についてはベースとなる金属に濡れ性を改良す
るための金属を合金の形で配合することによりこれを達
成することが考慮されるのである。
[Problem to be solved by the invention] By the way, when trying to manufacture a molded alloy by a sintering method, it is expected that by sintering ultrafine alloy particles, a molded product that is uniform throughout and free of defects can be obtained. Ru. In addition, when manufacturing a molded product by joining metal or inorganic materials under heat and pressure using ultrafine metal particles as a binder, the strength of the molded product depends on the affinity between the metal or inorganic material and the ultrafine metal particles as a binder. It is known that this is a factor that has a large influence. For example, when diamond powder is sintered under heat and pressure using ultrafine metal particles as a binder, a preferable sintered product can be obtained by using ultrafine metal particles that have good wettability with the diamond powder. In this case, it is considered that the degree of wettability can be changed by blending a metal in the form of an alloy with the base metal to improve the wettability.

【0004】しかしながら、従来法による2つまたはそ
れ以上の金属から金属超微粒子を製造しようとする場合
、各々の金属の沸点および融点が相違する場合について
は合金相を形成させることができず得られる金属超微粒
子は夫々の単体金属の超微粒子混合物でしかなかった。
However, when attempting to produce ultrafine metal particles from two or more metals using conventional methods, if the boiling points and melting points of the respective metals are different, it is not possible to form an alloy phase. Ultrafine metal particles were nothing more than a mixture of ultrafine particles of individual metals.

【0005】したがって合金超微粒子とその製造方法の
開発が求められていたのである。
[0005]Therefore, there has been a need for the development of ultrafine alloy particles and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは合金超微粒
子が従来法の高温プラズマを用いる2種またはそれ以上
の金属の蒸発と、引き続く冷却による方法では得られな
い理由が、従来法にあっては高温プラズマによる金属の
蒸気が冷却工程に比較的長時間滞留し、そのため、沸点
および融点の高い金属種が先に固化析出を開始し、この
沸点および融点の高い金属の固化析出が終ったあとでよ
り低沸点および低融点の金属が固化および析出を開始す
るために、得られた金属超微粒子の組成が個々の金属の
超微粒子の混合物であって合金超微粒子ではないことに
あるとの考え方に基づき、高温プラズマ法による合金超
微粒子の製造に当り冷却速度を上げることにより合金組
成の超微粒子が得られることを確認して本発明を完成し
たのである。
[Means for Solving the Problems] The present inventors have discovered the reason why ultrafine alloy particles cannot be obtained by the conventional method of evaporating two or more metals using high-temperature plasma and subsequent cooling. In some cases, the metal vapor generated by the high-temperature plasma remains in the cooling process for a relatively long time, so that the metal species with high boiling and melting points start solidifying and precipitating first, and the solidifying and precipitating metals with high boiling and melting points end. After that, metals with lower boiling points and lower melting points begin to solidify and precipitate, and this is because the composition of the obtained ultrafine metal particles is a mixture of ultrafine particles of individual metals and not ultrafine alloy particles. Based on this idea, the present invention was completed by confirming that ultrafine particles having an alloy composition can be obtained by increasing the cooling rate when producing ultrafine alloy particles using a high-temperature plasma method.

【0007】すなわち、本発明は、高温プラズマを用い
て沸点および融点の異なる2種またはそれ以上の金属を
蒸発させ、これを冷却して合金組成の超微粒子を製造す
るに当り、プラズマ焔に水素ガスを導入してプラズマ焔
をしぼると共にこの水素ガスによってプラズマを還元性
雰囲気に置きシースガスでプラズマ焔を包囲するように
導入してプラズマ焔の温度勾配を大きくしプラズマで蒸
発した金属を急冷することを特徴とする合金組成の超微
粒子の製造方法に関する。
That is, the present invention uses high-temperature plasma to evaporate two or more metals with different boiling points and melting points, and cools them to produce ultrafine particles having an alloy composition. Hydrogen is added to the plasma flame. Gas is introduced to squeeze the plasma flame, and the hydrogen gas is used to place the plasma in a reducing atmosphere, and a sheath gas is introduced so as to surround the plasma flame, increasing the temperature gradient of the plasma flame and rapidly cooling the metal evaporated by the plasma. The present invention relates to a method for producing ultrafine particles having an alloy composition characterized by:

【0008】本発明における高温プラズマを用いて金属
を超微粒子化する方法自体は公知のものを採用すること
ができる。すなわち、高温プラズマの発生方法としては
、アーク放電によるプラズマジェットの発生、アーク放
電によるアーク溶解とそれに伴うプラズマの発生などの
アーク放電電極を用いるアーク放電によるプラズマ発生
法、高周波電極中にガスを流してこのガスを高温プラズ
マ化する方法などがあり、この高温プラズマを用いる金
属の超微粉化には具体的には高周波の印加によって高温
プラズマ化された気体流中に金属を導入してこれを気化
蒸発させる方法があり、そしてこれらの方法によって発
生したプラズマを用いて金属を蒸発させ、固化して超微
粉末を製造するに際して上記した本方法が使用可能とな
る。
[0008] In the present invention, a known method can be used for making metal into ultrafine particles using high-temperature plasma. In other words, methods for generating high-temperature plasma include generation of a plasma jet by arc discharge, plasma generation by arc discharge using an arc discharge electrode such as arc melting by arc discharge and generation of plasma, and plasma generation by flowing gas through a high-frequency electrode. There are methods such as turning lever gas into high-temperature plasma. Specifically, the ultra-fine powdering of metal using this high-temperature plasma involves introducing the metal into a gas flow that has been turned into high-temperature plasma by applying high frequency waves and vaporizing it. There are evaporation methods, and the above-described method can be used to evaporate metal using plasma generated by these methods and solidify it to produce ultrafine powder.

【0009】本発明の方法においてプラズマ焔に導入す
る水素ガス量は0.1〜10リットル/分、好ましくは
3〜5リットル/分の範囲のものであり、またプラズマ
焔を包囲するように導入するシースガスは合金超微粒子
とは不活性の窒素、ヘリウム、アルゴン、キセノン、な
どであり、その導入量は20〜100リットル/分、好
ましくは40〜70リットル/分の範囲のものである。
[0009] In the method of the present invention, the amount of hydrogen gas introduced into the plasma flame is in the range of 0.1 to 10 liters/min, preferably 3 to 5 liters/min, and the hydrogen gas is introduced so as to surround the plasma flame. The sheath gas used for the alloy ultrafine particles is inert nitrogen, helium, argon, xenon, etc., and the amount introduced is in the range of 20 to 100 liters/minute, preferably 40 to 70 liters/minute.

【0010】本発明の方法によって合金超微粒子とされ
る金属は、2つの金属または3つ以上の金属において高
沸点、高融点のものと、低沸点、低融点のものとの沸点
差および融点差が、沸点では200〜1000℃、融点
では200〜1000℃程度の差のあるものとする。
[0010] The metals made into alloy ultrafine particles by the method of the present invention have a boiling point difference and a melting point difference between two metals or three or more metals, one having a high boiling point and high melting point and the other having a low boiling point and melting point. However, there is a difference of about 200 to 1000°C in boiling point and about 200 to 1000°C in melting point.

【0011】すなわち、このような合金系としてはTi
−Cu、Al−Ni、Cu−Siなどを挙げることがで
きる。
That is, as such an alloy system, Ti
-Cu, Al-Ni, Cu-Si, etc. can be mentioned.

【0012】この方法によって粒子径が85nm〜65
0nmの範囲のいわゆる超微粒子の合金粉末が得られる
[0012] By this method, the particle size is 85 nm to 65 nm.
An alloy powder with so-called ultrafine particles in the range of 0 nm is obtained.

【0013】次に本発明を具体例によって更に詳細に説
明する。 実施例  1 Ti(−37μm)とCu(−44μm)の混合粉をア
ルゴンと水素気流を高周波加熱して得た高温プラズマ焔
中に供給してTi−Cu合金の超微粒子を製造した。
Next, the present invention will be explained in more detail using specific examples. Example 1 A mixed powder of Ti (-37 μm) and Cu (-44 μm) was supplied into a high-temperature plasma flame obtained by high-frequency heating of an argon and hydrogen stream to produce ultrafine particles of a Ti-Cu alloy.

【0014】使用した装置は図1に示されたとおりの構
成を有するものである。すなわち、本装置は、図1でA
で示されるプラズマトーチ、Bで示されるシースガス導
入部、Cで示されるチャンバー、Dで示される原料粉末
供給装置、およびEで示される製品回収部よりなる。
The apparatus used had the configuration shown in FIG. In other words, this device is A in FIG.
It consists of a plasma torch indicated by , a sheath gas introduction section indicated by B, a chamber indicated by C, a raw material powder supply device indicated by D, and a product recovery section indicated by E.

【0015】プラズマトーチAは内径55mm、外径7
0mm、長さ220mmの水冷石英二重管1を主体とし
、外側に高周波発振用のコイル2が取り付けられている
。プラズマトーチの上部には噴出方向が接線方向、軸方
向および半径方向のガスの噴出口4,5,6が設けられ
、この噴出口にガスの供給源7,8,9からアルゴンガ
スおよび水素が供給される。この噴出ガスは印加された
高周波電源によってプラズマ化されプラズマトーチ内で
プラズマ焔を形成する。プラズマトーチの下部には原料
粉末供給口10が設けられ、原料粉末供給装置Dから供
給される原料粉末はキャリヤーガス11に搬送されてプ
ラズマ焔中に導入される。
[0015] Plasma torch A has an inner diameter of 55 mm and an outer diameter of 7
The main body is a water-cooled quartz double tube 1 with a diameter of 0 mm and a length of 220 mm, and a coil 2 for high frequency oscillation is attached to the outside. Gas jet ports 4, 5, and 6 whose jet directions are tangential, axial, and radial are provided in the upper part of the plasma torch, and argon gas and hydrogen are supplied to these jet ports from gas supply sources 7, 8, and 9. Supplied. This ejected gas is turned into plasma by the applied high frequency power and forms a plasma flame within the plasma torch. A raw material powder supply port 10 is provided at the bottom of the plasma torch, and the raw material powder supplied from the raw material powder supply device D is conveyed by a carrier gas 11 and introduced into the plasma flame.

【0016】シースガス導入部Bは環状に配置されたシ
ースガス導入口15と、内径120mm、長さ200m
mのシースガス導入部内管12と、その外側の冷却用の
シースガス導入部外套管13からなり、シースガス供給
源14からアルゴンガス等の不活性ガスが導入口15を
経て供給される。
The sheath gas introduction part B has an annularly arranged sheath gas introduction port 15, an inner diameter of 120 mm, and a length of 200 m.
It consists of an inner sheath gas introduction tube 12 and an outer jacket tube 13 for cooling the sheath gas introduction section, and an inert gas such as argon gas is supplied from a sheath gas supply source 14 through an introduction port 15.

【0017】チャンバーCは内径440mm、長さ80
0mmの管16とその外側の冷却用の外套管17とから
なる。このチャンバーCの内管、外套管はともに金属製
の管、例えばステンレス鋼管であってもよい。
[0017] Chamber C has an inner diameter of 440 mm and a length of 80 mm.
It consists of a 0 mm tube 16 and a cooling jacket tube 17 outside the tube 16. Both the inner tube and the outer tube of this chamber C may be metal tubes, for example, stainless steel tubes.

【0018】製品回収部EはチャンバーCの下部に着脱
可能なように取付けられ、フィルター18を内部に装着
しうるようになっている。そしてフィルターの内側は減
圧ライン19に連通している。
The product recovery section E is detachably attached to the lower part of the chamber C, and a filter 18 can be attached therein. The inside of the filter is connected to a vacuum line 19.

【0019】上記のような構成の装置のガス噴出口4,
5,6にアルゴンガスが80リットル/分、水素4リッ
トル/分の流量で流され、コイル2に4MHz、80k
VAの高周波電流が印加されアルゴン、水素の高温プラ
ズマ焔が発生する。シースガス噴出口21にアルゴンガ
スが50リットル/分の流量で流される。原料の金属チ
タン・銅混合粉末は原料粉末供給口10からキャリヤー
ガス Ar 10リットル/分と共に60g/hの供給
量で高温プラズマ中に供給され、気化したチタンおよび
銅は引続くシースガス導入部BおよびチャンバーDで急
激に冷却され、凝縮して生成した超微粒子のチタン・銅
合金粒子はフィルター18上に集められる。
The gas outlet 4 of the device configured as described above,
Argon gas was flowed through 5 and 6 at a flow rate of 80 liters/min and hydrogen at a flow rate of 4 liters/min, and 4MHz, 80k was flowed into coil 2.
A high-frequency VA current is applied to generate a high-temperature plasma flame of argon and hydrogen. Argon gas is flowed into the sheath gas outlet 21 at a flow rate of 50 liters/minute. The raw material metal titanium/copper mixed powder is supplied into the high-temperature plasma at a supply rate of 60 g/h along with carrier gas Ar at 10 liters/min from the raw material powder supply port 10, and the vaporized titanium and copper are supplied to the subsequent sheath gas introduction port B and The ultrafine titanium/copper alloy particles that are rapidly cooled and condensed in the chamber D are collected on the filter 18 .

【0020】今この超微粒子の製造条件において、チタ
ン・銅合金超微粒子を製造したところ、BET法による
比表面積で25.4m2/g、比表面積径35nmの球
形の超微粒子が得られた。更に、X線回折分析装置によ
る分析により得られた超微粒子はチタン・銅合金粒子で
あることが確認された。
When titanium/copper alloy ultrafine particles were produced under these ultrafine particle production conditions, spherical ultrafine particles with a specific surface area of 25.4 m 2 /g and a specific surface diameter of 35 nm were obtained by the BET method. Furthermore, analysis using an X-ray diffraction analyzer confirmed that the obtained ultrafine particles were titanium-copper alloy particles.

【0021】実施例  2 実施例1に記載した装置を用いて同様の操作条件によっ
てチタン・銅合金の超微粉末を製造した。この場合に用
いた原料粉末はチタン・銅合金粉末(−75μm)で、
原料粉末供給口10からキャリヤーガス Ar 5リッ
トル/分と共に120g/hの供給量で高温プラズマ中
に供給した。
Example 2 Ultrafine titanium-copper alloy powder was produced using the apparatus described in Example 1 under the same operating conditions. The raw material powder used in this case was titanium/copper alloy powder (-75 μm).
The raw material powder was supplied into the high-temperature plasma at a supply rate of 120 g/h along with a carrier gas Ar of 5 liters/min from the raw material powder supply port 10.

【0022】上記製造条件で得られた超微粒子はBET
法による比表面積で15.2m2/g、比表面積径59
nmの球形粒子であった。また、X線回折分析により得
られた超微粒子はチタン・銅合金粒子であることが確認
された。
The ultrafine particles obtained under the above manufacturing conditions are BET
Specific surface area by method is 15.2 m2/g, specific surface area diameter is 59
They were spherical particles of nm size. Further, the ultrafine particles obtained by X-ray diffraction analysis were confirmed to be titanium/copper alloy particles.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法で使用する高温プラズマを用いる
超微粒子粉末の製造装置の一例を示す。
FIG. 1 shows an example of an apparatus for producing ultrafine powder using high-temperature plasma used in the method of the present invention.

【符号の説明】[Explanation of symbols]

A        プラズマトーチ B        シースガス導入部 C        チャンバー D        原料粉末供給装置 E        製品回収部 1        石英二重管 2        高周波発振用のコイル4,5,6 
 ガス噴出口 7,8,9  ガス供給源 10      原料粉末供給口 11      キャリヤーガス供給源12     
 シースガス導入部内管13      シースガス導
入部外套管14      シースガス供給源 15      シースガス導入口 16      チャンバー内管 17      外套管 18      フィルター 19      減圧ライン
A Plasma torch B Sheath gas introduction section C Chamber D Raw material powder supply device E Product recovery section 1 Quartz double tube 2 High frequency oscillation coils 4, 5, 6
Gas outlets 7, 8, 9 Gas supply source 10 Raw material powder supply port 11 Carrier gas supply source 12
Sheath gas inlet inner tube 13 Sheath gas inlet outer tube 14 Sheath gas supply source 15 Sheath gas inlet 16 Chamber inner tube 17 Outer tube 18 Filter 19 Decompression line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  沸点および融点が異なった2種または
それ以上の金属を構成成分とする合金超微粒子。
1. Ultrafine alloy particles comprising two or more metals having different boiling points and melting points.
【請求項2】  高温プラズマを用いて沸点および融点
の異なる2種またはそれ以上の金属を蒸発させ、これを
冷却して合金組成の超微粒子を製造するに当り、プラズ
マ焔に水素ガスを導入してプラズマ焔をしぼると共にこ
の水素ガスによってプラズマを還元性雰囲気に置き、シ
ースガスをプラズマ焔を包囲するように導入してプラズ
マで蒸発した金属を急冷することを特徴とする合金組成
の超微粒子を製造する方法。
[Claim 2] When two or more metals having different boiling points and melting points are evaporated using high-temperature plasma and then cooled to produce ultrafine particles having an alloy composition, hydrogen gas is introduced into the plasma flame. producing ultrafine particles with an alloy composition characterized by squeezing the plasma flame, placing the plasma in a reducing atmosphere using this hydrogen gas, and introducing a sheath gas to surround the plasma flame to rapidly cool the metal evaporated by the plasma. how to.
JP3121699A 1991-05-28 1991-05-28 Alloy hiper fine particle and production thereof Pending JPH04350106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121699A JPH04350106A (en) 1991-05-28 1991-05-28 Alloy hiper fine particle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121699A JPH04350106A (en) 1991-05-28 1991-05-28 Alloy hiper fine particle and production thereof

Publications (1)

Publication Number Publication Date
JPH04350106A true JPH04350106A (en) 1992-12-04

Family

ID=14817695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121699A Pending JPH04350106A (en) 1991-05-28 1991-05-28 Alloy hiper fine particle and production thereof

Country Status (1)

Country Link
JP (1) JPH04350106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006700A2 (en) * 1994-08-25 1996-03-07 Qqc, Inc. Nanoscale particles, and uses for same
US6589311B1 (en) 1999-07-07 2003-07-08 Hitachi Metals Ltd. Sputtering target, method of making same, and high-melting metal powder material
JP2003530679A (en) * 2000-04-10 2003-10-14 テトロニクス リミテッド Twin plasma torch device
JP2010084199A (en) * 2008-09-30 2010-04-15 Nisshin Seifun Group Inc METHOD FOR PRODUCING FINE PARTICLE OF Ni-W-BASED ALLOY, AND METHOD FOR PRODUCING FINE PARTICLE OF Ni-W ALLOY
JP2011179023A (en) * 2010-02-26 2011-09-15 Japan Atomic Energy Agency Nanoparticle manufacturing device and nanoparticle manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006700A2 (en) * 1994-08-25 1996-03-07 Qqc, Inc. Nanoscale particles, and uses for same
WO1996006700A3 (en) * 1994-08-25 1996-03-28 Qqc Inc Nanoscale particles, and uses for same
US6589311B1 (en) 1999-07-07 2003-07-08 Hitachi Metals Ltd. Sputtering target, method of making same, and high-melting metal powder material
US6676728B2 (en) 1999-07-07 2004-01-13 Hitachi Metals, Ltd. Sputtering target, method of making same, and high-melting metal powder material
JP2003530679A (en) * 2000-04-10 2003-10-14 テトロニクス リミテッド Twin plasma torch device
JP2010084199A (en) * 2008-09-30 2010-04-15 Nisshin Seifun Group Inc METHOD FOR PRODUCING FINE PARTICLE OF Ni-W-BASED ALLOY, AND METHOD FOR PRODUCING FINE PARTICLE OF Ni-W ALLOY
JP2011179023A (en) * 2010-02-26 2011-09-15 Japan Atomic Energy Agency Nanoparticle manufacturing device and nanoparticle manufacturing method

Similar Documents

Publication Publication Date Title
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP3383608B2 (en) Apparatus for synthesizing nanocrystalline materials
KR101122219B1 (en) Process for the synthesis, separation and purification of powder materials
JP5133065B2 (en) Inductive plasma synthesis of nanopowder
CN107486560A (en) A kind of method that globular metallic powder is prepared in the case where malleation cools down atmosphere
JPH0748609A (en) Forming method for particle by gas spray synthesis of heat-resistant compound or intermetallic compound and supersaturated solid solution
JPH05228363A (en) Device and method for producing ceramic or cermet powdery substance
JPS63243212A (en) Wet metallurgical method for producing finely divided globular high melting point metal base powder
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
KR20200131906A (en) ODS alloy powder, its manufacturing method by plasma treatment, and its use
Park et al. Preparation of spherical WTaMoNbV refractory high entropy alloy powder by inductively-coupled thermal plasma
US20050150759A1 (en) Powder and coating formation method and apparatus
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JPH01275708A (en) Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride
JPH04350106A (en) Alloy hiper fine particle and production thereof
JP2004124257A (en) Metal copper particulate, and production method therefor
JPS6263604A (en) Production of pulverous spherical copper powder
JPH01306510A (en) Improvement for manufacturing super fine particle powder
RU2707455C1 (en) Tungsten-based pseudoalloy powder and method of its production
JPS63170212A (en) Production of hyper-fine powder of metal boride
JP4057948B2 (en) Method for producing nano-WC powder by atmospheric pressure gas phase reaction
Samokhin et al. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components
JPH0867503A (en) Production of hydrogenated titanium superfine particle
JP2017155279A (en) Method for producing metal fine particle