JPH01222027A - Tantalum foil and its manufacture - Google Patents
Tantalum foil and its manufactureInfo
- Publication number
- JPH01222027A JPH01222027A JP4827888A JP4827888A JPH01222027A JP H01222027 A JPH01222027 A JP H01222027A JP 4827888 A JP4827888 A JP 4827888A JP 4827888 A JP4827888 A JP 4827888A JP H01222027 A JPH01222027 A JP H01222027A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- foil
- substrate
- tantalum
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims description 31
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000000151 deposition Methods 0.000 claims abstract description 5
- 239000010419 fine particle Substances 0.000 claims description 15
- 229910052715 tantalum Inorganic materials 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 9
- -1 tantalum halide Chemical class 0.000 claims description 8
- 239000012808 vapor phase Substances 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 26
- 238000006243 chemical reaction Methods 0.000 abstract description 24
- 239000000843 powder Substances 0.000 abstract description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 18
- 239000011888 foil Substances 0.000 abstract description 13
- 239000003990 capacitor Substances 0.000 abstract description 9
- 150000004820 halides Chemical class 0.000 abstract description 3
- 238000006722 reduction reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はタンタル箔の製造に係り、特に表面積が大きく
、高容量電解コンデンサーとして好適なタンタル箔及び
その製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of tantalum foil, and particularly to a tantalum foil that has a large surface area and is suitable for use as a high-capacity electrolytic capacitor, and a method for producing the same.
(従来の技術解決しようとする課題)
タンタル(Ta)は耐熱性、耐食性に優れているため、
その金属粉又は合金粉は焼結体にして各種の高温材料や
耐食材料に使用されており、特に電解コンデンサーの陽
極に好適な材料である。(Problems to be solved by conventional technology) Tantalum (Ta) has excellent heat resistance and corrosion resistance, so
The metal powder or alloy powder is made into a sintered body and used in various high-temperature materials and corrosion-resistant materials, and is particularly suitable for the anode of an electrolytic capacitor.
従来より、タンタル電解コンデンサーには、Ta粉末の
焼結体又はタンタル箔が用いられている。タンタル焼結
体は、−船釣には表面積が大きく高容量の得られるTa
粉末が使われている。Conventionally, sintered bodies of Ta powder or tantalum foils have been used in tantalum electrolytic capacitors. Tantalum sintered body has a large surface area and high capacity for boat fishing.
powder is used.
一方、タンタル箔はTaインゴットを圧延して箔状にす
る方法で製造されるのが一般的であるが。On the other hand, tantalum foil is generally manufactured by rolling a Ta ingot into a foil shape.
このようなタンタル箔は表面が平滑であり、電解コンデ
ンサーとして用いるには表面積が不足している。そのた
め、表面積を増すための方法として。Such tantalum foil has a smooth surface and lacks sufficient surface area to be used as an electrolytic capacitor. Therefore, as a way to increase surface area.
AQ電解コンデンサーで採用されている電解エツチング
を適用することが試みられているが、顕著な表面積増大
効果を得るには至っていない、したかって、タンタル箔
による特に高容量の電解コンデンサーの製造は困難とさ
れていた。Attempts have been made to apply electrolytic etching, which is used in AQ electrolytic capacitors, but this has not resulted in a significant surface area increase effect.Therefore, it is difficult to manufacture particularly high-capacity electrolytic capacitors using tantalum foil. It had been.
このような事情から、通常はTa粉末の焼結体が使用さ
れているのが実情である。Under these circumstances, the reality is that a sintered body of Ta powder is usually used.
本発明は、か\る事情に鑑みてなされたものであって、
表面積が大きく、高容量電解コンデンサーに好適なタン
タル箔を提供し、またこのタンタル箔を製造する新規な
方法を提供することを目的とするものである。The present invention was made in view of the above circumstances, and
The object of the present invention is to provide a tantalum foil that has a large surface area and is suitable for high-capacity electrolytic capacitors, and also to provide a new method for manufacturing this tantalum foil.
(課題を解決するための手段)
前記目的を達成するため、本発明者は、高純度で粒度分
布のよいTa超微粉末を得て、これを箔状化し得る方法
を見い出すべく鋭意研究を重ねた結果、タンタルハロゲ
ン化物を気相還元法により還元するとTaの超微粉末が
得られることを知見し、その際、気相還元により析出す
るTa超微粉末を適当な基板上に析出させるならば、該
微粉末が重り合って連続体として成長し、箔状を呈する
ことを見い出し、ここに本発明をなしたものである。(Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted intensive research to find a method for obtaining ultrafine Ta powder with high purity and good particle size distribution and forming it into a foil shape. As a result, we found that ultrafine Ta powder can be obtained by reducing tantalum halides using a vapor phase reduction method. It was discovered that the fine powders overlap and grow as a continuous body to form a foil-like shape, and the present invention has been made based on this discovery.
すなわち1本発明に係るタンタル箔は、Ta微粒子が重
り合って連続化し、凹凸のある表面構造を有することを
特徴とするものである。That is, the tantalum foil according to the present invention is characterized in that Ta fine particles overlap and become continuous, and has an uneven surface structure.
また、本発明に係るタンタル箔製造法は、タンタルのハ
ロゲン化物を水素還元し、生成したTa微粒子を基板上
に析出、成長させた後、基板から剥離してタンタル箔を
得ることを特徴とするものである。Further, the tantalum foil manufacturing method according to the present invention is characterized in that tantalum halide is reduced with hydrogen, the generated Ta fine particles are deposited and grown on a substrate, and then peeled from the substrate to obtain a tantalum foil. It is something.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
一般に微粒子を得る方法としては、真空蒸着法、気相化
学反応法等がある。本発明者は、これらをTa微粒子を
得るのに適用したところ、真空蒸着法では気相から直接
基板上に付着させるため、平滑な表面しか得られなかっ
た。しかし、気相化学反応法、とりわけ、タンタルハロ
ゲン化物を用いた気相還元法の場合には、反応温度及び
基板温度が高いと粒子が粗大化し、反応温度が低いと微
細化する傾向があることが判明した。そこで、種々の反
応温度、基板温度等の条件について実験研究を重ねた結
果、タンタルハロゲン化物を水素還元により還元して気
相中で一旦微粒子化して、直径1μ−以下のTa超微粒
子を得、これを基板上に析出、成長させて剥離すること
により、凹凸があり表面積の大きいタンタル箔を得るこ
とに成功したものである。Generally, methods for obtaining fine particles include vacuum evaporation, vapor phase chemical reaction, and the like. When the present inventor applied these to obtain Ta fine particles, only a smooth surface could be obtained because the vacuum evaporation method deposits them directly onto the substrate from the gas phase. However, in the case of vapor phase chemical reaction methods, especially vapor phase reduction methods using tantalum halides, particles tend to become coarser when the reaction temperature and substrate temperature are high, and become finer when the reaction temperature is low. There was found. Therefore, as a result of repeated experimental research on various conditions such as reaction temperature and substrate temperature, we reduced tantalum halide by hydrogen reduction and once made it into fine particles in the gas phase to obtain Ta ultrafine particles with a diameter of 1μ or less. By depositing and growing this on a substrate and peeling it off, we succeeded in obtaining a tantalum foil with irregularities and a large surface area.
このようなタンタル箔を得る製造工程は、■タンタルの
ハロゲン化物の作成、■ハロゲン化物の還元反応、■箔
成長からなり、その詳細は以下のとおりである。The manufacturing process for obtaining such a tantalum foil consists of (1) creation of a tantalum halide, (2) reduction reaction of the halide, and (2) growth of the foil, the details of which are as follows.
■タンタルのハロゲン化物の作成
ハロゲンガスとして塩素を使用してTa塩化物を作成す
るプロセスを例に説明するが、これのみに限定されない
ことは云うまでもない。(2) Creation of tantalum halide The process of creating Ta chloride using chlorine as the halogen gas will be explained as an example, but it goes without saying that the process is not limited to this.
Taと塩素ガスの反応は1発熱反応であり、200℃以
上で反応が起きる塩化物反応部分は、低温で塩素ガス流
量をコントロールしながら塩化物を発生させるため1通
常、200〜600℃の温度範囲で調温するのがよく、
約400℃が望ましい。The reaction between Ta and chlorine gas is an exothermic reaction, and the chloride reaction part, where the reaction occurs at temperatures above 200°C, is normally heated at a temperature of 200 to 600°C in order to generate chloride while controlling the chlorine gas flow rate at a low temperature. It is best to adjust the temperature within a range.
Approximately 400°C is desirable.
この場合、出発材料のTa粉(−次微粒子)としては、
真空蒸着法、気相化学反応法等々の従来法で得られた低
純度のものでよく、不純物量は勿論のこと、他の性状も
特に留意する必要はなく、市販のものでよい。In this case, the starting material Ta powder (-order fine particles) is as follows:
It may be of low purity obtained by a conventional method such as a vacuum evaporation method or a gas phase chemical reaction method, and there is no need to pay special attention to the amount of impurities or other properties, and commercially available products may be used.
このようなTa材料を200〜600℃に加熱した塩化
物反応部分に塩素ガスを流すと、Ta塩化物のガスが発
生する。When such Ta material is heated to 200 to 600° C. and chlorine gas is passed through the chloride reaction part, Ta chloride gas is generated.
■ハロゲン化物の還元反応
得られたTa塩化物は、ガス状であり、これをArガス
等で搬送して還元反応部分(反応炉)に供給する。この
塩化物ガスは沸点が低く、凝縮することなく容易に反応
炉に導入できる。なお、塩化物ガス濃度は粉末粒径に影
響を及ぼすので、搬送ガス流量及び塩素流量は粒径を最
適にするように選択するのがよい。(2) Reduction reaction of halide The obtained Ta chloride is in a gaseous state, and is transported by Ar gas or the like and supplied to the reduction reaction section (reactor). This chloride gas has a low boiling point and can be easily introduced into the reactor without condensing. Note that, since the chloride gas concentration affects the powder particle size, the carrier gas flow rate and the chlorine flow rate are preferably selected to optimize the particle size.
次いで、Ta塩化物ガスは反応炉で反応温度に加温され
る。反応温度は800〜1100℃の範囲が好ましい。The Ta chloride gas is then heated to reaction temperature in a reactor. The reaction temperature is preferably in the range of 800 to 1100°C.
反応温度は1100℃以下でよいため、耐火物の酸化が
防止されると共に気密性の高い石英管を使用可能となる
ので、反応原料として予めTa塩化物を作成して酸素含
有量を事前に低減させる効果と相俟って、粉末中の酸素
含有量は粉末の取り出し時に空気酸化によって生じる酸
化物量分だけに留まる程度である。なお、反応温度が5
00℃未満では反応速度が遅くなりすぎ。Since the reaction temperature can be below 1100℃, oxidation of the refractory is prevented and a highly airtight quartz tube can be used. Therefore, Ta chloride is prepared in advance as a reaction raw material to reduce the oxygen content in advance. Combined with this effect, the oxygen content in the powder is limited to the amount of oxides produced by air oxidation when the powder is taken out. Note that the reaction temperature is 5
If the temperature is below 00°C, the reaction rate will be too slow.
粉末中の塩化物量が増すので望ましくない。This is undesirable because it increases the amount of chloride in the powder.
水素ガスの流量は、H2/ 16モル比が30/1以上
となるように供給するのが純度の良いTa微粉末を得る
うえで望ましい。多いほど良好な結果が得られるが、S
OO倍以上になると水素の流速度が大きくなりすぎ、反
応に寄与しないで流出す名分が多くなるため、これ以上
の水素ガスは不要である。In order to obtain fine Ta powder with good purity, it is desirable to supply the hydrogen gas at a flow rate such that the H2/16 molar ratio is 30/1 or more. The more S
If it is OO times or more, the flow rate of hydrogen becomes too high and more hydrogen gas flows out without contributing to the reaction, so no more hydrogen gas is needed.
■箔成長
還元反応で得られたTa微粒子は、基板上で析出、成長
させる。このためには基板を還元反応部(反応炉)内の
700〜1100℃の部分におくのがよい、基板として
は剥離が容易な材料を用いるが、5in2、BN、AQ
、O,等々を挙げルコトができる。なお、700℃以下
の部分では基板上に析出したTa微粒子を基板から剥離
するのが困難となり、また100℃以上の部分では、基
板としてSin、を使用した場合、Sin、から解離し
た〔O〕で箔の酸化が生じるので好ましくない。(2) Foil Growth The Ta fine particles obtained by the reduction reaction are precipitated and grown on the substrate. For this purpose, it is best to place the substrate in a part of the reduction reaction section (reactor) at a temperature of 700 to 1100°C.The substrate should be made of a material that is easy to peel off, such as 5in2, BN, AQ
, O, etc. can be mentioned. In addition, in the area below 700°C, it is difficult to peel off the Ta fine particles precipitated on the substrate from the substrate, and in the area above 100°C, when Sin is used as the substrate, [O] dissociates from the Sin. This is not preferable because it causes oxidation of the foil.
冷却後、基板を取り出し、基板表面に成長したタンタル
箔を適宜手段により剥離し、タンタル箔を得る。After cooling, the substrate is taken out, and the tantalum foil grown on the surface of the substrate is peeled off by appropriate means to obtain a tantalum foil.
タンタル箔の性状は、Ta微粒子が重り合って全体が箔
状をなし、厚さは0.5〜10μm程度であり、表面積
は投影面積(平面上に投影したときの面積)の2倍以上
と大きく、凹凸が激しい表面構造を有するものである。The properties of tantalum foil are that Ta fine particles overlap to form a foil-like shape, the thickness is approximately 0.5 to 10 μm, and the surface area is more than twice the projected area (the area when projected on a flat surface). It is large and has a highly uneven surface structure.
またTa微粒子は良好な粒度分布のものが得られる。Further, Ta fine particles having a good particle size distribution can be obtained.
なお、本発明法は、Taと化学的、物理的性質が類似し
ている点が多いNbの箔の製造に適用することができる
。The method of the present invention can be applied to the production of Nb foil, which has many similarities in chemical and physical properties to Ta.
次に本発明の実施例を示す。Next, examples of the present invention will be shown.
(実施例)
第1図は本発明法の実施に用いる装置の一例を示してい
る。図中、1はAr供給ボンベ、2はH2供給ボンベ、
3はC112供給ボンベ、4は脱酸器、5は脱水器、6
は流量計、7はCQ、ライン、8はキャリアArライン
、9は第2Arライン、10はH2ライン、11は反応
管、12は塩化物発生炉、13は充填層、14は還元反
応炉、15はH2ガスノズル、16は粉末回収フィルタ
ー、17はHCQ吸収塔、18は電気伝導度測定セル。(Example) FIG. 1 shows an example of an apparatus used to carry out the method of the present invention. In the figure, 1 is an Ar supply cylinder, 2 is an H2 supply cylinder,
3 is a C112 supply cylinder, 4 is a deoxidizer, 5 is a dehydrator, 6
is a flow meter, 7 is a CQ line, 8 is a carrier Ar line, 9 is a second Ar line, 10 is a H2 line, 11 is a reaction tube, 12 is a chloride generating furnace, 13 is a packed bed, 14 is a reduction reactor, 15 is an H2 gas nozzle, 16 is a powder recovery filter, 17 is an HCQ absorption tower, and 18 is an electrical conductivity measurement cell.
19は蒸着用基材であり、Ta粉の塩化物化並びに該塩
化物の水素還元、生成箔及び粉末回収塔が連続的に実施
できる装置構成を有している。Reference numeral 19 is a base material for vapor deposition, and has an apparatus configuration that can continuously perform the conversion of Ta powder into chloride, the reduction of the chloride with hydrogen, the produced foil, and the powder recovery tower.
まず、Ta原料として、市販の+32#のTa粗粉(o
、含有量は約2500ppm)を準備し、これを塩化物
発生炉12の充填層13にセットした。セット後、Ar
ガスで充分に雰囲気置換を行った。First, as a Ta raw material, commercially available +32# Ta coarse powder (o
, the content of which is about 2500 ppm) was prepared and set in the packed bed 13 of the chloride generating furnace 12. After setting, Ar
The atmosphere was sufficiently replaced with gas.
次いで、CQ、ガス流量0 、05 N Q /win
、キャリアArガス流量0.5NQ/win、第2Ar
ガス流量2.5NQ/winにて各ガスをラインに供給
すると共に、H2ガスを流量10 N Q/min (
約0.4+so Q /5in)にてH2/ T aモ
ル比が約400倍になるようにH2ガスノズル15より
還元反応炉14に供給し、更に塩化物発生炉11の塩化
温度を500℃、還元反応炉14の反応温度を1000
℃にセットして反応を開始した。Then, CQ, gas flow rate 0, 05 N Q /win
, carrier Ar gas flow rate 0.5NQ/win, second Ar
Each gas was supplied to the line at a gas flow rate of 2.5 NQ/win, and H2 gas was supplied at a flow rate of 10 NQ/min (
H2 gas is supplied to the reduction reactor 14 from the H2 gas nozzle 15 so that the H2/Ta molar ratio is approximately 400 times (approximately 0.4 + so The reaction temperature of the reactor 14 is set to 1000
The reaction was started by setting the temperature to ℃.
これにより、Ta粗粉は充填層内にて塩化揮発(TaC
Q2蒸発速度I X 10−3Ilo Q /m1n)
、生じた塩化物ガスはキャリアArガスによって還元反
応炉14に導かれ、H2ガスノズル15からの水素ガス
により還元され、金属微粒子と塩化水素ガスが生成され
る。As a result, Ta coarse powder is chlorinated and volatilized (TaC) in the packed bed.
Q2 Evaporation rate I X 10-3Ilo Q /m1n)
The generated chloride gas is led to the reduction reactor 14 by the carrier Ar gas, and is reduced by the hydrogen gas from the H2 gas nozzle 15 to produce metal fine particles and hydrogen chloride gas.
生成された金属微粒子は蒸着用基材19に設置された透
明石英製プレート上に付着し、粒子同志が焼結成長して
箔状となった。The generated metal fine particles adhered to a transparent quartz plate placed on the deposition substrate 19, and the particles grew together by sintering to form a foil shape.
冷却後、このプレートを取り出し、箔を剥離した。この
箔について、走査型電子顕微鏡により観察したところ、
第2図に示すように、Ta超微粒子が重り合って連続し
凹凸のある表面状況を呈していた。またBET法で比表
面積を測定したところ、比表面積は約4000c+i”
/gであり、これはほぼ同様の厚さをもつボールミル粉
砕箔状粉末の比表面積約1200co+”/gを大きく
上まわることがわかった。After cooling, the plate was removed and the foil was peeled off. When this foil was observed using a scanning electron microscope,
As shown in FIG. 2, the Ta ultrafine particles overlapped and were continuous, presenting an uneven surface condition. Also, when the specific surface area was measured using the BET method, the specific surface area was approximately 4000c+i"
/g, which was found to be much larger than the specific surface area of about 1200 co+''/g for a ball-milled foil-like powder having approximately the same thickness.
(発明の効果)
以上詳述したように、本発明のタンタル箔は、Ta超微
粒子が重り合って連続化して箔状を呈した凹凸の激しい
表面構造を有しているので、表面積が極めて大きく、高
容量タンタル電解コンデンサーとして好適であり、従来
のタンタル焼結体よりも有利である。また、かNるタン
タル箔は、タンタルハロゲン化物の水素還元による気相
還元法により生成されるTa超微粒子を基板上に析出、
成長させ、剥離して得るので、高純度であり、容易に製
造することができる。(Effects of the Invention) As detailed above, the tantalum foil of the present invention has a highly uneven surface structure in which ultrafine Ta particles overlap and become continuous, forming a foil-like shape, so the tantalum foil has an extremely large surface area. It is suitable as a high-capacity tantalum electrolytic capacitor, and is more advantageous than conventional tantalum sintered bodies. In addition, the tantalum foil is produced by depositing ultrafine Ta particles on the substrate, which are produced by a gas phase reduction method using hydrogen reduction of tantalum halide.
Since it is obtained by growing and exfoliating it, it has high purity and can be easily produced.
第1図は本発明法の実施に用いる装置の一例を示す説明
図、
第2図はタンタル箔の表面構造を示す走査型電子顕微鏡
写真(xsooo)である。
第2図
手続補正帯(方式)
昭和63年06月14日FIG. 1 is an explanatory diagram showing an example of the apparatus used to carry out the method of the present invention, and FIG. 2 is a scanning electron micrograph (xsooo) showing the surface structure of tantalum foil. Figure 2 Procedure Amendment Band (Method) June 14, 1986
Claims (5)
面構造を有することを特徴とするタンタル箔。(1) A tantalum foil characterized by having an uneven surface structure in which Ta fine particles overlap and become continuous.
以上である請求項1記載のタンタル箔。(2) The tantalum foil according to claim 1, wherein the surface area of the continuous Ta particles is at least twice the projected area.
続体である請求項1記載のタンタル箔。(3) The tantalum foil according to claim 1, which is a continuum of Ta fine particles precipitated and grown by a vapor phase reduction method.
Ta微粒子を基板上に析出、成長させた後、基板から剥
離してタンタル箔を得ることを特徴とするタンタル箔の
製造法。(4) A method for producing tantalum foil, which comprises reducing a tantalum halide with hydrogen, depositing and growing the generated Ta fine particles on a substrate, and then peeling them off from the substrate to obtain a tantalum foil.
ガスの量をモル比でTaの30〜500倍にして行う請
求項4記載の方法。(5) The method according to claim 4, wherein the hydrogen reduction is carried out at a reduction temperature of 800 to 1100° C. and at a molar ratio of hydrogen gas of 30 to 500 times that of Ta.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4827888A JPH01222027A (en) | 1988-02-29 | 1988-02-29 | Tantalum foil and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4827888A JPH01222027A (en) | 1988-02-29 | 1988-02-29 | Tantalum foil and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01222027A true JPH01222027A (en) | 1989-09-05 |
Family
ID=12798968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4827888A Pending JPH01222027A (en) | 1988-02-29 | 1988-02-29 | Tantalum foil and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01222027A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118851A (en) * | 1993-10-26 | 1995-05-09 | Tokyo Tungsten Co Ltd | High melting point metallic foil and its production |
US8459727B2 (en) | 2008-10-27 | 2013-06-11 | Agco Gmbh | Tractor cabs |
-
1988
- 1988-02-29 JP JP4827888A patent/JPH01222027A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118851A (en) * | 1993-10-26 | 1995-05-09 | Tokyo Tungsten Co Ltd | High melting point metallic foil and its production |
US8459727B2 (en) | 2008-10-27 | 2013-06-11 | Agco Gmbh | Tractor cabs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4642207A (en) | Process for producing ultrafine particles of ceramics | |
JPH0433490B2 (en) | ||
CN110496969B (en) | Nano tungsten powder and preparation method thereof | |
EP1670961A1 (en) | Methods and apparatuses for producing metallic compositions via reduction of metal halides | |
Leconte et al. | Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders | |
TW200526824A (en) | Manufacturing method of silicon nanowire | |
JPH068170B2 (en) | Method for producing high-purity magnesium oxide fine powder | |
JPH04365806A (en) | Production of globular-nickel superfine powder | |
JP2019525002A (en) | Method for producing titanium from titanium oxide by magnesium vapor reduction | |
RU2681630C1 (en) | Arc method for graphene production | |
KR101102872B1 (en) | Fabrication Method of Tantalum Powders by Self-propagating High-temperature Synthesis | |
JPH01222027A (en) | Tantalum foil and its manufacture | |
AU2011236279B2 (en) | Metal titanium production device and metal titanium production method | |
US4889665A (en) | Process for producing ultrafine particles of ceramics | |
JP2000226607A (en) | Tantalum or niobium powder and its production | |
CN113427016B (en) | Device for preparing fine titanium aluminum intermetallic compound powder and production method thereof | |
JPH01115810A (en) | Production of ultrafine powder of high-purity tungsten carbide of cubic system | |
CN109574000B (en) | Carbon material with curled multilayer carbon nano-wall structure and preparation method thereof | |
WO2000074881A1 (en) | Method for preparing ultra fine nickel powder | |
CN114853020B (en) | Nano molybdenum carbide material and preparation method and application thereof | |
JP2571263B2 (en) | Flat metal powder and method for producing the same | |
JP2702954B2 (en) | Method for producing high-purity tantalum or high-purity niobium fine particles | |
Tian et al. | Synthesis and evolution of hollow ZnO microspheres assisted by Zn powder precursor | |
JPH0257623A (en) | Production of fine copper powder | |
CN116143083B (en) | Floating catalytic preparation method of boron nitride nanotube |