JPH01291105A - Measurement preparing method for surface shape measuring method - Google Patents
Measurement preparing method for surface shape measuring methodInfo
- Publication number
- JPH01291105A JPH01291105A JP12118188A JP12118188A JPH01291105A JP H01291105 A JPH01291105 A JP H01291105A JP 12118188 A JP12118188 A JP 12118188A JP 12118188 A JP12118188 A JP 12118188A JP H01291105 A JPH01291105 A JP H01291105A
- Authority
- JP
- Japan
- Prior art keywords
- light
- rays
- optical axis
- measurement
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005259 measurement Methods 0.000 title claims description 45
- 230000003287 optical effect Effects 0.000 claims abstract description 56
- 238000004088 simulation Methods 0.000 claims abstract description 16
- 238000012360 testing method Methods 0.000 claims description 30
- 238000004458 analytical method Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 10
- 238000000691 measurement method Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005305 interferometry Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000269799 Perca fluviatilis Species 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は1表面形状測定方法に於ける測定準備方法に関
する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a measurement preparation method in a surface shape measurement method.
(従来技術)
物体の表面形状を干渉測定方式で測定する装置として、
従来から第8図に示すような装置が知られている(特開
昭59−90009号公報)。(Prior art) As a device that measures the surface shape of an object using an interferometry method,
Conventionally, a device as shown in FIG. 8 has been known (Japanese Unexamined Patent Publication No. 59-90009).
レーザー光源10から放射された光はビームエキスパン
ダー12で光束径を拡大され、平行光束としてビームス
プリッタ−14,18を透過し、対物レンズ18により
集束し、その後発散光束となって被検物0の測定対象と
なる面即ち被検面に入射する。The beam diameter of the light emitted from the laser light source 10 is expanded by the beam expander 12, passes through the beam splitters 14 and 18 as a parallel beam, is converged by the objective lens 18, and then becomes a diverging beam to be focused on the object 0. The light is incident on the surface to be measured, that is, the surface to be inspected.
被検面により反射された光は、対物レンズ18を透過し
、ビームスプリッタ−16により2光束に分離され、一
方はビームスプリッタ−14,26、結像レンズ28を
介して光電検出装置であるエリアセンサー30の受光面
上に入射する。他方は、ミラー20、平行プレート24
、ビームスプリッタ−26、結像レンズ28を介して上
記受光面上に入射する。上記平面g2Dを通る先車は、
平行プレート24を透過することにより光束光軸に直交
する方向へ所定の距離、横ずれ即ちシアされる。これに
よりエリアセンサー30の受光面に入射する2光束は互
いに干渉し合い干渉縞を発生する。平面鏡20は圧電素
子22により微小距離ずつ変位される。これによってエ
リアセンサー30に入射する2光束の光路長差が変化し
、上記受光面上の干渉縞が変化する。このように変化す
る干渉縞の各パターンをエリアセンサーにより読みとっ
て、所定の解析演算処理を行い。The light reflected by the test surface passes through the objective lens 18 and is separated into two beams by the beam splitter 16, one of which passes through the beam splitters 14 and 26 and the imaging lens 28 to the area of the photoelectric detection device. The light is incident on the light receiving surface of the sensor 30. The other side is a mirror 20 and a parallel plate 24
, beam splitter 26, and imaging lens 28 onto the light receiving surface. The preceding vehicle passing through the above plane g2D is
By passing through the parallel plate 24, the light beam is laterally shifted or sheared by a predetermined distance in a direction perpendicular to the optical axis. As a result, the two light beams incident on the light receiving surface of the area sensor 30 interfere with each other and generate interference fringes. The plane mirror 20 is displaced by small distances by the piezoelectric element 22. As a result, the difference in optical path length between the two light beams incident on the area sensor 30 changes, and the interference fringes on the light receiving surface change. Each pattern of interference fringes that changes in this way is read by an area sensor and predetermined analytical calculation processing is performed.
被検面の形状を得るのである。The shape of the surface to be inspected is obtained.
このような表面形状測定方式に於いては被検物の被検面
の設置位置により測定範囲が変化するので、被検物を測
定装置の光軸上のどの位置にiaNするかが極めて重要
になる。In this type of surface profile measurement method, the measurement range changes depending on the installation position of the surface of the test object, so it is extremely important to determine where the test object is positioned on the optical axis of the measuring device. Become.
従来は、かかる測定装置に於いて被検物を設置する位置
を定めるには、実際に被検物を測定装置にセットし、被
検物を測定装置の光軸方向へ移動させ、さまざまな位置
でエリアセンサーの出力をモニターでa察し、被検面の
像の大きさが最大となる位置で被検物を固定し、WJ定
を行っている。Conventionally, in order to determine the position to install a test object in such a measurement device, the test object was actually set in the measurement device, moved in the optical axis direction of the measurement device, and placed at various positions. The output of the area sensor is observed on a monitor, the test object is fixed at the position where the image size of the test surface is maximized, and WJ determination is performed.
しかし、この従来の設置方法の場合、単純な光線のケラ
レは検出できるけれども光線の抜けや交差は検出できな
い、このため、測定の際に光線の抜けや交差があると、
解析演算の際に過ったデータが解析されるので測定に大
きな誤差が含まわることとなり、正確な測定が出来なく
なる。However, with this conventional installation method, simple vignetting of light rays can be detected, but missing or crossing light rays cannot be detected. Therefore, if there is a missing or crossing light ray during measurement,
Since erroneous data is analyzed during analytical calculations, large errors will be included in the measurements, making accurate measurements impossible.
ここで、上に述べた光線のケラレ、抜け、交差につき簡
単に説明する。Here, the vignetting, omission, and intersection of the light rays mentioned above will be briefly explained.
第9図に於いて、符号Oは第8図におけると同じく被検
物を示しており、符号Aは測定装置の光学系のアパーチ
ュア、符号Sはエリアセンサーの受光面を示している。In FIG. 9, the symbol O indicates the object to be tested as in FIG. 8, the symbol A indicates the aperture of the optical system of the measuring device, and the symbol S indicates the light-receiving surface of the area sensor.
被検物Oの被検面は光軸AXに関して対称的とし、光軸
AXの片側にある7本の反射光線L1〜L7を考える。The test surface of the test object O is assumed to be symmetrical with respect to the optical axis AX, and seven reflected light rays L1 to L7 on one side of the optical axis AX are considered.
これら反射光線し1〜L7はアパーチュアAの位置では
、それぞれ光線L12゜L22.L32.、、、L72
となり、さらに受光面S上では光線L13.L23.L
33... 、L73となるものとする。These reflected rays 1 to L7 are respectively rays L12°L22. L32. ,,,L72
Furthermore, on the light-receiving surface S, the light ray L13. L23. L
33. .. .. , L73.
第9図(I)では、反射光線のうちアパーチュアAを通
過するのは、光線L12.L22.L32.L42であ
り、受光面S上には光fiL13.L23.L33.L
43が到達しテール。即チ、反射光Hsし1〜L7ノ内
L5.L6.L7Lt7パーチユアAに光線L52.L
62.L72として入射し、アパーチュアAにケラして
受光面Sには到達しない。これが光線のケラレである。In FIG. 9(I), among the reflected rays, only rays L12. L22. L32. L42, and on the light receiving surface S there is light fiL13. L23. L33. L
43 reached and tailed. That is, the reflected light Hs is 1 to L7 and L5. L6. L7Lt7 Perch Your A with ray L52. L
62. The light enters as L72, eclipses the aperture A, and does not reach the light receiving surface S. This is vignetting of the light rays.
第9図(II)を見ると、この例では反射光線L1〜L
7の内、反射光線L7はアパーチュアAに光11L72
として入射してケラしてしまい受光面Sに達しないが、
他の光線は受光面S上に光線L13.L23.L33゜
、、L63として到達している。しかし、反射光線は光
軸上からJIN次L1〜L7のJ項番にならんでいるの
に、受光面S上では対応する光線の順序が狂っており、
光線LS3とL83の順位が入れ替わっている。これは
、図示のように、光線L53とL63とに本来あっては
ならない交差が光学系内で生じていることを意味する。Looking at FIG. 9 (II), in this example the reflected rays L1 to L
7, the reflected ray L7 enters the aperture A with light 11L72
However, it does not reach the light-receiving surface S due to eclipse
Other light rays appear on the light receiving surface S, such as light ray L13. L23. It has been reached as L33°,,L63. However, although the reflected rays are arranged in J order numbers L1 to L7 from the optical axis, the corresponding rays are out of order on the light receiving surface S.
The order of rays LS3 and L83 has been swapped. This means that, as shown in the figure, an intersection that should not exist between the light rays L53 and L63 occurs within the optical system.
このように反射光線の本来の順位と、対応する光線の受
光面上での配列順位が不一致である場合を光線の交差と
言う。In this way, a case where the original order of the reflected light rays and the arrangement order of the corresponding light rays on the light receiving surface do not match is called a ray intersection.
第9図(III)に於いて、受光面S上の光j9iL1
3〜L73の配列順序は小さい番号から頭に成っている
が、受光面S上には1反射光L4.L5に対応する光線
が到達していない、これら反射光はアパーチュアAに光
線L42.L52として入射し、アパーチュアAにケラ
してしまっているのである。このような場合を光線の抜
けと称するのである。In FIG. 9 (III), light j9iL1 on the light receiving surface S
Although the arrangement order of L4.3 to L73 is from the smallest number to the first, one reflected light L4. These reflected rays, which the ray corresponding to L5 has not reached, enter the aperture A with ray L42. The light enters as L52 and vignettes the aperture A. Such a case is called ray omission.
上述した、従来の設置方法の場合、エリアセンサーの出
力をいくらモニターしても被検面上の点と受光面上の像
の上の点との対応をとることが出来ないため光線の抜け
や交差は検知できず、現実に光線の抜けや交差力1ある
と測定誤差が大きくなってしまうのである。また、仮に
光線の抜けや交差があることが分かったとしても、何処
までを有効範囲として解析し得るか即ち、何処までが有
効な解析領域であるのかを判断することは出来ず。In the case of the above-mentioned conventional installation method, no matter how much you monitor the output of the area sensor, it is impossible to establish a correspondence between the points on the test surface and the points on the image on the light receiving surface, resulting in light rays missing and Crossing cannot be detected, and in reality, if there is a missing beam or a crossing force of 1, the measurement error will increase. Further, even if it is found that there are omissions or intersections of light rays, it is not possible to determine how far the effective range of analysis can be made, that is, what is the effective analysis area.
測定範囲を知ることが出来ないので、測定範囲が最大に
なる設置位置を見出して効率のよい測定を行うことはで
きない。Since the measurement range cannot be known, it is not possible to find the installation position where the measurement range is maximum and perform efficient measurement.
(目 的)
本発明は、上述した事情に鑑、みてなされたものであっ
て、その目的とする所は、干渉測定により表面形状を測
定するに際して、被検6物を測定範囲最大となる測定値
・置゛に的確に設置でき、且つ解析領域を的確に設定し
得る新規な、測定準備方法の提供にある。(Purpose) The present invention has been made in view of the above-mentioned circumstances, and its purpose is to measure the six objects to be measured to maximize the measurement range when measuring the surface shape by interferometric measurement. The purpose of the present invention is to provide a new measurement preparation method that allows accurate setting of values and locations, and allows accurate setting of analysis areas.
(構 成) 以下、本発明を説明する。(composition) The present invention will be explained below.
本発明は、既知の表面形状の設定面に近似した表面形状
を持つ被検物を干渉測定方式で測定する表面形状測定方
法に於いて、被検物を最適の測定位置に設置するととも
に適切な解析領域を設定する方法であって、以下の如き
特徴を有する。The present invention provides a surface profile measurement method that uses an interferometry method to measure a target having a surface shape similar to a set surface with a known surface shape. This is a method for setting an analysis area, and has the following characteristics.
被検的測定位置から光電検出装置に到る光路の一つをシ
ミュレートし、シミュレートされた光路の基準位置に設
定面を設置する。この設定面による複数の反射光線を設
定して、光軸から順に符号を付け、各反射光線に対する
光線追跡をシミュレーションにより行い、シミュレート
された光電検出装置の受光面上における。上記反射光線
の、光線数、入射位置、光線の配列順位により光線のケ
ラレ、抜け、交差を調べて設定面の測定可能範囲と有効
解析領域とを求める。そして、上記設定面をシミュレー
ションにより光軸上で移動させて、上記測定可能範囲、
有効解析領域を求める工程を繰り返し、測定可能範囲最
大の位置を測定位置として特定し、このように特定され
た測定位置に被検物を設置するとともに、測定位置に対
応する有効解析領域を解析領域として設定する。One of the optical paths from the target measurement position to the photoelectric detection device is simulated, and a setting surface is installed at the reference position of the simulated optical path. A plurality of reflected light rays by this set surface are set, and codes are assigned in order from the optical axis, and ray tracing for each reflected light ray is performed by simulation on the light receiving surface of the simulated photoelectric detection device. The measurable range and effective analysis area of the set surface are determined by checking the vignetting, missing, and crossing of the reflected rays based on the number of rays, the incident position, and the arrangement order of the rays. Then, by moving the above setting surface on the optical axis by simulation, the above measurable range,
Repeat the process of determining the effective analysis area, identify the position with the maximum measurable range as the measurement position, install the test object at the measurement position specified in this way, and set the effective analysis area corresponding to the measurement position as the analysis area. Set as .
本発明の、基本的な考えは以下の如きものである。干渉
測定方式で被検物の表面形状を測定する場合を具体的に
考えてみると、被検物は例えば、非球面レンズやあるい
は、非球面レンズの製造用金型などであることが多い、
即ち、測定対象となる被検面の形状は、全く未知である
場合は少なく、多くの場合は、そのあるべき形状が予め
知られており、測定は、その有るべき形状を被検面がど
の程度に良く近似しているかを知る目的で行われること
が多い。具体的に説明すると1例えば、被検物として上
述の非球面レンズ製造用の金型を考えると、その被検面
は製造するべきレンズの非球面の形状と対応し、従って
、この形状は予め設計された既知の形状である。そこで
、この既知の表面形状を設定面と呼ぶことにする。そう
すると、被検物である金型の被検面の形状は上記設定面
に−fiする様に加工されるのであるが、最後の仕上げ
の段階では、実際に加工された被検面の形状と設定面と
がどの程度に一致しているかが知られねばならない、こ
の段階では、被検面形状は設定面の形状を可なりの精度
で近似していると言うことができる。The basic idea of the present invention is as follows. If we consider specifically the case where the surface shape of a test object is measured using an interferometric measurement method, the test object is often an aspherical lens or a mold for manufacturing an aspherical lens, for example.
In other words, the shape of the surface to be measured is rarely completely unknown; in many cases, the desired shape is known in advance, and measurement is performed by determining how the surface to be measured is shaped. This is often done for the purpose of determining whether the approximation is reasonably good. To explain specifically, 1. For example, if we consider the above-mentioned mold for manufacturing an aspherical lens as the test object, the test surface corresponds to the shape of the aspheric surface of the lens to be manufactured, and therefore, this shape has been determined in advance. It is a designed and known shape. Therefore, this known surface shape will be referred to as a setting surface. Then, the shape of the surface to be inspected of the mold to be inspected is machined so that it is -fi to the above-mentioned setting surface, but at the final finishing stage, the shape of the surface to be inspected that is actually machined is At this stage, where it is necessary to know how well the target surface matches the set surface, it can be said that the shape of the test surface approximates the shape of the set surface with considerable accuracy.
本発明では、この事実を利用するのである。The present invention utilizes this fact.
(実施例) 以下、具体的な実施例に即して説明する。(Example) Hereinafter, description will be given based on specific examples.
本発明を実施するためには、先ず被検的測定位置から光
電検出装置に到る光路の一つをシミュレートしなければ
ならない。To implement the invention, one must first simulate one of the optical paths from the measured measurement position to the photoelectric detection device.
具体的な表面形状測定装置としては、第8図に光学系を
示した如きものを想定する。そして、第3図に示すよう
に、測定装置100と駆動系200を制御装置300で
制御し得るようにし、操作部400で制御条件を設定し
たりできるようにする。測定装置100は、第8図で示
したような装置であり、駆動系200は、被検物を光i
上で移動させたり、あるいは測定に必要なシャッター開
閉の制御を行ったりする部分である。また制御装置は、
被検物設置のためのシミュレーションを行ったり、或は
、測定装置の光電検出装置の出力に基づき、データ演算
を行ったり、或は駆動系200の駆動を制御したりする
部分であって具体的にはコンピューターが用いられる。As a specific surface shape measuring device, one whose optical system is shown in FIG. 8 is assumed. As shown in FIG. 3, the measuring device 100 and drive system 200 can be controlled by a control device 300, and control conditions can be set by an operating section 400. The measuring device 100 is a device as shown in FIG.
This is the part that is moved above and controls the opening and closing of the shutter necessary for measurement. In addition, the control device is
It is a part that performs simulation for installing the test object, performs data calculation based on the output of the photoelectric detection device of the measurement device, or controls the drive of the drive system 200, and has no specific details. A computer is used.
また、操作部は例えばキーボード等である。Further, the operation unit is, for example, a keyboard.
この実施例では、第8図に示した光学系の内、第4図に
示す部分をシミュレーションに利用する、即ち、被検的
測定位置から対物レンズ18、ビームスプリッタ−16
,14,2B、結像レンズ28をへて光電検出装置たる
エリアセンサー30に到る光路をシミュレートして、光
線追跡のプログラムを制御装置に記憶させておく。In this embodiment, the part shown in FIG. 4 of the optical system shown in FIG. 8 is used for the simulation.
, 14, 2B, the optical path passing through the imaging lens 28 and reaching the area sensor 30, which is a photoelectric detection device, is simulated, and a ray tracing program is stored in the control device.
測定の基準としては、照明光束が対物レンズ18の作用
により収束するキャッツアイポイントC(第5図)を取
る。The cat's eye point C (FIG. 5), where the illumination light beam is converged by the action of the objective lens 18, is taken as a measurement reference.
被検物の設置は、第1図に示す手順で行う。The installation of the test object is performed according to the procedure shown in FIG.
先ず、被検物を廃動系にセットしてこれを基準の位置に
配備する。ここに基準の位置とは、被検面の光軸上の部
位における設計上の曲率中心、即ち設定面の光軸上の曲
率中心が前記キャッツアイポイントCと一致する位置で
あり、第5図に示す位置である。距1iR■は、設定面
の光軸上の曲率半径である。この位置をRマツチポイン
トと呼ぶ。First, the object to be tested is set in the disposal system and placed at a reference position. Here, the reference position is a position where the designed center of curvature of a portion on the optical axis of the test surface, that is, the center of curvature of the setting surface on the optical axis coincides with the cat's eye point C, as shown in FIG. This is the position shown in . The distance 1iR■ is the radius of curvature of the setting surface on the optical axis. This position is called the R match point.
次に、第1図に示すように実機とシミュレーションとの
対応をとる。この対応は以下の様に行われる。即ち、操
作部の操作により設定面に関するデータ、例えば曲率半
径や非球面係数など、光線追跡に必栗なデータを制御装
置300に設定する。Next, as shown in FIG. 1, correspondence is established between the actual machine and the simulation. This correspondence is performed as follows. That is, data related to the set surface, such as the radius of curvature and the aspheric coefficient, which are essential for ray tracing, are set in the control device 300 by operating the operating section.
また、設定面の位置即ち、シミュレーション上の位置は
上記Rマツチポイントに設定する。Further, the position of the setting plane, that is, the position on the simulation is set at the R match point.
続いて、第1図に示す様に測定を開始する。ここにいう
測定はシミュレーションによる測定範囲等の測定である
。Subsequently, measurement is started as shown in FIG. The measurement referred to here is the measurement of the measurement range etc. by simulation.
シミュレーションは以下の様に行おれる。先ず、第6図
に示すように、光軸(シミュレーション上の光軸) A
Xに直交する方向にr軸をとり、このr軸上に複数の点
、この例では7つの点r1〜r7を。The simulation can be performed as follows. First, as shown in Figure 6, the optical axis (optical axis in the simulation) A
The r-axis is taken in the direction perpendicular to X, and there are multiple points on this r-axis, seven points r1 to r7 in this example.
設定するerlは光軸上の点であり、光軸を離れるに従
って順次r2.r3. 、 、 、 、r6.r7どな
る。The erl to be set is a point on the optical axis, and as it leaves the optical axis, it is sequentially r2. r3. , , , , r6. r7 yells.
次に、これらの点R1〜R7に対応する。設定面O5上
の各点からの反射光線に、光軸の側から順次符号を付け
、第6図のように順次Ll乃至L7とする。Next, correspond to these points R1 to R7. The reflected light rays from each point on the setting plane O5 are sequentially labeled from the optical axis side, and are sequentially labeled L1 to L7 as shown in FIG.
また、これら反射光線L1〜L7のアパーチュア Aの
位置に於ける光線を図の如< L12.L22.L32
.L42゜L52.L62.L72とし、エリアセンサ
ーの受光面S上ノ光11tL13.L23.L33.L
43.IJ3 、L83.L73ニソレ(し対応するも
のとする。結局、これらの符号で、Lの次にある数字(
1〜7)が等しい光線は同一の光線を表し、この数字が
、各反射光の順番即ち光線番号を表すものとする。各反
射光線の反射起点と方向は、先に設定したデータに従っ
て、光線追跡のシミュレーションプログラムに従って算
出される、 次に、第1図のフロー図に示す様に、設定
面の光軸上の位置(これは設定条件として定まる)、設
定面の測定可能範囲、エリアセンサー上の像の有効な大
きさを検出する。In addition, the rays of these reflected rays L1 to L7 at the position of the aperture A are as shown in the figure. L22. L32
.. L42°L52. L62. L72, and the light above the light receiving surface S of the area sensor is 11tL13. L23. L33. L
43. IJ3, L83. L73 Nisole (and corresponds to it. After all, in these codes, the number next to L (
Light rays having the same values (1 to 7) represent the same light ray, and this number represents the order of each reflected light, that is, the light ray number. The reflection origin and direction of each reflected ray are calculated according to the ray tracing simulation program according to the previously set data.Next, as shown in the flow diagram of Figure 1, the position on the optical axis of the setting surface ( (This is determined as a setting condition), the measurable range of the setting surface, and the effective size of the image on the area sensor are detected.
この目的のために各反射光L1〜L7のそれぞれに付き
シミュレーションによる光線追跡を行い、受光面S上に
到達する光線とその到達位置とを調べ、その結果に基づ
きケラレ、抜け、交差の有無を調べる。そして、その結
果に基づき、測定面の測定可能範囲、エリアセンサー上
の像の有効な大きさを横比する。For this purpose, ray tracing is performed by simulation for each of the reflected lights L1 to L7, and the rays reaching the light-receiving surface S and their arrival positions are investigated. Based on the results, the presence or absence of vignetting, omissions, and intersections is determined. investigate. Then, based on the results, the measurable range of the measurement surface and the effective size of the image on the area sensor are laterally compared.
このシミュレーション工程は第2図に示すフロー図に従
う手順で行う。This simulation step is performed in accordance with the flowchart shown in FIG.
先ず、エリアセンサー上の光線数、即ちエリアセンサー
の受光面へ到達した光線数と、光線の番号の内の最大の
もの、即ち、今説明している例では7とが等しいか否か
が調べられる。若し等しければケラレは無く、等しく無
いときはケラレがある。これによりケラレの有無が分か
る0次に、受光面に於ける光線の配列が番号順であるか
否かを調べる。この場合、配列が番号順であるか否かは
、光線の欠落を問題とせず、光線番号の小さい順に光軸
側から配列しているか否かを問題とする。First, it is checked whether the number of light rays on the area sensor, that is, the number of light rays that have reached the light receiving surface of the area sensor, is equal to the maximum number of light rays, that is, 7 in the example being explained. It will be done. If they are equal, there will be no vignetting, and if they are not equal, there will be vignetting. This determines the presence or absence of vignetting.Next, it is checked whether the arrangement of the light beams on the light receiving surface is in numerical order. In this case, whether or not the arrangement is in numerical order does not matter whether the rays are missing or not, but whether the rays are arranged in descending order of the ray number from the optical axis side.
もし、配列が光線番号の小さい頭になっていれば光線の
交差が無いことが分かる。交差が無いことが分かったら
1次には、受光面上の光線番号の配列に於いて光線番号
に欠落が無いかどうかを調べる。もし、欠落がなければ
、光線の抜けが無いことが分かる。If the array starts with a small ray number, it can be seen that there is no intersection of rays. If it is found that there is no intersection, the first step is to check whether there are any missing ray numbers in the array of ray numbers on the light receiving surface. If there are no gaps, it is clear that there are no missing rays.
さて、上記の調べで、光線の抜け、交差が無い場合は、
第2図の■の手順を行う、このときの状態は、光線の抜
けや交差は無く、゛ケラレは無いかある状態であり、受
光面S上の光線の状態は第7図の(1)(ケラレが無い
場合)または、例えば同図(2)の如きもの(ケラレが
有る場合二反射光線L6.L7がケラしている)となる
、そこでかかる場合は■の手順として、受光面上の光線
の番号の内の最大のもの(ケラレが無いときは7、有る
時は5例えば第7図(2)では5)に対応する光線の光
軸がらの距離で規定される領域が有効な、干渉縞の解析
範囲即ち有効解析領域であり、上記光線番号を持つ反射
光線で規定される被検面範囲が測定可能範囲であるので
これらをそれぞれ有効解析領域、測定可能範囲とする。Now, according to the above investigation, if there are no missing or intersecting rays, then
Perform the procedure (■) in Figure 2. At this time, there is no omission or crossing of the light rays, and there is no or no vignetting, and the state of the light rays on the light-receiving surface S is as shown in (1) in Figure 7. (If there is no vignetting) Or, for example, the result will be as shown in (2) in the same figure (if there is vignetting, the two reflected rays L6 and L7 are vignetted). The area defined by the distance from the optical axis of the ray corresponding to the largest number of rays (7 when there is no vignetting, 5 when there is vignetting, for example 5 in Fig. 7 (2)) is the effective area. This is the analysis range of interference fringes, that is, the effective analysis area, and the test surface range defined by the reflected light beam having the above-mentioned ray number is the measurable range, so these are respectively defined as the effective analysis area and the measurable range.
具体的な例として、受光面上の光線の状態が第7図(2
)のようであるとすると、有効な像の軸回たる有効解析
領域は、光軸と最大光線番号を持つ光線L5との距離を
半径とし、光軸を中心とする受光面S上の円形の領域と
なる。また、このときの測定可能範囲は、第6図で光軸
を中心とし、半径r5の円で囲まれた設定面領域である
。As a specific example, the state of the light beam on the light receiving surface is shown in Figure 7 (2).
), the effective analysis area, which is the axis rotation of the effective image, is a circular area on the light-receiving surface S centered on the optical axis, with the radius being the distance between the optical axis and the ray L5 with the largest ray number. It becomes an area. Moreover, the measurable range at this time is the setting surface area surrounded by a circle with radius r5 centered on the optical axis in FIG.
次に、第2図で、エリアセンサー上の光線番号に欠落が
ある場合は、■の手順を行う。この状態では光線の抜け
があり、さらにケラレはある場合と無い場合がある。Next, in FIG. 2, if there is a missing ray number on the area sensor, perform the procedure (2). In this state, the light rays may be missing, and there may or may not be vignetting.
第7図の(3)はケラレはないが光線の抜けがある場合
(反射光@ L5 、 L6が抜けている)であり、第
7図(4)はケラレと抜けが有る場合(反射光線L7が
ケラしており、同線光線L4 、 L5が抜けている)
である、この場合には、■の手順として受光面上の光線
Li2等を光軸の側から順に、即ち光線番号の小さい順
に見て行き、抜けの生じた光線より一つ光線番号の若い
光線で、有効解析領域と測定可能範囲を定める0例えば
、光線の状態が受光面S上で第7図(4)の如きもので
有る場合は、光線L33と光軸との間の距離を半径とす
る光軸の周りの領域が有効解析領域であり、測定可能範
囲は光軸の周りの半径r3の領域である。(3) in Fig. 7 is a case where there is no vignetting but there is a missing light ray (reflected light @ L5 and L6 are missing), and Fig. 7 (4) is a case where there is vignetting and missing (reflected light ray L7). is vignetted, and the same rays L4 and L5 are missing)
In this case, in step (2), the rays Li2, etc. on the light-receiving surface are looked at in order from the optical axis side, that is, in order from the smallest ray number, and the rays with one ray number one younger than the missing ray are found. For example, if the state of the light beam is as shown in Fig. 7 (4) on the light receiving surface S, the distance between the light beam L33 and the optical axis is defined as the radius. The area around the optical axis is the effective analysis area, and the measurable range is the area with radius r3 around the optical axis.
次に、第2図でエリアセンサー上の光線が番号順でない
場合は1図の如く■の手順を行う、この状態は、光線の
交差がある場合であり、具体的には、交差のみがある場
合、交差とケラレがある場合、交差とケラレと抜けのあ
る場合がある。Next, if the light rays on the area sensor are not in numerical order in Figure 2, perform the procedure (■) as shown in Figure 1.This state is when there is intersection of the light rays, specifically, there is only intersection. In some cases, there may be intersections and vignetting, and there may be intersections, vignetting, and omissions.
具体的な例を第7図(5)〜(8)に示す。Specific examples are shown in FIG. 7 (5) to (8).
第7図(5)は光線の交差のみがある場合であり、第7
図(6)は、交差とケラレがある状態、第7図(7)は
交差とケラレと抜けのある状態である。Figure 7 (5) is the case where there is only intersection of rays;
Figure (6) shows a state where there is intersection and vignetting, and Figure 7 (7) shows a state where there is intersection, vignetting, and omission.
これらの場合には、受光面上に到達した光線の内で光線
番号の最大のものと他の光線の、光軸からの距離を比較
し、最大光線番号の光線の光軸からの距離を越えないで
、光軸からの距離が最も長い光線(第7図(5)、(6
)とも光線L23、同図(7)では光線L33)で規定
される範囲が有効解析領域であり、これらに対応する反
射光線で規定される領域(第7図(5)、(6)の場合
とも光軸から半径12以内の範囲、同図(7)では光軸
から半径13以内の範囲)が測定可能領域である。第7
図(8)も、交差と抜け、ケラレのある状態であるがこ
の場合は、上記■の手順で有効領域とされた状態の内部
に光線の抜けがあるので、この場合は、先ず上記の■の
手順、即ち受光面上に到達した光線の内で光線番号の最
大のものと、他の光線の光軸からの距離を比較し、最大
光線番号の光線の光軸からの距離を越えないで、光軸か
らの距離が最も長い光線で規定される範囲を調べ、続い
て、第2図に示す様に、この範囲内で光線番号の欠落の
有無を調べる。光線番号に欠落が有る場合、即ち第7図
(8)に示す様な場合、は■の 手順を行う、即ち、こ
の場合■で調べた範囲内で、上記■の手順と同様のこと
を行い、上記■の手順と同様にして有効解析領域と測定
可能範囲とを調べる。In these cases, the distance from the optical axis of the ray with the highest ray number among the rays that reached the light receiving surface and other rays is compared, and if the distance from the optical axis of the ray with the highest ray number is exceeded, rays with the longest distance from the optical axis (Fig. 7 (5), (6)
), the range defined by the ray L23 (in the case of Fig. 7 (7), the ray L33) is the effective analysis area, and the area defined by the corresponding reflected ray (in the case of Fig. 7 (5) and (6)) is the effective analysis area. In both cases, the range within a radius of 12 from the optical axis (in FIG. 7, the range within a radius of 13 from the optical axis) is the measurable area. 7th
Figure (8) also shows a state in which there are crossings, omissions, and vignetting, but in this case, there is a omission of the light ray inside the state that was set as the effective area by the procedure in step ① above, so in this case, first, In other words, compare the distance from the optical axis of the ray with the highest ray number among the rays that reached the light receiving surface with the distance from the optical axis of the other rays, and make sure that the distance from the optical axis of the ray with the highest ray number is not exceeded. , the range defined by the ray having the longest distance from the optical axis is examined, and then, as shown in FIG. 2, the presence or absence of missing ray numbers within this range is examined. If the ray number is missing, that is, as shown in Figure 7 (8), follow the steps in ■. In this case, within the range investigated in (■), do the same procedure as in (■) above. , Check the effective analysis area and the measurable range in the same manner as in the procedure (2) above.
このようにして、被検物に対する測定可能範囲がもとま
るので、この測定可能範囲を51として、有効解析領域
AN、設定面のシミュレーシミン上の光軸上位’tlx
xとともにデータとして制御装置300にとり込む。In this way, the measurable range for the test object is determined, so this measurable range is set as 51, the effective analysis area AN, and the upper optical axis 'tlx on the simulation surface of the setting surface.
It is taken into the control device 300 as data along with x.
続いて、設定面の位置軸を光軸上で所定の距離、例えば
llI■だけ変更し、この新たな位置x8に対して、上
記の手順で測定可能範囲S!、有効解析領域AN!を測
定し、xよとともとにデータとして取り込む、続いて設
定面の位置をさらに光軸上で変更して、同様のことを繰
り返す、第16図に示すように、全検出領域で検出を終
了するまで、上記プロセスを所定回数、例えば20回行
って、データx1〜Xxo=St−5zo、ANx〜A
Nzoを得、これら51〜S ! !1の内で最大のも
のSMAXと、これに対応するXMAXを求める。この
とき得られるXMAXは、この位置に設定面をおいた時
、測定範囲が最大になる位置である。Next, change the position axis of the setting surface by a predetermined distance on the optical axis, for example, llI■, and follow the above procedure to measure the measurable range S! for this new position x8. , effective analysis area AN! Then, change the position of the setting surface on the optical axis and repeat the same process. As shown in Figure 16, detect in the entire detection area. The above process is repeated a predetermined number of times, for example, 20 times, until the process is completed, and the data x1 to Xxo=St-5zo, ANx to A
Got Nzo and these 51~S! ! Find the largest SMAX among the 1s and the corresponding XMAX. XMAX obtained at this time is the position where the measurement range is maximum when the setting surface is placed at this position.
そこでこの位置を測定位置として特定する。そして、す
でに駆動系に保持されている被検物を移動させて、その
被検面が上記測定位置に位置する様にする。そして実際
の表面形状測定を行う、このとき、解析は上に決定され
た有効解析領域即ち測定位置とともに定まる解析領域に
付いて行う。Therefore, this position is specified as the measurement position. Then, the test object already held in the drive system is moved so that its test surface is located at the measurement position. Then, actual surface shape measurement is performed. At this time, analysis is performed on the effective analysis area determined above, that is, the analysis area determined together with the measurement position.
前述の様に、実際の被検面は、設定面を近似するもので
あるので、上のようにして定められた測定可能範囲、有
効解析領域は現実の被検面に対する測定可能領域、有効
解析領域と実質的に一致するものと考えら九、上記の如
くして測定を行えば光線のケラレ、抜け、交差等の異常
の影響を排除して、極めて効率良い測定が可能となる。As mentioned above, the actual test surface approximates the set surface, so the measurable range and effective analysis area determined as above are the measurable area and effective analysis area for the actual test surface. If the measurement is performed in the manner described above, it is possible to eliminate the effects of abnormalities such as vignetting, omission, and crossing of light beams, making it possible to perform extremely efficient measurements.
(効 果)
以上、本発明によれば表面形状測定方法に於ける測定準
備方法を提供できる。(Effects) As described above, according to the present invention, a measurement preparation method in a surface shape measurement method can be provided.
この方法は、上記の如き構成となっているので、この方
法で測定を準備することにより、被検物をその測定範囲
が最大となる位置に設置出来、尚且つ解析領域も有効な
範囲が決定されるので、光線のケラレ、抜け、交差等の
異常の影響を除去し、極めて精度の良い表面形状測定が
可能となる。This method has the above configuration, so by preparing for measurement using this method, the test object can be placed at a position where the measurement range is maximum, and the effective range of the analysis area can also be determined. This eliminates the influence of abnormalities such as vignetting, omission, and intersection of light beams, making it possible to measure the surface shape with extremely high accuracy.
第1図は、本発明を説明するためのフロー図。
第2図は、本発明の特徴部分を説明するためのフロー図
、第3図はシステム図、第4図乃至第7図は、実施例に
関連して本発明を説明するための図、第8図及び第9図
は1発明の解決課厘を説明するための図である。
OS、、、設定面、O06,被検物、S01.光電検出
装置第42
篤 e 2
処 ? 口
(イ) (2)
(3)(’7) (f3)FIG. 1 is a flow diagram for explaining the present invention. FIG. 2 is a flow diagram for explaining the characteristic parts of the present invention, FIG. 3 is a system diagram, FIGS. 4 to 7 are diagrams for explaining the present invention in connection with embodiments, and FIG. 8 and 9 are diagrams for explaining the solution section of one invention. OS, , Setting surface, O06, Test object, S01. Photoelectric detection device No.42 Atsushi e2? mouth (i) (2)
(3) ('7) (f3)
Claims (1)
物を干渉測定方式で測定する表面形状測定方法に於いて
、被検物を最適の測定位置に設置し、且つ解析領域を設
定する方法であって、被検物測定位置から光電検出装置
に到る光路の一つをシミュレートし、 シミュレートされた光路の基準位置に設定面を設置し、
この設定面による複数の反射光線を設定して、光軸から
順に符号を付け、各反射光線に対する光線追跡をシミュ
レーションにより行い、シミュレートされた光電検出装
置の受光面上における、上記反射光線の、光線数、入射
位置、光線の配列順位により光線のケラレ、抜け、交差
を調べて設定面の測定可能範囲と有効解析領域とを求め
、上記設定面をシミュレーションにより光軸上で移動さ
せて、上記測定可能範囲と有効解析領域とを求める工程
を繰り返し、測定可能範囲最大の位置を測定位置として
特定し、このように特定された測定位置に被検物を設置
するとともに、この測定位置に対する有効解析領域を解
析領域として設定することを特徴とする被検物設置方法
。[Claims of Claims] In a surface profile measurement method in which a test object having a surface shape similar to a set surface with a known surface shape is measured by an interferometric measurement method, the test object is placed at an optimal measurement position, In addition, there is a method for setting an analysis area, which includes simulating one of the optical paths from the measurement position of the object to the photoelectric detection device, installing a setting surface at the reference position of the simulated optical path, and
A plurality of reflected rays by this setting surface are set, codes are assigned in order from the optical axis, ray tracing for each reflected ray is performed by simulation, and the reflected rays on the light receiving surface of the simulated photoelectric detection device are The measurable range and effective analysis area of the set surface are determined by examining the number of light rays, the incident position, and the arrangement order of the light rays for vignetting, dropouts, and intersections, and the above set surface is moved on the optical axis through simulation, and the above Repeat the process of determining the measurable range and effective analysis area, identify the position with the maximum measurable range as the measurement position, install the object to be measured at the thus identified measurement position, and perform effective analysis for this measurement position. A test object setting method characterized by setting a region as an analysis region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12118188A JPH01291105A (en) | 1988-05-18 | 1988-05-18 | Measurement preparing method for surface shape measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12118188A JPH01291105A (en) | 1988-05-18 | 1988-05-18 | Measurement preparing method for surface shape measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01291105A true JPH01291105A (en) | 1989-11-22 |
Family
ID=14804857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12118188A Pending JPH01291105A (en) | 1988-05-18 | 1988-05-18 | Measurement preparing method for surface shape measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01291105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012154650A (en) * | 2011-01-21 | 2012-08-16 | Chuo Motor Wheel Co Ltd | Method, device, and program for measuring shape of surface to be tested |
JP2013186018A (en) * | 2012-03-09 | 2013-09-19 | Canon Inc | Aspherical surface measurement method, aspherical surface measurement device, optical element processing device, and optical element |
-
1988
- 1988-05-18 JP JP12118188A patent/JPH01291105A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012154650A (en) * | 2011-01-21 | 2012-08-16 | Chuo Motor Wheel Co Ltd | Method, device, and program for measuring shape of surface to be tested |
JP2013186018A (en) * | 2012-03-09 | 2013-09-19 | Canon Inc | Aspherical surface measurement method, aspherical surface measurement device, optical element processing device, and optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4055382A (en) | Testing method for the separate determination of varying work surface flaws and arrangement for said method | |
US4947202A (en) | Distance measuring apparatus of a camera | |
KR20020011377A (en) | Device for rapidly measuring angle-dependent diffraction effects on finely structured surfaces | |
CN103471524B (en) | Confocal paraboloids vertex curvature radius measuring method | |
CN103615971B (en) | For detecting the optical interdferometer of cylindrical outer surface | |
US4281926A (en) | Method and means for analyzing sphero-cylindrical optical systems | |
US5180911A (en) | Parameter measurement systems and methods having a neural network comprising parameter output means | |
CN111220088B (en) | Measurement system and method | |
JP4340625B2 (en) | Optical inspection method and apparatus | |
JPH01291105A (en) | Measurement preparing method for surface shape measuring method | |
US4925301A (en) | Method and apparatus for sensing the figure of optical elements | |
JP2003050109A (en) | Surface shape measuring device and measuring method | |
JPH02238338A (en) | Lens inspecting apparatus | |
US7154612B2 (en) | Method for calibrating a radius test bench | |
JPH0217044B2 (en) | ||
JPS5873334A (en) | Autoreflectometer | |
CN109297585A (en) | A kind of Experiments of Optics system and experimental method based on facula deviation method measurement laser facula focal diameter | |
JP4768904B2 (en) | Method for measuring physical quantity of optical element or optical system | |
CN105067229A (en) | Grating ruler three-probe focal length measurement device and measurement method based on combined lens method | |
CN113008518A (en) | Splicing detection method and system based on shack Hartmann wavefront sensor | |
JP2002250621A (en) | Shape-measuring method and device for optical element, and its type | |
JP5808194B2 (en) | Shape measuring method, shape measuring apparatus, program, and recording medium | |
CN204855140U (en) | Three probe focus measuring device of grating chi based on compound lens method | |
JP2016142691A (en) | Shape measurement method and shape measurement device | |
JP2000097660A (en) | Method for adjusting optical axis of optical system and interference measuring instrument |