JPH01291067A - Thermoaccumulation type freezer - Google Patents

Thermoaccumulation type freezer

Info

Publication number
JPH01291067A
JPH01291067A JP12075888A JP12075888A JPH01291067A JP H01291067 A JPH01291067 A JP H01291067A JP 12075888 A JP12075888 A JP 12075888A JP 12075888 A JP12075888 A JP 12075888A JP H01291067 A JPH01291067 A JP H01291067A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat exchanger
transfer device
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12075888A
Other languages
Japanese (ja)
Other versions
JP2533913B2 (en
Inventor
Michio Yanatori
梁取 美智雄
Toshisuke Onoda
小野田 利介
Hajime Arai
一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12075888A priority Critical patent/JP2533913B2/en
Publication of JPH01291067A publication Critical patent/JPH01291067A/en
Application granted granted Critical
Publication of JP2533913B2 publication Critical patent/JP2533913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a proper removal of a crystal of thermal accumulation material adhered around a heat exchanger, facilitate an aquisition of heat, improve a maintenance characteristic, a working characteristic and a reliability characteristic and reduce a consumption power by a method wherein a control circuit which can be alternately inputted to heaters of a first and a second thermal flow controlling and thermal transmitting devices is provided. CONSTITUTION:In the case that a crystal adhered to a cooling device 43 is removed and a thermal resistance is reduced, at first a heater 28 of a first thermal flow controlling transmitting device 2 is turned off. With this arrangement, a thermal transmittance from an evaporating heat exchanger 21 to a condensing heat exchanger 22 is stopped, and a cooling capability of a cooling device 43 is temporarily terminated. Then, an input is added to a heater 38 of the second thermal flow controlling and transmitting device 3. A part of heat generated at a condensor 6 to a freezer device 1 is transmitted from an evaporating heat exchanger 31 to a cooling device 43 within a thermal accumulation tank 1. With this heat, a part of crystal at an interface part of a cooling device 43 is melted and removed and then the crystal is removed from the cooling device 43. After the crystal is removed from the cooling device 43, an input of the heater 38 is terminated and an input is added to the heater 28 so as to perform a thermal accumulation within the thermal accumulation material 42.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、蓄熱式冷凍装置に係り、特に、冷凍装置と蓄
熱槽とを可動部を持たない熱流制御性熱伝達装置によっ
て熱的に結合し、蓄熱の信頼性を向上するのに好適な蓄
熱式冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat storage type refrigeration system, and in particular to a method for thermally coupling a refrigeration system and a heat storage tank by a heat flow controllable heat transfer device having no moving parts. The present invention relates to a heat storage type refrigeration device suitable for improving the reliability of heat storage.

[従来の技術] 近年、空気調和装置においても、省エネルギ、経済性の
面から、夜間電力を利用して蓄冷し、昼間この冷熱を冷
房に利用することが行われており。
[Prior Art] In recent years, air conditioners have also been using electricity at night to store cold and use this cold energy for air conditioning during the day in order to save energy and be economical.

例えば、特開昭51−7747号公報、特開昭58−2
541号公報、特開昭53−148145号公報記載の
ものなどが知られている。
For example, JP-A-51-7747, JP-A-58-2
541, and those described in JP-A-53-148145 are known.

特に、特開昭53−148145号公報には、一般的な
冷凍サイクルの空気調和装置と、蓄熱材を満たした蓄熱
槽とを備え、蓄熱槽中に設けである蒸発器と室外側熱交
換器に設けである凝縮器とを、蒸気上昇管と液体下降管
とによって密閉循環器を構成するように連結し、バブル
ポンプ方式、タンク加熱方式、あるいはペーパーロック
方式等によって、蓄熱槽から空気調和装置の室外側熱交
換器へ、あるいは室外側熱交換器から蓄熱槽へ熱を伝え
たり切ったりする技術が開示されていた。
In particular, JP-A-53-148145 discloses an air conditioner with a general refrigeration cycle, a heat storage tank filled with a heat storage material, an evaporator installed in the heat storage tank, and an outdoor heat exchanger. A condenser installed in A technology was disclosed for transferring heat to and from an outdoor heat exchanger, or from an outdoor heat exchanger to a heat storage tank.

[発明が解決しようとする課題] 上記特開昭51−7747号公報記載の技術は、冷凍装
置を層内、蓄熱槽を屋外に配設して、これを熱的に結合
する場合、複雑なサイクル構成になっている冷凍装置に
、現地で冷媒を封入して調整しなければならず、施工性
および保守性について配慮されていなかった。
[Problems to be Solved by the Invention] The technology described in Japanese Patent Application Laid-open No. 51-7747 requires a complicated process when arranging the refrigeration system in a layer and the heat storage tank outdoors and thermally coupling them. The refrigeration equipment, which has a cycle configuration, had to be filled with refrigerant and adjusted on-site, and no consideration was given to ease of construction and maintainability.

また、上記特開昭58−2541号公報記載の技術は、
熱媒体を入れた配管によって冷凍装置と蓄熱槽を結合し
、ポンプによって熱媒体を循環するという間接熱交換方
式によって、上記問題を解決しているが1反面機械的可
動部を有するポンプの信頼性とポンプ動力が大きいとい
う点について配慮されていなかった。
In addition, the technology described in the above-mentioned Japanese Patent Application Laid-Open No. 58-2541 is as follows:
The above problem has been solved by an indirect heat exchange method in which the refrigeration system and the heat storage tank are connected through piping containing a heat medium, and the heat medium is circulated by a pump, but on the other hand, the reliability of the pump with mechanically moving parts has been reduced. No consideration was given to the fact that the pump requires a large amount of power.

さらに、上記の特開昭53−148145号公報記載の
技術は、本発明にもっとも近い技術で、可動部分のない
熱伝達装置によって空気調和装置の室外側熱交換器から
蓄熱槽へ、あるいは蓄熱槽から室外側熱交換器へ熱を伝
えたり切ったりして、蓄熱槽内の蓄冷熱を有効に冷暖房
に利用できるものであるが、蓄熱槽内熱交換器(蒸発器
)まわりに付着する蓄熱材結晶(例えば氷など)を適宜
離脱させて熱交換器の熱抵抗を低減することについては
配慮されていなかった。また、前記熱伝達装置部のサイ
クル構成、運転方法の面で、本発明とは異なるものであ
った。
Furthermore, the technology described in Japanese Patent Application Laid-Open No. 53-148145 is the closest technology to the present invention, and uses a heat transfer device without moving parts to transfer heat from an outdoor heat exchanger of an air conditioner to a heat storage tank or a heat storage tank. The cold heat stored in the heat storage tank can be effectively used for heating and cooling by transferring heat to and from the outdoor heat exchanger, but the heat storage material that adheres around the heat exchanger (evaporator) inside the heat storage tank No consideration was given to reducing the thermal resistance of the heat exchanger by appropriately removing crystals (for example, ice). Further, the cycle configuration and operating method of the heat transfer device section were different from the present invention.

本発明は、上記従来技術における課題を解決するために
なされたもので、蓄熱槽内の蓄熱材を凝固させながら熱
を取り出す際に、蓄熱槽内の熱交換器まわりに付着する
蓄熱材結晶を適宜離脱させて熱の取得を容易にするとと
もに、保守性、施工性、信頼性が高く、かつ消費電力の
少ない蓄熱式冷凍装置を提供することを、その目的とす
るものである。
The present invention has been made in order to solve the above-mentioned problems in the prior art, and when extracting heat while solidifying the heat storage material in the heat storage tank, the present invention prevents crystals of the heat storage material that adheres around the heat exchanger in the heat storage tank. The purpose is to provide a heat storage type refrigeration device that facilitates the acquisition of heat by detaching it as appropriate, has high maintainability, workability, and reliability, and consumes less power.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る蓄熱式冷凍装
置の構成は、圧縮機、凝縮器、減圧機構、および蒸発器
を配管接続して冷凍サイクルを構成する冷凍装置と、蓄
熱材を満たし、冷却器を有する蓄熱槽と、蒸発用熱交換
器、凝縮用熱交換器、これら熱交換器を結ぶ液戻り管、
逆U字形立上げ管、立上げ管種元部に設けたヒータ、お
よび蒸気移動管によって蒸発性液体の密閉m環路を構成
する熱流制御性熱伝達装置とを備えた蓄熱式冷凍装置に
おいて、上記熱流制御性熱伝達装置を少なくとも2組設
け、上記蒸発器に第1の熱流制御性熱伝達装置の凝縮用
熱交換器、蓄熱槽中の冷却器に前記第1の熱流制御性熱
伝達装置の蒸発用熱交換器を配設し、上記凝縮器に第2
の熱流制御性熱伝達装置の蒸発用熱交換器、蓄熱槽中の
冷却器に前記第2の熱流制御性熱伝達装置の凝縮用熱交
換器を配設し、前記第1.第2の熱流制御性熱伝達装置
のヒータに交互に入力しうる制御回路を設けたものであ
る。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the regenerative refrigeration device according to the present invention is such that a compressor, a condenser, a pressure reduction mechanism, and an evaporator are connected through piping to form a refrigeration cycle. a refrigeration system, a heat storage tank filled with a heat storage material and having a cooler, an evaporation heat exchanger, a condensation heat exchanger, a liquid return pipe connecting these heat exchangers,
In a regenerative refrigeration system comprising an inverted U-shaped riser, a heater provided at the base of the riser, and a heat flow controllable heat transfer device that forms a closed m-ring for evaporative liquid using a vapor transfer pipe, At least two sets of the heat flow controllable heat transfer devices are provided, wherein the condensing heat exchanger of the first heat flow controllable heat transfer device is provided in the evaporator, and the first heat flow controllable heat transfer device is provided in the cooler in the heat storage tank. A second evaporation heat exchanger is installed in the condenser.
The condensing heat exchanger of the second heat flow controllable heat transfer device is arranged in the evaporation heat exchanger of the heat flow controllable heat transfer device and the cooler in the heat storage tank, and the condensation heat exchanger of the second heat flow controllable heat transfer device is disposed in the evaporation heat exchanger of the heat flow controllable heat transfer device of A control circuit is provided that can alternately input input to the heater of the second heat flow controllable heat transfer device.

なお付記すると、上記目的は、蒸発用熱交換器。As an additional note, the above purpose is an evaporation heat exchanger.

凝縮用熱交換器、液戻り管、立上げ管、立上げ管種元部
に設けたヒータ、および蒸気移動管で構成されている熱
流制御性熱伝達装置を2組用い、第一の熱流制御性熱伝
達装置によって冷凍機の蒸発器と蓄熱槽内の冷却器とを
熱的に結合し、第2の熱流制御性熱伝達装置によって冷
凍機の凝縮器と蓄熱槽内の冷却器とを熱的に結合するこ
とによって、達成される。
The first heat flow control method uses two sets of heat flow control heat transfer devices consisting of a condensing heat exchanger, a liquid return pipe, a riser pipe, a heater installed at the base of the riser pipe, and a vapor transfer pipe. A second heat flow controllable heat transfer device thermally connects the evaporator of the refrigerator and a cooler in the heat storage tank, and a second heat flow controllable heat transfer device connects the condenser of the refrigerator and the cooler in the heat storage tank. This is achieved by combining the

[作用] 上記の技術的手段による働きは、次のとおりである。[Effect] The function of the above technical means is as follows.

熱流制御性熱伝達装置は、蒸発性液体の沸騰作用と凝縮
作用とを用いており、従来のポンプのような可動部を有
しない熱伝達装置であるため、信頼性が著しく高いもの
となる。また、熱流制御性熱伝達装置内には、蒸発性液
体を封入して動作させるため、保守点検時にその液体が
漏れても蒸発してしまい、従来の不凍液に比較して取扱
いが容易である。
The heat flow control heat transfer device uses the boiling action and condensation action of an evaporative liquid, and has extremely high reliability because it does not have moving parts like a conventional pump. Furthermore, since the heat flow control heat transfer device is operated with an evaporative liquid sealed in it, even if the liquid leaks during maintenance and inspection, it will evaporate, making it easier to handle than conventional antifreeze.

冷凍装置は通常の冷凍サイクルの運転を行い、第1の熱
流制御性熱伝達装置を作動させ立上げ管根元のヒータに
入力すると、蒸発器と熱的に接続する凝縮用熱交換器で
液化した蒸発性液体は、液戻り管を経て蒸発用熱交換器
に入り、ここで蓄熱材を冷却器に凝固させ、蒸発性液体
は気化して蒸気移動管を経て凝縮用熱交換器に戻るサイ
クルを構成する。
The refrigeration equipment operates in a normal refrigeration cycle, and when the first heat flow control heat transfer device is activated and input is input to the heater at the base of the riser pipe, the refrigeration equipment is liquefied in the condensing heat exchanger thermally connected to the evaporator. The evaporative liquid enters the evaporative heat exchanger via the liquid return pipe, where the heat storage material is solidified in the cooler, and the evaporative liquid is vaporized and returns to the condensing heat exchanger via the vapor transfer pipe, completing the cycle. Configure.

次に、第2の熱流制御性熱伝達装置を作動させ立上げ管
根元のヒータに入力すると、凝縮器と熱的に接続する蒸
発用熱交換器で気化した蒸発性液体は蒸気移動管を経て
凝縮用熱交換器に入り、ここで蓄熱材結晶を冷却器から
離脱させ、蒸発性液体は液化して液戻り管を経て蒸発用
熱交換器に戻るサイクルを構成する。
Next, when the second heat flow controllable heat transfer device is activated and input is input to the heater at the base of the riser pipe, the evaporative liquid vaporized in the evaporation heat exchanger thermally connected to the condenser passes through the vapor transfer pipe. The liquid enters the condensing heat exchanger, where the heat storage material crystals are separated from the cooler, and the evaporative liquid is liquefied and returned to the evaporative heat exchanger via the liquid return pipe, forming a cycle.

この動作を交互に繰り返し行うことにより、蓄熱槽内に
多量の蓄熱材結晶を蓄積する。
By repeating this operation alternately, a large amount of heat storage material crystals are accumulated in the heat storage tank.

また、熱流制御性熱伝達装置内のヒータに加える入力は
、例えば凝縮用熱交換器から蒸発用熱交換器に輸送する
熱量の約1720と小さく、消費電力も小さくて済む。
Further, the input to be applied to the heater in the heat flow controllable heat transfer device is as small as, for example, about 1720 times the amount of heat transferred from the condensation heat exchanger to the evaporation heat exchanger, and the power consumption is also small.

[実施例] 以下、本発明の各実施例を第1図ないし第6図を参照し
て説明する。
[Embodiments] Each embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

まず、第1図は、本発明の一実施例に係る蓄熱式冷凍装
置の略示構成図である。
First, FIG. 1 is a schematic configuration diagram of a regenerative refrigeration system according to an embodiment of the present invention.

第1図に示す本実施例の蓄熱式冷凍装置は、冷凍装置1
y第1の熱流制御性熱伝達装置2、第2の熱流制御性熱
伝達装置3.蓄熱槽4から構成されている。
The thermal storage type refrigeration system of this embodiment shown in FIG.
y first heat flow controllable heat transfer device 2, second heat flow controllable heat transfer device 3. It is composed of a heat storage tank 4.

冷凍装置】は、蒸発器5、凝縮器6、圧縮機7、減圧機
構8が1図示のように配管9によって冷凍サイクルの循
環路を構成しており、この冷凍サイクル系にはフロン等
の蒸発性液体が入っている。
The refrigeration system consists of an evaporator 5, a condenser 6, a compressor 7, and a pressure reducing mechanism 8, which form a refrigeration cycle circulation path with piping 9 as shown in the figure. Contains sexual fluid.

第1の熱流制御性熱伝達装置2は、蒸発用熱交換器21
、凝縮用熱交換器22、蒸気移動管23゜液戻り管24
、その途中に設けであるタンク27および根元にヒータ
28を設けた逆U字形の立上げ管25によって、密閉循
環路を構成するように連結したもので、内部にはフロン
等の蒸発性液体が入っている。
The first heat flow controllable heat transfer device 2 includes an evaporation heat exchanger 21
, condensing heat exchanger 22, vapor transfer pipe 23° liquid return pipe 24
, are connected to form a closed circulation path by a tank 27 provided in the middle and an inverted U-shaped riser pipe 25 with a heater 28 at the base, and evaporative liquids such as fluorocarbons are contained inside. It's in.

第2の熱流制御性熱伝達装置3は、蒸発用熱交換器31
、凝縮用熱交換器32、蒸気移動管33、液戻り管34
、その途中に設けであるタンク37および根元にヒータ
38を設けた逆U字形の立上げ管35によって、密閉循
環路を構成するように連結したもので、内部にはフロン
等の蒸発性液体が入っている。
The second heat flow controllable heat transfer device 3 includes an evaporation heat exchanger 31
, condensing heat exchanger 32, vapor transfer pipe 33, liquid return pipe 34
, are connected to form a closed circulation path by an inverted U-shaped riser pipe 35 with a tank 37 installed in the middle and a heater 38 at the base, and evaporative liquids such as fluorocarbons are contained inside. It's in.

また、蓄熱槽4は、槽枠41内に、水、塩化カルシウム
6水塩などの蓄熱材42が満たされており、その内部に
冷却器43が浸漬されている。
Further, in the heat storage tank 4, a tank frame 41 is filled with a heat storage material 42 such as water or calcium chloride hexahydrate, and a cooler 43 is immersed therein.

本実施例の装置では、冷凍装置1の蒸発器5に、第1の
熱流制御性熱伝達装置2の凝縮用熱交換器22、蓄熱槽
4中の冷却器43に前記第1の熱流制御性熱伝達装置2
の蒸発用熱交換器21を配設しており、また、冷凍装置
1の凝縮器6に、第2の熱流制御性熱伝達装置3の蒸発
用熱交換器31、蓄熱槽4中の冷却器43に前記第2の
熱流制御性熱伝達袋W3の凝縮用熱交換器32を配設し
ている。
In the apparatus of this embodiment, the evaporator 5 of the refrigeration device 1 has the first heat flow controllable condensing heat exchanger 22 of the heat transfer device 2, and the cooler 43 in the heat storage tank 4 has the first heat flow controllability. Heat transfer device 2
An evaporative heat exchanger 21 is disposed in the condenser 6 of the refrigeration device 1, an evaporative heat exchanger 31 of the second heat flow control heat transfer device 3, and a cooler in the heat storage tank 4. 43, the condensing heat exchanger 32 of the second heat flow controllable heat transfer bag W3 is disposed.

いま・冷凍装置1.第1の熱流制御性熱伝達装置2を運
転し・蓄熱槽4内の蓄熱材42を凝固させて蓄冷する場
合について説明する。
Now: Refrigeration equipment 1. A case will be described in which the first heat flow controllable heat transfer device 2 is operated and the heat storage material 42 in the heat storage tank 4 is solidified to store cold.

圧縮機7を運転すると、内部の蒸発性液体は断熱圧縮さ
れつつ配管9を通って凝縮器6に入る。
When the compressor 7 is operated, the evaporative liquid inside is adiabatically compressed and enters the condenser 6 through the pipe 9.

ここで蒸発性液体は凝縮潜熱を放出して液化し、その後
、減圧機構(例えば膨張弁)8に流入する。
Here, the evaporative liquid releases latent heat of condensation and becomes liquefied, and then flows into the pressure reducing mechanism (for example, an expansion valve) 8.

減圧機構8にて蒸発性液体は断熱膨張して低温度となり
、その後蒸発器5に流入して圧縮機7に戻される。この
ように蒸発性液体の断熱膨張によって、蒸発器5は冷却
されるので、それに熱的に結合しである凝縮用熱交換器
22も冷却される。
The evaporative liquid is adiabatically expanded in the pressure reduction mechanism 8 to have a low temperature, and then flows into the evaporator 5 and returned to the compressor 7. Since the evaporator 5 is thus cooled by the adiabatic expansion of the evaporative liquid, the condensing heat exchanger 22 that is thermally coupled thereto is also cooled.

冷凍装置1の運転にともない、第1の熱流制御性熱伝達
装置2を次のように作動させる。まず、ヒータ28に微
少な入力を加えると、逆U字形の立上げ管25の左側内
部で蒸発性液体が沸騰し、これによって生じた気泡のポ
ンプ作用によって、その周りにある液体はくみ上げられ
る。くみ上げられだ液体は立上げ管25の頂部を越えて
溢れ出し、矢印に示すように液戻り管24を通って蒸発
用熱交換器21内に流入する。
Along with the operation of the refrigeration system 1, the first heat flow controllable heat transfer device 2 is operated as follows. First, when a slight input is applied to the heater 28, the evaporative liquid boils inside the left side of the inverted U-shaped riser pipe 25, and the liquid around it is pumped up by the pumping action of the bubbles generated. The pumped liquid overflows over the top of the riser pipe 25 and flows into the evaporative heat exchanger 21 through the liquid return pipe 24 as shown by the arrow.

ここで蒸発性液体は、蒸発用熱交換器21が配設されて
いる冷却器43の外部にある蓄熱材42から熱を吸収し
て蒸発し、これによって発生した蒸気は、矢印に示すよ
うに蒸気移動管23を通って蒸発器5部の凝縮用熱交換
器22に流入し、ここで凝縮熱を放出して液化する。
Here, the evaporative liquid absorbs heat from the heat storage material 42 located outside the cooler 43 in which the evaporative heat exchanger 21 is disposed and evaporates, and the vapor generated thereby is evaporated as shown by the arrow. The vapor flows through the vapor transfer pipe 23 into the condensing heat exchanger 22 of the evaporator 5, where it releases the heat of condensation and is liquefied.

液化した蒸発性液体は、重力によって凝縮用熱交換器2
2内を降下し、タンク27内に流入し、さらにヒータ2
8の付いている立上げ管25の根元部に流入し、同じサ
イクルを繰り返す。
The liquefied evaporative liquid is transferred to the condensing heat exchanger 2 by gravity.
2, flows into the tank 27, and further flows into the heater 2.
It flows into the base of the riser pipe 25 marked with 8 and repeats the same cycle.

均圧管26は、ヒータ28の加熱によって立上げ管25
内に発生した気泡を、くみ上げられた液体と分離して凝
縮用熱交換器22内に逃がし、気泡ポンプ作用を円滑に
する機能を有している。
The pressure equalizing pipe 26 is heated by the heater 28 so that the riser pipe 25
It has the function of separating the bubbles generated inside the pump from the pumped liquid and letting them escape into the condensing heat exchanger 22, thereby facilitating the bubble pump action.

このようにして、蓄熱槽4内の蓄熱材42の保有する熱
は、第1の熱流制御性熱伝達装置2を介して冷凍装置側
に輸送され、最終的には外部に熱放散される。このため
、蓄熱材42の温度は、蒸発用熱交換器21に付いてい
る冷却器(蒸発用熱交換器21と一体でもよい)43に
よって下げられ、凝固点以下となる。これにともない、
冷却器43の周りには、蓄熱材42の結晶が付着する。
In this way, the heat held by the heat storage material 42 in the heat storage tank 4 is transported to the refrigeration system via the first heat flow controllable heat transfer device 2, and is finally dissipated to the outside. Therefore, the temperature of the heat storage material 42 is lowered by the cooler 43 attached to the evaporative heat exchanger 21 (which may be integrated with the evaporative heat exchanger 21), and becomes below the freezing point. Along with this,
Crystals of the heat storage material 42 adhere around the cooler 43 .

冷却器43に結晶が厚く付着すると、その部分の熱抵抗
が増大し、蓄熱材42から冷却器43へ熱が入りにくく
なり、結果として蓄熱材42の結晶成長率が小さくなり
、また冷凍装置の成績係数も悪くなる。
When crystals thickly adhere to the cooler 43, the thermal resistance of that part increases, making it difficult for heat to enter the cooler 43 from the heat storage material 42. As a result, the crystal growth rate of the heat storage material 42 decreases, and the refrigeration system The coefficient of performance will also be worse.

このため、本実施例では、次のようにして、冷却器43
に付着した結晶を離脱させ、熱抵抗の減少化を図ってい
る。
Therefore, in this embodiment, the cooler 43
By removing the crystals attached to the surface, the thermal resistance is reduced.

まず、第1の熱流制御性熱伝達装置2のヒータ28の入
力を切る。これによって立上げ管25内における気泡ポ
ンプ作用はなくなり、蒸発性液体はすべてタンク27内
に溜められる。このため。
First, the input to the heater 28 of the first heat flow controllable heat transfer device 2 is turned off. This eliminates the bubble pumping action in riser 25 and all evaporative liquid is stored in tank 27. For this reason.

蒸発用熱交換器21から凝縮用熱交換器22への熱輸送
は停止され、冷却器43の冷却能力は一時的に停止され
る。
Heat transport from the evaporation heat exchanger 21 to the condensation heat exchanger 22 is stopped, and the cooling capacity of the cooler 43 is temporarily stopped.

次に、第2の熱流制御性熱伝達袋W3のヒータ38に入
力を加える。冷凍装置1の凝縮器6で発生する熱の一部
は、蒸発用熱交換器31から蓄熱槽1内の冷却器43に
伝わる。すなわち、蒸発用熱交換器31で発生した蒸気
は矢印に示すように蒸気移動管33を通って蓄熱槽4内
の冷却器43に配設された凝縮用熱交換器32に流入し
、蒸発性液体は液化する。この熱によって、冷却器43
に付着している蓄熱材結晶(図示せず)の冷却器43界
面の結晶の一部が融解し、冷却器43から結晶が離脱す
る。
Next, input is applied to the heater 38 of the second heat flow controllable heat transfer bag W3. A part of the heat generated in the condenser 6 of the refrigeration device 1 is transmitted from the evaporative heat exchanger 31 to the cooler 43 in the heat storage tank 1. That is, the steam generated in the evaporative heat exchanger 31 flows through the steam transfer pipe 33 as shown by the arrow into the condensing heat exchanger 32 disposed in the cooler 43 in the heat storage tank 4, and the evaporative Liquids liquefy. This heat causes the cooler 43
A part of the crystal of the heat storage material crystal (not shown) attached to the cooler 43 interface is melted, and the crystal is separated from the cooler 43.

液化した蒸発性液体は、矢印に示すようにタンク37、
液戻り管34、ヒータ38を具備した立上げ管35を経
て蒸発用熱交換器31に戻り気化して同じサイクルを繰
り返す。なお、36は均圧管である。
The liquefied evaporative liquid is transferred to a tank 37 as shown by the arrow.
The liquid returns to the evaporation heat exchanger 31 through a liquid return pipe 34 and a riser pipe 35 equipped with a heater 38, where it is vaporized and the same cycle is repeated. Note that 36 is a pressure equalizing pipe.

結晶が冷却器43から離脱したのち、再び運転方法を元
に戻す。
After the crystals are removed from the cooler 43, the operating method is returned to its original state.

すなわち、第2の熱流制御性熱伝達装置3のヒータ38
の入力を停止し、第1の熱流制御性熱伝達装置2のヒー
タ28に入力を加え、再び冷却器43の冷却作用を行わ
せ、蓄熱材42内に蓄冷を行う。
That is, the heater 38 of the second heat flow controllable heat transfer device 3
input is stopped, input is applied to the heater 28 of the first heat flow controllable heat transfer device 2, the cooling action of the cooler 43 is performed again, and cold is stored in the heat storage material 42.

この動作を交互に繰り返し行うことにより、蓄熱槽4内
に多量の蓄熱材結晶を蓄積する。
By repeating this operation alternately, a large amount of heat storage material crystals are accumulated in the heat storage tank 4.

本実施例によれば次の効果がある。This embodiment has the following effects.

(1)’!熱材の結晶化と離脱とを円滑に行わせること
ができ、したがって、冷却器周りの熱抵抗が減少し、冷
凍装置の成績係数が向上する。
(1)'! The crystallization and separation of the heat material can be smoothly performed, and therefore, the thermal resistance around the cooler is reduced, and the coefficient of performance of the refrigeration system is improved.

(2)従来のポンプを用いて不凍液を循環する場合に比
較して、消費電力を著しく小さくできる。
(2) Power consumption can be significantly reduced compared to when antifreeze is circulated using a conventional pump.

(3)蒸発性液体の沸騰と凝縮熱伝達を利用し、て熱交
換器の伝達性能を向上して、その伝熱面積を減少する。
(3) Utilizing the boiling and condensation heat transfer of the evaporative liquid to improve the transfer performance of the heat exchanger and reduce its heat transfer area.

(4)保守性、施工性、信頼性に向上でき実用に供して
便利である。
(4) Maintainability, workability, and reliability can be improved and it is convenient for practical use.

次に、第2図は、本発明の他の実施例に係る蓄熱式冷凍
装置の略示構成図である。図中、第1図と同一符号のも
のは、先の実施例と同等部分であるから、その説明を省
略する。
Next, FIG. 2 is a schematic configuration diagram of a regenerative refrigeration system according to another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

第2図に示す実施例では、第2の熱流制御性熱伝達装置
3Aの蒸発用熱交換器31Aを圧縮機7A部に設け、圧
縮機7Aから発生する熱を利用して蓄熱材結晶を離脱す
るものである。
In the embodiment shown in FIG. 2, the evaporation heat exchanger 31A of the second heat flow controllable heat transfer device 3A is provided in the compressor 7A section, and the heat storage material crystals are separated using the heat generated from the compressor 7A. It is something to do.

第2図の実施例によれば、第1図の実施例と同様の効果
が期待されるほか、圧縮機7Aを冷却することができ、
圧縮機の効率と信頼性を向上するのに役立つ。
According to the embodiment shown in FIG. 2, the same effects as the embodiment shown in FIG. 1 can be expected, and the compressor 7A can be cooled.
Helps improve compressor efficiency and reliability.

次に、第3図は1本発明のさらに他の実施例に係る蓄熱
式冷凍装置の略示構成図である。図中、第1図と同一符
号のものは、先の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 3 is a schematic configuration diagram of a regenerative refrigeration system according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

先の第1図および第2図の実施例は、冷凍装置1の蒸発
器5より凝縮器6が低位置に配置されている場合であっ
たが、第3図の実施例では、冷凍装置IAの蒸発器5と
凝縮器6とが同一水平レベルに配置されている場合に、
本発明を適用したものである。
In the embodiments shown in FIGS. 1 and 2, the condenser 6 is located at a lower position than the evaporator 5 of the refrigeration system 1, but in the embodiment shown in FIG. When the evaporator 5 and condenser 6 are arranged at the same horizontal level,
This is an application of the present invention.

第3図の実施例によれば、先の実施例と同様の効果が期
待される。
According to the embodiment shown in FIG. 3, the same effects as the previous embodiment can be expected.

なお、凝縮器6が冷却器43より高い位置における場合
にも、本発明が適用できることは言うまでもない。
It goes without saying that the present invention is also applicable to the case where the condenser 6 is located at a higher position than the cooler 43.

次に、第4図は、本発明のさらに他の実施例に係る蓄熱
式冷凍装置の略示構成図である。図中、第1図と同一符
号のものは、先の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 4 is a schematic configuration diagram of a regenerative refrigeration system according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

先の第1図、第2図の実施例では、第2の熱流制御性熱
伝達装置3,3Aの蒸発器31.31Aは、凝縮器6ま
たは圧縮機7A部に設けて、それから発生する熱の一部
を利用している。
In the embodiments shown in FIGS. 1 and 2, the evaporator 31.31A of the second heat flow controllable heat transfer device 3, 3A is provided in the condenser 6 or the compressor 7A, and the heat generated therefrom is disposed in the condenser 6 or the compressor 7A. Some of them are used.

第4図の実施例では、第2の熱流制御性熱伝達装置3B
の蒸発用熱交換器に係る蒸発器3 ]、 Bは大気中に
配設され、大気の熱を利用し1、蓄熱槽4内の蓄熱材結
晶を離脱させるように(でい?・1、第4図の実施例に
よれば、先の実施例と同様の効果が期待される。
In the embodiment of FIG. 4, the second heat flow controllable heat transfer device 3B
The evaporator 3 related to the evaporation heat exchanger of According to the embodiment shown in FIG. 4, the same effects as the previous embodiment can be expected.

なお、第4図に示す蒸発器部31Bに、排熱、、太陽熱
、または地下水の保有熱ソ、)ア7z L、、、 LT
L用1、でもよい。
Note that the evaporator section 31B shown in FIG.
1 for L is fine.

次に、第5図は、本発明のさらに他の実施例に係る蓄熱
式冷凍装置の略示構成図である。図中、第1図と同一符
号のものは、先の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 5 is a schematic configuration diagram of a regenerative refrigeration system according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

第5図において、4け、蓄熱用の第1の蓄熱槽。In FIG. 5, there are four first heat storage tanks for heat storage.

11は、第2の蓄熱槽、12は蓄熱材、13は。11 is a second heat storage tank, 12 is a heat storage material, and 13 is a heat storage material.

第3の蓄熱槽、14は蓄熱材、15は、第1の蓄熱槽1
1に設けた熱交換器、16は、第2の蓄熱槽13に設け
た熱交換器である。
3rd heat storage tank, 14 is heat storage material, 15 is 1st heat storage tank 1
The heat exchanger 16 is a heat exchanger provided in the second heat storage tank 13.

第5図の実施例では、冷却器43を有する第1の蓄熱槽
4のほかに、第2.第3の蓄熱槽11゜13を設け、冷
凍装置1の蒸発器5と第1の熱流制御性熱伝達袋T2の
凝縮用熱交換器22とを第2の蓄熱槽11の蓄熱材12
中に配設し、冷凍装置1の凝縮器6と第2の熱流制御性
熱伝達装置3の〃:発用熱交換器3】とを第3の蓄熱槽
13の蓄熱材14中に−配設したもCハである、y″′
の1ミグ1槽11 L:け、熱交換器15を設け、外部
が1′、の冷熱を蓄熱材12中に導入して利用できるよ
う(、コしである。この熱交換器15は、蒸発器5およ
び凝縮用熱交換器22に接触させて設け、これらを直接
冷却して熱除去してもよい。
In the embodiment of FIG. 5, in addition to the first heat storage tank 4 having a cooler 43, a second heat storage tank 4 is provided. A third heat storage tank 11° 13 is provided, and the evaporator 5 of the refrigeration device 1 and the condensing heat exchanger 22 of the first heat flow control heat transfer bag T2 are connected to the heat storage material 12 of the second heat storage tank 11.
The condenser 6 of the refrigeration device 1 and the generation heat exchanger 3 of the second heat flow controllable heat transfer device 3 are arranged in the heat storage material 14 of the third heat storage tank 13. The set is also C, y″′
1 MIG 1 tank 11 L: A heat exchanger 15 is provided so that the cold heat of the outside 1' can be introduced into the heat storage material 12 and used. It may be provided in contact with the evaporator 5 and the condensing heat exchanger 22 to directly cool these and remove heat.

また、第3の蓄熱槽13には、熱交換器16を設け、外
部から冷水等を導入して蓄熱材14の保有する熱を除去
するようにしている。この熱交換器16は、凝縮器6に
接触させて直接熱を取り出すようにしてもよい。
Further, a heat exchanger 16 is provided in the third heat storage tank 13, and cold water or the like is introduced from the outside to remove the heat held by the heat storage material 14. This heat exchanger 16 may be brought into contact with the condenser 6 to directly extract heat.

このように、冷凍装置1の蒸発器5および凝縮器6の周
りに蓄熱材12および蓄熱材14を介在させると、冷凍
装置1は多様性に応じた運転ができる。例えば、蓄熱槽
4内の蓄熱材42の温度に変動が生じても、冷凍装置1
は、蓄熱材12または蓄熱材14の温度のみを監視した
運転を行なえばよく、運転が円滑に余裕をもって行なえ
る。
In this way, by interposing the heat storage material 12 and the heat storage material 14 around the evaporator 5 and condenser 6 of the refrigeration device 1, the refrigeration device 1 can be operated in accordance with the versatility. For example, even if the temperature of the heat storage material 42 in the heat storage tank 4 fluctuates, the refrigeration device 1
In this case, only the temperature of the heat storage material 12 or 14 needs to be monitored, and the operation can be performed smoothly and with sufficient margin.

第5図の実施例によれば、先の各実施例と同様の効果が
期待される。
According to the embodiment shown in FIG. 5, the same effects as those of the previous embodiments are expected.

次に、第6図は5本発明のさらに他の実施例に係る蓄熱
式冷凍装置の略示構成図である。図中、第5図と同一符
号のものは、先の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 6 is a schematic configuration diagram of a regenerative refrigeration system according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 5 are the same parts as in the previous embodiment, so the explanation thereof will be omitted.

なお、同一符号に′を付した符号のものは、複数の同等
部分を示す。
Note that the same reference numeral with a suffix ' indicates a plurality of equivalent parts.

第6図に示す蓄熱式冷凍装置は、第1の蓄熱槽4A内に
2個の冷却器43.43’ を設け、これに対応して2
組の第1の熱流制御性熱伝達装置2゜2′、および2組
の第2の熱流制御性熱伝達装置3.3′を設けたもので
ある。
The heat storage type refrigeration system shown in FIG. 6 includes two coolers 43 and 43' in the first heat storage tank 4A, and two
A set of first heat flow controllable heat transfer devices 2.2' and two sets of second heat flow controllable heat transfer devices 3.3' are provided.

すなわち、第2の蓄熱槽11Aに2組の第1の熱流制御
性熱伝達装置2.2’の各凝縮用熱交換器22.22’
 を配設し、第3の蓄熱槽13Aに2組の第2の熱流制
御性熱伝達袋fi3.3’の各蒸発用熱交換器31.3
1’ を配設し、前記2組の第1の熱流制御性熱伝達装
置2,2′の蒸発用熱交換器21.21’ 、および前
記2組の第2の熱流制御性熱伝達装置3.3′の凝縮用
熱交換器32.32’ を、それぞれ蓄熱槽4A中の各
冷却器43.43’に配設している。
That is, each condensing heat exchanger 22.22' of the two sets of first heat flow controllable heat transfer devices 2.2' is installed in the second heat storage tank 11A.
Each evaporation heat exchanger 31.3 of the two sets of second heat flow control heat transfer bags fi3.3' is arranged in the third heat storage tank 13A.
1', the evaporation heat exchangers 21 and 21' of the two sets of first heat flow controllable heat transfer devices 2 and 2', and the two sets of second heat flow controllable heat transfer devices 3. .3' condensing heat exchangers 32, 32' are arranged in each cooler 43, 43' in the heat storage tank 4A, respectively.

運転方法としては、第1の熱流制御性熱伝達装置2と第
2の熱流制御性熱伝達装置3′とを運転しているときは
、第1の熱流制御性熱伝達装置2′と第2の熱流制御性
熱伝達袋W3の運転を停止し、一定時間後これを逆転し
て運転するものである。
As for the operating method, when the first heat flow controllable heat transfer device 2 and the second heat flow controllable heat transfer device 3' are operated, the first heat flow controllable heat transfer device 2' and the second heat flow controllable heat transfer device 2' are operated. The operation of the heat flow controllable heat transfer bag W3 is stopped, and after a certain period of time, the operation is reversed and the operation is started.

このようにすると、冷却器43.43’の間で、一方で
結晶の付着、他方で結晶の離脱を交互に行なわせること
ができ、蓄熱槽4内に効率よく結晶を蓄積し、早期に蓄
冷を完了させることができる。
In this way, between the coolers 43 and 43', it is possible to alternately attach the crystals on one side and remove the crystals on the other side, so that the crystals can be efficiently accumulated in the heat storage tank 4 and the cold can be stored quickly. can be completed.

第1と第2の熱流制御性熱伝達装置、および冷却器の数
を3倍以上に増加すれば、さらに早期に蓄冷を完了させ
ることが可能である。
By increasing the number of first and second heat flow controllable heat transfer devices and coolers by three times or more, it is possible to complete cold storage even earlier.

[発明の効果] 以上述べたように1本発明によれば、蓄熱槽内の蓄熱材
を凝固させながら熱を取り出す際に、蓄熱槽内の熱交換
器まわりに付着する蓄熱材結晶を適宜離脱させて熱の取
得を容易にするとともに。
[Effects of the Invention] As described above, according to the present invention, when extracting heat while solidifying the heat storage material in the heat storage tank, the heat storage material crystals attached around the heat exchanger in the heat storage tank are appropriately separated. Along with making it easier to get heat.

保守性、施工性、信頼性が高く、かつ消費電力の少ない
蓄熱式冷凍装置を提供することができる。
It is possible to provide a thermal storage refrigeration device that has high maintainability, workability, and reliability, and consumes little power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る蓄熱式冷凍装置の略
示構成図、第2図は、本発明の他の実施例に係る蓄熱式
冷凍装置の略示構成図、第3図は、本発明のさらに他の
実施例に係る蓄熱式冷凍装置の略示構成図、第4図ない
し第6図は、いずれも本発明のさらに他の実施例に係る
蓄熱式冷凍装置の略示構成図である。 1、IA・・・冷凍装置、2.2’・・・第1の熱流制
御性熱伝達装置、3.3’ 、3A、3B・・・第2の
熱流制御性熱伝達装置、4,4A・・・蓄熱槽、5・・
・蒸発器、6・・・凝縮器、7,7A・・・圧縮機、8
・・・減圧機構、11.IIA・・・第2の蓄熱槽・・
・13,13A・・・第3の蓄熱槽、21.21’ 、
31゜31′・・・蒸発用熱交換器、22.22’ 、
32゜32′・・・凝縮用熱交換器、23,23’ 、
33゜33′・・・蒸気移動管、24.24’ 、34
゜34′・・・液戻り管、28.28’ 、38,38
’・・・ヒータ、25,25’ 、35.35’ ・・
・立」二げ管、43.43’・・・冷却器。
FIG. 1 is a schematic configuration diagram of a regenerative refrigeration system according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a regenerative refrigeration system according to another embodiment of the invention, and FIG. is a schematic configuration diagram of a regenerative refrigeration system according to still another embodiment of the present invention, and each of FIGS. 4 to 6 is a schematic diagram of a regenerative refrigeration system according to yet another embodiment of the present invention. FIG. 1, IA... Refrigeration device, 2.2'... First heat flow controllable heat transfer device, 3.3', 3A, 3B... Second heat flow controllable heat transfer device, 4, 4A ...heat storage tank, 5...
・Evaporator, 6...Condenser, 7,7A...Compressor, 8
...pressure reduction mechanism, 11. IIA...Second heat storage tank...
・13,13A...Third heat storage tank, 21.21',
31°31'...evaporation heat exchanger, 22.22',
32゜32'... Condensing heat exchanger, 23, 23',
33゜33'...Steam transfer pipe, 24.24', 34
゜34'...Liquid return pipe, 28.28', 38, 38
'...Heater, 25, 25', 35.35'...
・Vertical double pipe, 43.43'...Cooler.

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、減圧機構、および蒸発器を配管接
続して冷凍サイクルを構成する冷凍装置と、 蓄熱材を満たし、冷却器を有する蓄熱槽と、蒸発用熱交
換器、凝縮用熱交換器、これら熱交換器を結ぶ液戻り管
、逆U字形立上げ管、立上げ管根元部に設けたヒータ、
および蒸気移動管によって蒸発性液体の密閉循環器を構
成する熱流制御性熱伝達装置とを備えた蓄熱式冷凍装置
において、 上記熱流制御性熱伝達装置を少なくとも2組設け、 上記蒸発器に第1の熱流制御性熱伝達装置の凝縮用熱交
換器、蓄熱槽中の冷却器に前記第1の熱流制御性熱伝達
装置の蒸発用熱交換器を配設し、 上記凝縮器に第2の熱流制御性熱伝達装置の蒸発用熱交
換器、蓄熱槽中の冷却器に前記第2の熱流制御性熱伝達
装置の凝縮用熱交換器を配設し、 前記第1、第2の熱流制御性熱伝達装置のヒータに交互
に入力しうる制御回路を構成したことを特徴とする蓄熱
式冷凍装置。 2、特許請求の範囲第1項記載のものにおいて、冷却器
を有する蓄熱槽のほかに第2、第3の蓄熱槽を設け、蒸
発器と第1の熱流制御性熱伝達装置の凝縮用熱交換器と
を第2の蓄熱槽内に配設し、凝縮器と第2の熱流制御性
熱伝達装置の蒸発用熱交換器とを第3の蓄熱槽内に配設
したことを特徴とする蓄熱式冷凍装置。 3、特許請求の範囲第2項記載のものにおいて、第2の
蓄熱槽に複数組の第1の熱流制御性熱伝達装置の複数の
凝縮用熱交換器を配設し、第3の蓄熱槽に複数組の第2
の熱流制御性熱伝達装置の複数の蒸発用熱交換器を配設
し、前記複数組の第1の熱流制御性熱伝達装置の複数の
蒸発用熱交換器および前記複数組の第2の熱流制御性熱
伝達装置の複数の凝縮用熱交換器を、それぞれ蓄熱槽中
の冷却器に配設したことを特徴とする蓄熱式冷凍装置。
[Claims] 1. A refrigeration system that connects a compressor, a condenser, a pressure reduction mechanism, and an evaporator to form a refrigeration cycle; a heat storage tank filled with a heat storage material and having a cooler; Exchanger, condensing heat exchanger, liquid return pipe connecting these heat exchangers, inverted U-shaped riser pipe, heater installed at the base of the riser pipe,
and a heat flow controllable heat transfer device that constitutes a closed circulator for evaporative liquid using vapor transfer pipes, wherein at least two sets of the heat flow controllable heat transfer devices are provided, and a first one is provided in the evaporator. The condensing heat exchanger of the heat flow controllable heat transfer device and the evaporation heat exchanger of the first heat flow controllable heat transfer device are disposed in the cooler in the heat storage tank, and a second heat flow is provided in the condenser. The condensing heat exchanger of the second heat flow controllable heat transfer device is disposed in the evaporation heat exchanger of the controllable heat transfer device and the cooler in the heat storage tank, and the first and second heat flow controllability A heat storage type refrigeration device comprising a control circuit that can alternately input input to a heater of a heat transfer device. 2. In the device described in claim 1, second and third heat storage tanks are provided in addition to the heat storage tank having a cooler, and the condensing heat of the evaporator and the first heat flow controllable heat transfer device is provided. The heat exchanger is arranged in the second heat storage tank, and the condenser and the evaporation heat exchanger of the second heat flow controllable heat transfer device are arranged in the third heat storage tank. Heat storage type refrigeration equipment. 3. In the product described in claim 2, a plurality of condensing heat exchangers of a plurality of sets of first heat flow controllable heat transfer devices are disposed in the second heat storage tank, and the second set of multiple
A plurality of evaporation heat exchangers of the plurality of sets of first heat flow controllable heat transfer devices are arranged, and a plurality of evaporation heat exchangers of the plurality of sets of first heat flow controllable heat transfer devices and the second heat flow of the plurality of sets of heat flow controllable heat transfer devices are arranged. A regenerative refrigeration device characterized in that a plurality of condensing heat exchangers of a controllable heat transfer device are respectively disposed in coolers in a thermal storage tank.
JP12075888A 1988-05-19 1988-05-19 Thermal storage refrigeration system Expired - Fee Related JP2533913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12075888A JP2533913B2 (en) 1988-05-19 1988-05-19 Thermal storage refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075888A JP2533913B2 (en) 1988-05-19 1988-05-19 Thermal storage refrigeration system

Publications (2)

Publication Number Publication Date
JPH01291067A true JPH01291067A (en) 1989-11-22
JP2533913B2 JP2533913B2 (en) 1996-09-11

Family

ID=14794264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075888A Expired - Fee Related JP2533913B2 (en) 1988-05-19 1988-05-19 Thermal storage refrigeration system

Country Status (1)

Country Link
JP (1) JP2533913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969532A (en) * 2017-04-28 2017-07-21 北京京仪自动化装备技术有限公司 Wax phase change regenerator temperature adjusting means for semiconductor technology temperature controlling instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969532A (en) * 2017-04-28 2017-07-21 北京京仪自动化装备技术有限公司 Wax phase change regenerator temperature adjusting means for semiconductor technology temperature controlling instruments

Also Published As

Publication number Publication date
JP2533913B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US4756164A (en) Cold plate refrigeration method and apparatus
US4712387A (en) Cold plate refrigeration method and apparatus
JP2533913B2 (en) Thermal storage refrigeration system
WO1997041396A1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
CN107238229A (en) A kind of monopole and multistage magnetic refrigeration apparatus based on gravity assisted heat pipe
JPH10205834A (en) Cold heat apparatus and refrigerating equipment
JPH01114639A (en) Heat pipe type heat storage water tank device
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2000121107A (en) Ice storage system
JP2678211B2 (en) Heat storage type cold / heat generator
JP2509667B2 (en) Thermal storage refrigeration system
JPH09119723A (en) Heat accumulator and air conditioner system
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JP3857955B2 (en) Absorption refrigerator
JP3407659B2 (en) Air conditioning equipment
JP2853439B2 (en) Absorption type ice machine
JP3350650B2 (en) Liquid concentration device and liquid concentration method
KR200282298Y1 (en) Heating-exchange type refrigerating device
JP2004085009A (en) Manufacturing method for hydrate slurry by use of adsorption refrigerator
JPS5920943B2 (en) Air conditioning equipment
JP2005104087A (en) Heat storage type mold cooling system
JP3138784B2 (en) Adsorption refrigeration system with heat storage function and its operation method
JPS63209526A (en) Cooling and heating apparatus for culture of plant
CN1170126A (en) One pump, vertical pipe and downward film lithium bromide refrigeration technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees