JPH01290237A - Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance element - Google Patents
Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance elementInfo
- Publication number
- JPH01290237A JPH01290237A JP63121054A JP12105488A JPH01290237A JP H01290237 A JPH01290237 A JP H01290237A JP 63121054 A JP63121054 A JP 63121054A JP 12105488 A JP12105488 A JP 12105488A JP H01290237 A JPH01290237 A JP H01290237A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- dicing
- thin film
- substrate
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 100
- 239000011521 glass Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000010409 thin film Substances 0.000 title claims description 20
- 230000005294 ferromagnetic effect Effects 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000005520 cutting process Methods 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 8
- 238000002161 passivation Methods 0.000 claims description 4
- 230000005291 magnetic effect Effects 0.000 description 16
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910003266 NiCo Inorganic materials 0.000 description 2
- 229910003289 NiMn Inorganic materials 0.000 description 2
- 229910003962 NiZn Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 101100008050 Caenorhabditis elegans cut-6 gene Proteins 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000019589 hardness Nutrition 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Dicing (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はガラス基板のダイシング方法と該方法を用いた
強磁性薄膜抵抗素子の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for dicing a glass substrate and a method for manufacturing a ferromagnetic thin film resistance element using the method.
(ロ)従来の技術
従来より、磁場に感じて出力電圧が変化する磁電変換素
子として、半導体の半導体磁気抵抗効果を利用した感磁
原理に基いた半導体磁気抵抗素子、あるいはホール素子
の他に、強磁性金属の強磁性磁気抵抗効果を利用した磁
気原理に基いた強磁性薄膜抵抗素子(MR)が用いられ
、磁気ヘッドや磁気センサの分野に幅広く応用されてい
る。(b) Conventional technology Conventionally, as a magnetoelectric transducer whose output voltage changes in response to a magnetic field, in addition to a semiconductor magnetoresistive element based on the magnetic sensing principle that utilizes the semiconductor magnetoresistive effect of a semiconductor, or a Hall element. Ferromagnetic thin film resistance elements (MR) based on magnetic principles utilizing the ferromagnetic magnetoresistance effect of ferromagnetic metals are used, and are widely applied in the fields of magnetic heads and magnetic sensors.
上記強磁性薄膜抵抗素子(以下、MR素子と称す)は、
絶縁性基板の表面にNiCo合金、NiFe合金、Ni
A1合金、NiMn合金あるいはNiZn合金等の強磁
性金属から成る磁性薄膜を付着・パターニングした構造
を具備し、コスト的、特性的な面から前記絶縁性基板と
してガラス基板が用いられる。The above ferromagnetic thin film resistance element (hereinafter referred to as MR element) is
NiCo alloy, NiFe alloy, Ni on the surface of the insulating substrate
It has a structure in which a magnetic thin film made of a ferromagnetic metal such as A1 alloy, NiMn alloy, or NiZn alloy is attached and patterned, and a glass substrate is used as the insulating substrate from the viewpoint of cost and characteristics.
この様なMR素子の製造工程においては、ガラス基板が
比較的脆いので、これらを個々に分割する為に例えば特
開昭60−56512号公報に記載されている、ダイシ
ングブレードを用いたフルカット方法が用いられていた
。斯る手法は、第4図に示すように、磁性薄膜(1)が
形成されたガラス基板(2)の裏面にシート(3)を貼
付け、ダイシングブレード(4)でガラス基板(2)を
フルカットすることによりガラス基板(2)の完全分離
を行うものである。しかしながら、ガラス基板(2)は
シリコン等の材料に比べて硬きが硬く、切削中のダイシ
ングブレード(4)の摩耗が極めて激しい。その≦、ダ
イシング途中で切削溝(5)の切削深さが浅くなり、切
削溝(5)の底部にバリ(6)が残るばかりか、最後に
はガラス基板(2)を完全分離できなくなる欠点があっ
た。これを解決するにはダイシングブレード(4)の切
込量を順次増せば良いが、工程管理が極めて難しくなる
。また、ガラス基板(2)とシート(3)とで硬さが異
る為、ガラス基板(2)の裏面に欠け(7)が生じ易い
欠点があった。In the manufacturing process of such MR elements, since the glass substrates are relatively fragile, in order to separate them into individual pieces, a full cut method using a dicing blade is used, for example, as described in Japanese Patent Laid-Open No. 60-56512. was used. As shown in Figure 4, this method involves attaching a sheet (3) to the back side of a glass substrate (2) on which a magnetic thin film (1) has been formed, and then using a dicing blade (4) to fully cover the glass substrate (2). By cutting, the glass substrate (2) is completely separated. However, the glass substrate (2) is harder than materials such as silicon, and the dicing blade (4) is extremely worn during cutting. ≦The cutting depth of the cutting groove (5) becomes shallow during dicing, which not only leaves burrs (6) at the bottom of the cutting groove (5), but also makes it impossible to completely separate the glass substrate (2). was there. To solve this problem, the depth of cut of the dicing blade (4) can be gradually increased, but process control becomes extremely difficult. Furthermore, since the glass substrate (2) and the sheet (3) have different hardnesses, there is a drawback that chips (7) are likely to occur on the back surface of the glass substrate (2).
上記欠点を改善する為、第5図に示すように、ガラス基
板(2)の裏面にワックス(8)によってダミーのガラ
ス基板(9)を貼付け、切削溝(5)がダミー基板(9
)に達するまで切込むことによりガラス基板(2)を完
全分離する手法がある。しかしながら、斯る手法はダミ
ー基板(9)が全く無駄になる他、ワックス(8)によ
ってダイシングブレード(4)の目詰りやガラス基板(
2)表面が汚れる、ワックス(8)の塗布工程やダイシ
ング後の洗浄工程が増す欠点があった。In order to improve the above drawback, as shown in Fig. 5, a dummy glass substrate (9) is pasted on the back side of the glass substrate (2) with wax (8), and the cutting grooves (5) are cut into the dummy substrate (9).
) There is a method of completely separating the glass substrate (2) by making a cut until the glass substrate (2) is reached. However, such a method not only wastes the dummy substrate (9), but also causes the wax (8) to clog the dicing blade (4) and cause the glass substrate (
2) There was a drawback that the surface became dirty and the process of applying wax (8) and cleaning process after dicing were increased.
(ハ)発明が解決しようとする課題
このように、従来のガラス基板のダイシング方法はバリ
(6)や欠け(7)が発生する、工程管理が難しい、工
程が増してコスト高になる等、いずれも量産性に適した
手法とは言えない欠点があった。(c) Problems to be Solved by the Invention As described above, the conventional dicing method for glass substrates has problems such as generation of burrs (6) and chips (7), difficulty in process control, and increased cost due to the increased number of steps. All of these methods had drawbacks that made them not suitable for mass production.
(ニ)課題を解決するための手段
本発明は斯上した欠点に鑑みて成され、ガラス基板表面
に形成したパターンをガラス基板の裏面側から位置認識
し、このデータに基いてガラス基板の裏面側と表面側か
ら夫々ハーフカットすることにより量産性に優れたガラ
ス基板のフルカット方法を提供するものである。また、
ガラス基板を利用したMR素子の製造方法において、M
R素子の強磁性薄膜を利用してダイシングライン上に位
置合せパターンを設けることにより、量産性に優れたM
R素子の製造方法を提供するものである。(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks.The present invention recognizes the position of the pattern formed on the surface of the glass substrate from the back side of the glass substrate, and based on this data, the pattern formed on the surface of the glass substrate is recognized from the back side of the glass substrate. The present invention provides a full-cutting method for glass substrates that is excellent in mass productivity by performing half-cutting from the side and front sides, respectively. Also,
In a method for manufacturing an MR element using a glass substrate, M
By using the ferromagnetic thin film of the R element to provide an alignment pattern on the dicing line, M
A method for manufacturing an R element is provided.
(ホ)作用
本発明によれば、ガラス基板(11)の透明な性質を利
用してガラス基板(11)の表裏両側からハーフカット
を行うので、バリや欠は等が発生することの無いガラス
基板(11)の完全分割を行うことができる。また、表
裏両側からハーフカットするので、あらかじめダイシン
グブレード(16)の摩耗量を見込んだ量だけ切込量を
与えておけば、工程途中で切込量を変えることなく工程
を終了できる。(E) Function According to the present invention, since half-cutting is performed from both the front and back sides of the glass substrate (11) by utilizing the transparent property of the glass substrate (11), the glass substrate (11) is free from burrs, chips, etc. Complete division of the substrate (11) can be performed. Furthermore, since half-cutting is performed from both the front and back sides, if the depth of cut is given in advance by an amount that takes into account the amount of wear on the dicing blade (16), the process can be completed without changing the depth of cut during the process.
くべ)実施例
以下、本発明のダイシング方法を図面を参照しながら詳
細に説明する。Example) The dicing method of the present invention will be explained in detail below with reference to the drawings.
本発明のガラス基板のダイシング方法は、先ず第1図A
に示すように、ガラス基板(11)の表面に単数又は複
数個の素子を構成するパターン(12)を形成したガラ
ス基板(11)に前記パターン(12)を覆うようにし
て片面に接着剤を有する樹脂性のシート(13)を貼付
ける。この樹脂性のシート(13)は例えば塩化ビニル
又は塩化ビニルポリエチレン等を主材とし、単体の厚み
は0.07乃至o、t osで、前記接着剤としてはビ
ニールエーテル系トカアクリル系のものを利用できる。The method for dicing a glass substrate of the present invention is first shown in FIG.
As shown in FIG. 1, a glass substrate (11) having a pattern (12) forming one or more elements formed thereon is coated with an adhesive on one side so as to cover the pattern (12). Attach the resin sheet (13) having the following properties. This resinous sheet (13) is mainly made of, for example, vinyl chloride or vinyl chloride polyethylene, and has a thickness of 0.07 to 0.0s, and the adhesive used is a vinyl ether type or toca acrylic type. Available.
そして、ガラス基板(11)をガラス基板(11)の裏
面が上になるように図示せぬダイシング装置の作業台(
14)上へ真空吸着保持し、ガラス基板(11)の裏面
側からパターン(12)の裏側を観察することにより、
目視又は前記ダイシング装置のパターン認識装置によっ
てガラス基板(11)のダイシングラインの位置合せを
行う。これはガラス基板(11)が透明であることの特
性を利用したもので、位置合せに用いるパターンとして
は、パターン(11)内の特定形状を有するパターン、
不透明のパッシベーション膜をダイシングライン上から
除去することで得られるダイシングラインに沿ったパタ
ーン、透明なダイシングライン上に形成した不透明材料
による位置合せパターン(15)等があげられる。その
後、上記位置合せのデータに基いてダイシングブレード
(16)によりガラス基板(11)の裏面をハーフカッ
トし、ガラス基板(11)の裏面に切溝(17a)(1
7b)(17c)を形成する。ダイシングブレード(1
6)の切込量は、ガラス基板(11)の厚みとブレード
(16)の摩耗量に応じて適時設定され、その値はガラ
ス基板(11)の厚みの約70%が適当である。この切
込量はダイシング工程中一定とするので、切溝(17a
)(17b)(17c)はダイシングブレード(16)
の摩耗量に従って順次浅くなる。Then, place the glass substrate (11) on the workbench (not shown) of a dicing machine (not shown) so that the back side of the glass substrate (11) is facing up.
14) By holding the glass substrate (11) by vacuum suction and observing the back side of the pattern (12) from the back side of the glass substrate (11),
The dicing lines of the glass substrate (11) are aligned visually or by the pattern recognition device of the dicing device. This utilizes the characteristic that the glass substrate (11) is transparent, and the patterns used for alignment include a pattern with a specific shape within the pattern (11),
Examples include a pattern along a dicing line obtained by removing an opaque passivation film from above the dicing line, and an alignment pattern (15) made of an opaque material formed on a transparent dicing line. Thereafter, based on the alignment data, the back surface of the glass substrate (11) is half cut using the dicing blade (16), and the cut grooves (17a) (1) are formed on the back surface of the glass substrate (11).
7b) (17c) is formed. Dicing blade (1
The depth of cut 6) is appropriately set depending on the thickness of the glass substrate (11) and the amount of wear of the blade (16), and the appropriate value is about 70% of the thickness of the glass substrate (11). Since this depth of cut is constant during the dicing process, the cutting groove (17a
) (17b) (17c) is a dicing blade (16)
The surface becomes shallower depending on the amount of wear.
次に、ガラス基板(11)の破損を防ぐ為ガラス基板(
11)の裏面にシー) (18)を貼付けてからガラス
基板(11)の表面側に貼付けてあったシー1− (1
3)をはがし、今度はガラス基板(11)のパターン(
12)が上になるようにガラス基板(11)をダイシン
グ装置の作業台(14)上に固定する。モして第1図B
に示すように、裏面切削時に用いたパターンと同じパタ
ーンをガラス基板(11)表面側から観察することによ
りダイシングラインの位置合せを行い、ダイシングブレ
ード(16)によって切溝(17a)(17b)(17
C)の底部に残ったガラス基板(11)を切削する。本
工程においてもダイシングブレード(16)の摩耗が生
じるが、前工程で設定した切込量が適切であれば、本工
程で切込量を変えなくても、また切込む順番に拘らずガ
ラス基板(11)を完全切断できる。Next, in order to prevent the glass substrate (11) from being damaged, the glass substrate (
After pasting the sheet (18) on the back side of the glass substrate (11), the sheet 1- (1) was pasted on the front side of the glass substrate (11).
3) and then remove the pattern (11) from the glass substrate (11).
Fix the glass substrate (11) on the workbench (14) of the dicing device so that the glass substrate (12) is facing upward. Figure 1B
As shown in the figure, the dicing lines are aligned by observing the same pattern used for cutting the back side from the front side of the glass substrate (11), and the cutting grooves (17a) (17b) ( 17
C) Cut the glass substrate (11) remaining at the bottom. Although wear of the dicing blade (16) occurs in this process as well, if the depth of cut set in the previous process is appropriate, there is no need to change the depth of cut in this process, and regardless of the order of cutting, the glass substrate (11) can be completely cut.
尚、切残しの部分が最も多いダイシングラインから順番
に、つまり切溝(17c)(17b)(17a)の順番
で切削を行うように制御すれば、ダイシングブレード(
16)が摩耗するにつれて切削量が減るので、先の工程
における切込量を減らすことができる。Note that if the cutting is performed in order from the dicing line with the most uncut parts, that is, in the order of the kerf grooves (17c), (17b), and (17a), the dicing blade (
16) is worn, the amount of cutting decreases, so the amount of cutting in the previous process can be reduced.
この様にして、第1図Cに示す如くガラス基板(11)
のフルカットが終了すると、シート(18〉の裏面から
60〜120℃に加熱しながらシート(18)を拡大し
、グイボンド工程の準備を行う。本願はシート(18)
にダイシングによる傷が付かないので、シート(18)
拡大の時に分割したガラス基板(11)の配列が乱れた
り、あるいはシート(18)が傷部分で裂けてしまうよ
うな事故は無い。In this way, as shown in FIG. 1C, the glass substrate (11) is
After the full cutting of the sheet (18) is completed, the sheet (18) is expanded while being heated to 60 to 120°C from the back side of the sheet (18) to prepare for the Guibond process.
The sheet (18) is not damaged by dicing.
There are no accidents such as the arrangement of the divided glass substrates (11) being disordered during enlargement, or the sheets (18) being torn at scratches.
以上に説明したガラス基板のダイシング方法を利用し、
本願のMR素子のダイシング方法は以下の通りになる。Using the glass substrate dicing method explained above,
The dicing method for the MR element of the present application is as follows.
先ず第2図に示す如く、厚J700am程度のガラス基
板(11)の全面に膜厚1000〜5000人の酸化膜
(Siow)等の絶縁膜(20)をCVD法等を用いて
形成し、その上にNiCo合金、NiFe合金、NiA
1合金、NiMn合金あるいはNiZn合金等の強磁性
金属から成る磁性薄膜(21)を蒸着又はスバ・ンタ形
成し、例えばリソグラフィー技術を用いて所定の形状に
パターニングした後、磁性薄膜(21)を覆うように例
えばポリイミド系樹脂のパッシベーション膜り22)を
形成・パターニングする。First, as shown in FIG. 2, an insulating film (20) such as an oxide film (Siow) having a thickness of 1,000 to 5,000 wafers is formed on the entire surface of a glass substrate (11) with a thickness of about J700 am using a CVD method or the like. NiCo alloy, NiFe alloy, NiA on top
A magnetic thin film (21) made of a ferromagnetic metal such as No. 1 alloy, NiMn alloy, or NiZn alloy is vapor-deposited or formed on a substrate, patterned into a predetermined shape using, for example, lithography technology, and then covered with the magnetic thin film (21). For example, a passivation film 22) of polyimide resin is formed and patterned in this manner.
その際第3図に示す如く、磁性薄膜(21)の形成・パ
ターニングを利用してダイシングライン(23)の交差
部分に磁性薄膜(21)を選択的に残しておくことによ
り位置合せ用の位置合せパターン(15)を形成し、ダ
イシングライン(23)上のパッシベーション膜(22
)は位置合せに障害となるので除去する。尚、(24)
は磁性薄膜(21)によるパターン領域を示し、第2図
は第3図のAA線断面図を示す。At that time, as shown in FIG. 3, by forming and patterning the magnetic thin film (21), the magnetic thin film (21) is selectively left at the intersections of the dicing lines (23), thereby determining the position for alignment. A matching pattern (15) is formed, and a passivation film (22) is formed on the dicing line (23).
) is an obstacle to alignment, so remove it. Furthermore, (24)
2 shows a pattern area formed by the magnetic thin film (21), and FIG. 2 shows a cross-sectional view taken along line AA in FIG. 3.
次に、上記MR素子と磁性薄膜(21)材料から成る位
置合せパターン(15)を形成したガラス基板(11)
の表面に第1図Aと同様にシート(13)を貼付け、ガ
ラス基板(11〉の裏面側から位置合せパターンク15
)を認識することによりダイシングライン(23)の位
置合せを行い、このデータに基いてダイシングライン(
23)の裏面をダイシングブレード(16)でハーフカ
ットする。酸化膜(20)は透明な性質を有するので、
上記位置合せに支障をきたさない。Next, a glass substrate (11) is formed with an alignment pattern (15) made of the MR element and a magnetic thin film (21) material.
Paste the sheet (13) on the surface of the glass substrate (11) in the same manner as in FIG.
), the dicing line (23) is aligned, and based on this data the dicing line (23) is aligned.
Half-cut the back side of 23) with a dicing blade (16). Since the oxide film (20) has transparent properties,
This does not interfere with the above alignment.
次に、ガラス基板(11)の裏面にシート(18)を貼
付はガラス基板(11)表面に貼付けてあったシート(
13)をはがし、第1図Bと同様にダイシングライン(
23)の切残しの部分をハーフカットすることにより、
第1図Cに示すように1枚のガラス基板(11)の表面
に形成したMR素子を個々に分割する。Next, the sheet (18) is pasted on the back side of the glass substrate (11).
13) and cut the dicing line (
By half-cutting the uncut portion of 23),
As shown in FIG. 1C, the MR element formed on the surface of one glass substrate (11) is divided into individual parts.
以上に説明した本願のガラス基板(11)のダイシング
方法とMR素子の製造方法によれば、ガラス基板(11
)をフルカットするのでガラス基板(11)に割れ、欠
けの生ずることが無く、シート(18)を用いるのでワ
ックス(7)等で汚染されることが無く、ガラス基板(
11)の両側から夫々ハーフカットするのでダイシング
ブレード(16)の摩耗に対する工程管理が容易なガラ
ス基板(11)のダイシング方法が得られ、さらに上記
ガラス基板(11)のダイシング方法を利用することに
よって、ガラス基板(11)を用いたMR素子を容易に
製造することが可能となる。しかも、MR素子は磁性薄
膜(21)だけで構成されるので、本願の如くガラス基
板(11)表面に機械的圧力が加わっても素子の破壊が
無く、また磁性薄膜(21)材料を利用して位置合せパ
ターン(15)を形成するので、特に新規な工程を追加
する必要も無い。According to the method for dicing a glass substrate (11) and the method for manufacturing an MR element of the present application described above, the glass substrate (11)
) is completely cut, so the glass substrate (11) will not be cracked or chipped, and since the sheet (18) is used, it will not be contaminated with wax (7), etc., and the glass substrate (
Since half-cutting is performed from both sides of the glass substrate (11), it is possible to obtain a method for dicing the glass substrate (11) that facilitates process control against wear of the dicing blade (16). , it becomes possible to easily manufacture an MR element using a glass substrate (11). Moreover, since the MR element is composed only of the magnetic thin film (21), the element will not be destroyed even if mechanical pressure is applied to the surface of the glass substrate (11) as in the present application, and the magnetic thin film (21) material can be used. Since the alignment pattern (15) is formed using the same steps, there is no need to add any new process.
(ト)発明の詳細
な説明した如く、本願によれば工程管理が容易なガラス
基板(11)のフルカット方法を提供することができ、
この手法を利用することによってMR素子を安価に且つ
容易に製造できる利点を有する。(g) As described in detail of the invention, according to the present application, it is possible to provide a full cutting method for a glass substrate (11) that is easy to control the process,
Utilizing this method has the advantage that MR elements can be manufactured easily and at low cost.
第1図A乃至第1図Cは夫々本願のガラス基板のダイシ
ング方法を説明する為の断面図、第2図及び第3図はM
R素子を説明する為の断面図及び平面図、第4図及び第
5図は従来の技術を説明する為の断面図である。
(11)はガラス基板、 (12)はパターン、
(13)(18)はシート、 (15)は位置合せパタ
ーン、 (16)はダイシングブレード、 (17a
)(17b)(17c)は切溝、 (21)は磁性薄膜
、 (23)はダイシングラインである。
第1 囚△
第1図B
第2図1A to 1C are cross-sectional views for explaining the method of dicing a glass substrate of the present application, and FIGS. 2 and 3 are M
A cross-sectional view and a plan view for explaining the R element, and FIGS. 4 and 5 are cross-sectional views for explaining the conventional technology. (11) is a glass substrate, (12) is a pattern,
(13) (18) are sheets, (15) are alignment patterns, (16) are dicing blades, (17a)
) (17b) (17c) are cut grooves, (21) is a magnetic thin film, and (23) is a dicing line. 1st Prisoner△ Figure 1B Figure 2
Claims (2)
ス基板のダイシング方法において、前記ガラス基板の表
面にシートを貼付し、前記ガラス基板の裏面側から前記
ガラス基板表面に形成したパターンを認知してダイシン
グラインの位置合せを行い、このダイシングラインに沿
って前記ガラス基板の裏面をハーフカットし、続いて前
記ガラス基板の表面を前記ダイシングラインに沿ってハ
ーフカットすることにより前記ガラス基板をフルカット
することを特徴とするガラス基板のダイシング方法。(1) In a method for dicing a glass substrate in which a large number of elements are formed on the surface of the glass substrate, a sheet is attached to the surface of the glass substrate, and the pattern formed on the surface of the glass substrate is recognized from the back side of the glass substrate. to align the dicing line, half-cut the back side of the glass substrate along this dicing line, and then half-cut the front side of the glass substrate along the dicing line to completely cut the glass substrate. A method for dicing a glass substrate, which is characterized by cutting.
形成・パターニングし、その表面をパッシベーション膜
で覆った強磁性薄膜抵抗素子の製造方法において、前記
強磁性薄膜のパターニングと共に前記ガラス基板のダイ
シングライン上に位置合せパターンを設け、先ず前記ガ
ラス基板の表面にシートを貼付し、前記ガラス基板の裏
面側から前記位置合せパターンを認知してダイシングラ
インの位置合せを行い、このダイシングラインに沿って
前記ガラス基板の裏面をハーフカットし、続いて前記ガ
ラス基板の表面を前記ダイシングラインに沿ってハーフ
カットすることにより前記ガラス基板をフルカットする
ことを特徴とする強磁性薄膜抵抗素子の製造方法。(2) In a method for manufacturing a ferromagnetic thin film resistance element in which a ferromagnetic thin film is formed and patterned on the surface of a glass substrate via an insulating film, and the surface is covered with a passivation film, the glass substrate is patterned while the ferromagnetic thin film is patterned. An alignment pattern is provided on the dicing line, and a sheet is first attached to the surface of the glass substrate, and the alignment pattern is recognized from the back side of the glass substrate to align the dicing line. Manufacturing a ferromagnetic thin film resistance element, characterized in that the glass substrate is fully cut by half-cutting the back surface of the glass substrate along the dicing lines, and then half-cutting the front surface of the glass substrate along the dicing lines. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63121054A JPH01290237A (en) | 1988-05-18 | 1988-05-18 | Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63121054A JPH01290237A (en) | 1988-05-18 | 1988-05-18 | Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01290237A true JPH01290237A (en) | 1989-11-22 |
Family
ID=14801696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63121054A Pending JPH01290237A (en) | 1988-05-18 | 1988-05-18 | Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01290237A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003311734A (en) * | 2002-04-19 | 2003-11-05 | Matsushita Electric Ind Co Ltd | Manufacturing method for ceramic part |
EP1371702A1 (en) * | 2002-06-10 | 2003-12-17 | Nitto Denko Corporation | Adhesive sheet for dicing glass substrate and method of dicing glass substrate |
CN100347811C (en) * | 2002-07-17 | 2007-11-07 | 应用材料有限公司 | Semiconductor substrate damage protection system |
-
1988
- 1988-05-18 JP JP63121054A patent/JPH01290237A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003311734A (en) * | 2002-04-19 | 2003-11-05 | Matsushita Electric Ind Co Ltd | Manufacturing method for ceramic part |
EP1371702A1 (en) * | 2002-06-10 | 2003-12-17 | Nitto Denko Corporation | Adhesive sheet for dicing glass substrate and method of dicing glass substrate |
US7041190B2 (en) | 2002-06-10 | 2006-05-09 | Nitto Denko Corporation | Adhesive sheet for dicing glass substrate and method of dicing glass substrate |
CN100347811C (en) * | 2002-07-17 | 2007-11-07 | 应用材料有限公司 | Semiconductor substrate damage protection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4278722A (en) | Multilayer edge sealed record carrier | |
US7377024B2 (en) | Method of making a magnetic write head with trailing shield throat pad | |
JPH01290237A (en) | Dicing method for glass substrate and manufacture of ferromagnetic thin film resistance element | |
CN108958548A (en) | Surface has ultra-thin glass of touch-control film layer and preparation method thereof, display device | |
JP3465280B2 (en) | Manufacturing method of magnetic sensor | |
JPH0827892B2 (en) | Manufacturing method of magnetic head | |
JPH06112312A (en) | Manufacture of semiconductor chip | |
JPS5917290A (en) | Magnetic sensor | |
JPS598357Y2 (en) | semiconductor equipment | |
JPS6029914A (en) | Thin film head | |
JPS6214386A (en) | Production of negative pressure type floating head slider | |
JP2001300898A (en) | Method of manufacturing for perforating blade | |
JPS58121122A (en) | Production of vertically magnetized magnetic head | |
JPH087224A (en) | Forming method of thin film and production of thin film magnetic head | |
JPS629572A (en) | Manufacture of negative pressure type floating head slider | |
JPS60205881A (en) | Production of magnetic head slider | |
JPH03274437A (en) | Manufacture of sample for electron microscope | |
JPS6361405A (en) | Manufacture of thin film laminated type magnetic head | |
JPH03273513A (en) | Thin-film type magnetic head | |
JPH03200011A (en) | Magnetic medium and its manufacture | |
JPS6231015A (en) | Thin-film magnetic head | |
JPH08204250A (en) | Semiconductor device | |
JPS54161918A (en) | Production of magnetic head | |
JPH06216244A (en) | Separation of wafer | |
JPS60177480A (en) | Forming method of negative pressure slider |