JPH0128247B2 - - Google Patents

Info

Publication number
JPH0128247B2
JPH0128247B2 JP59051979A JP5197984A JPH0128247B2 JP H0128247 B2 JPH0128247 B2 JP H0128247B2 JP 59051979 A JP59051979 A JP 59051979A JP 5197984 A JP5197984 A JP 5197984A JP H0128247 B2 JPH0128247 B2 JP H0128247B2
Authority
JP
Japan
Prior art keywords
roller
carburized
rollers
hardness
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59051979A
Other languages
Japanese (ja)
Other versions
JPS60196432A (en
Inventor
Masayuki Tsushima
Kikuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP5197984A priority Critical patent/JPS60196432A/en
Publication of JPS60196432A publication Critical patent/JPS60196432A/en
Publication of JPH0128247B2 publication Critical patent/JPH0128247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、小型軸受に用いるころ、更に詳し
くは高荷重で使用される小型軸受の浸炭ころに関
するものである。 近年、軸受用材料(軸受鋼、浸炭鋼)の非金属
介在物清浄度は、真空脱ガスや炉外精錬法などの
製鋼技術の進歩によつて著しく向上し、それに伴
なつて転動疲労強度の増大も顕著である。 材料の疲労強度の増大に伴なつて、軸受の軽量
化、小型化がますます進められているが、同一使
用条件における軸受の小型化は軸受にとつて負荷
の増大を意味し、特に寸法の小さい浸炭処理ころ
を用いた小型軸受をそのような過大荷重の下で使
用した場合、内輪、外輪、ころの剥離発生よりも
先に、ころが中心部を貫いて軸方向に割れる(以
下ころ割れと呼ぶ)という破損現象が生じる。 即ち、小型軸受に用いるころとして軸受鋼ずぶ
焼入ころと、第1図に示すように、浸炭鋼を用い
て浸炭処理を施し、コア3の外周に浸炭層2を設
けた浸炭ころ1とがあり、この浸炭ころ1は前者
の軸受鋼ずぶ焼入ころよりも剥離寿命が長いとい
う特徴を有する優れたものであるが、前記のよう
に、過大荷重下においてはころ割れの発生のため
に、その特徴を活かすことができないのが実状で
ある。 この発明は、上記のような点にかんがみてなさ
れたものであり、過酷な荷重条件で使用されても
ころ割れの発生がなく、高荷重用小型軸受の耐久
性を大幅に向上させることができる浸炭ころを提
供するのが目的である。 この発明の構成は、ころ径が15mm以下の小型軸
受用ころにおいて、浸炭ころのコア硬度がHRC48
を越えてHRC57以下に設定し、高荷重下における
コア割れの発生を防止するようにしたものであ
る。 次に、この発明がコア硬度HRC48を越えて、
HRC57以下に設定した理由を詳述する。 この発明の小型軸受用ころ1は、軸受材料に浸
炭処理を施し、浸炭層2の内側に位置するコア3
の硬度をHRC48を越えて、HRC57以下に設定して
形成したものであり、高荷重下で使用する小型軸
受としては、例えば自動車のホイル用を挙げるこ
とができ、このような小型軸受におけるころ1の
直径は10mm前後かそれ以下が通例であるが15mm程
度である場合もある。 また、ころ1に用いる材料として通常の浸炭鋼
を使用し、浸炭深さを深くするか、あるいは0.3
%〜0.4%Cの中炭素合金鋼を用い、短時間の浸
炭を施すことによつても得ることができる。後者
は浸炭時間の短縮による処理コストの低減を図る
ことができるので好都合といえる。 この発明の基礎となつた実験において、本出願
人は、ころ直径、浸炭深さ、コア硬度、負荷々重
を種々に変えてころの性能実験を行なつたとこ
ろ、過大荷重下で発生するころ割れはコア硬度と
密接な関係があることを見い出し、その結果コア
硬度が高いほどころ割れが生じにくいという結論
を得た。 従来、浸炭軸受の浸炭深さは、剪断能力をτと
する時、物体内の任意の位置における硬度が、τ
にある倍数を乗じた値よりも大きくなるように決
定され、それ以上の浸炭深さは転動寿命にかえつ
て有害とされている。(第2図参照) 即ち、第3図に示すように、硬度が剪断応力の
例えば9倍以上あれば、転動疲労で塑性変形が生
じないという説があり、この説に従えば硬度分布
は9×τの分布を大幅に越えなくても良いことに
なる。 さらに、第4図の如く、転動寿命とコア硬度と
の間には負の相関があり、転動寿命においては、
表面の圧縮残留応力値との関係で、ただ単に硬け
れば良いとか浸炭深さが深ければ良いというもの
ではなく、特にコア硬度が高いことは転動寿命に
対してマイナスになると考えられており、このた
め従来のころにおけるコア硬さは例えばHRC25〜
45のように定められ、その浸炭深さもある範囲に
規格されている。 また、浸炭深さが深いか、あるいはコア硬度が
高いと転動寿命が低下するのは、第5図に示した
如く、表層の熱処理による圧縮残留応力が小さく
なるからであり、浸炭ころの転動寿命が軸受鋼ず
ぶ焼入ころよりも長い理由の一つに、この圧縮残
留応力の存在が挙げられている。 従来、浸炭ころのコア硬度を前記のように、
HRC25〜45と低く定めている理由は、コアに靭性
をもたせ、衝撃荷重に対する強度を上げるためで
あり、HRC45の根拠は0.2%Cの浸炭鋼を最大限に
焼入れ処理しても、硬さがHRC45以上にならない
ために設定された値であると考えられる。 しかしながら、軸受が高荷重で使用されると、
使用の初期においてころの表層に圧縮の残留応力
が生成され、熱処理による圧縮残留応力の大きさ
は転動寿命に対してほとんど意味がないものとな
る。 即ち、浸炭ころが高荷重で使用される場合、表
層に生成される残留圧縮応力は、浸炭のための熱
処理で生成される残留圧縮応力(200〜400Mpa)
に比較して500Mpa以上と非常に大きく、熱処理
で発生する残留圧縮応力に差があつても、表層の
残留応力は使用中に同一となり、残留応力の影響
に意義はないと云える。 表1は、上記のような点を実証するために行な
つた過大荷重による転動寿命試験の結果を示して
いる。各試片は共に6mmφ×12mmであり、線接
触型の転動寿命試験機を用い、試片を回転させな
がら加圧して試験を行なつた。この結果コア硬度
の異なる各試片の剥離寿命に差がないか、むしろ
逆にコア硬度が高い方が転動寿命が大きいことが
わかつた。
The present invention relates to rollers used in small bearings, and more particularly to carburized rollers for small bearings used under high loads. In recent years, the cleanliness of non-metallic inclusions in bearing materials (bearing steel, carburized steel) has improved significantly due to advances in steelmaking technology such as vacuum degassing and out-of-furnace refining, and along with this, rolling fatigue strength has improved. The increase is also significant. As the fatigue strength of materials increases, bearings are becoming more and more lightweight and smaller. However, smaller bearings under the same operating conditions mean an increase in the load on the bearings, especially when it comes to dimensions. When a small bearing with small carburized rollers is used under such an excessive load, the rollers penetrate through the center and crack in the axial direction (hereinafter referred to as roller cracking) before the inner ring, outer ring, and rollers peel off. A breakage phenomenon called . In other words, as rollers used in small bearings, there are two types: a bearing steel through-hardened roller, and a carburized roller 1, which is carburized using carburized steel and has a carburized layer 2 on the outer periphery of the core 3, as shown in FIG. This carburized roller 1 is superior in that it has a longer peeling life than the former bearing steel through-hardened roller, but as mentioned above, it suffers from cracking under excessive loads due to the occurrence of roller cracking. The reality is that these characteristics cannot be utilized. This invention was made in view of the above-mentioned points, and even when used under severe load conditions, roller cracks do not occur, and the durability of small bearings for high loads can be greatly improved. The purpose is to provide carburized rollers. The structure of this invention is that in a small bearing roller with a roller diameter of 15 mm or less, the core hardness of the carburized roller is H RC 48.
H RC is set to 57 or less to prevent core cracking under high loads. Next, this invention exceeds the core hardness H RC 48,
The reason for setting H RC below 57 will be explained in detail. The roller 1 for a small bearing of the present invention has a core 3 located inside a carburized layer 2, in which the bearing material is carburized.
The hardness of these bearings is set to exceed H RC 48 and H RC 57 or less, and examples of small bearings used under high loads include those for automobile wheels. The diameter of the rollers 1 in the bearing is usually around 10 mm or less, but may be around 15 mm. In addition, it is possible to use ordinary carburized steel as the material for roller 1 and increase the carburizing depth, or 0.3
It can also be obtained by using medium carbon alloy steel with a carbon content of % to 0.4% and carburizing it for a short time. The latter can be said to be advantageous because it can reduce the processing cost by shortening the carburizing time. In experiments that formed the basis of this invention, the applicant conducted roller performance experiments with various roller diameters, carburization depths, core hardnesses, and loads. They found that cracking is closely related to core hardness, and concluded that the higher the core hardness, the less likely roller cracks will occur. Conventionally, the carburization depth of a carburized bearing is determined by the hardness at any position within the object, where τ is the shearing capacity.
The carburization depth is determined to be greater than the value multiplied by a certain multiple, and carburization depths greater than that are considered to be detrimental to the rolling life. (See Figure 2) In other words, as shown in Figure 3, there is a theory that if the hardness is, for example, 9 times or more the shear stress, no plastic deformation will occur due to rolling contact fatigue, and according to this theory, the hardness distribution will be This means that it is not necessary to significantly exceed the distribution of 9×τ. Furthermore, as shown in Figure 4, there is a negative correlation between rolling life and core hardness;
In relation to the compressive residual stress value on the surface, it is not just a matter of being hard or having a deep carburizing depth; in particular, high core hardness is thought to have a negative impact on rolling life. Therefore, the core hardness of conventional rollers is, for example, H RC 25 ~
45, and the carburization depth is also specified within a certain range. Furthermore, if the carburizing depth is deep or the core hardness is high, the rolling life will be reduced because, as shown in Figure 5, the compressive residual stress due to the heat treatment of the surface layer will be reduced, and the rolling life of the carburized roller will be reduced. The existence of this compressive residual stress is cited as one of the reasons why the dynamic life of rollers is longer than that of bearing steel through-hardened rollers. Conventionally, the core hardness of carburized rollers was determined as described above.
The reason for setting a low H RC of 25 to 45 is to provide toughness to the core and increase strength against impact loads.The basis for H RC 45 is that even if 0.2% C carburized steel is hardened to the maximum This value is thought to have been set to ensure that the hardness does not exceed H RC 45. However, when bearings are used under high loads,
In the initial stage of use, compressive residual stress is generated on the surface layer of the roller, and the magnitude of the compressive residual stress due to heat treatment has almost no meaning in terms of rolling life. In other words, when carburized rollers are used under high loads, the residual compressive stress generated in the surface layer is equal to the residual compressive stress (200 to 400 Mpa) generated in the heat treatment for carburizing.
It is extremely large at more than 500Mpa compared to the above, and even if there is a difference in the residual compressive stress generated during heat treatment, the residual stress in the surface layer remains the same during use, and it can be said that the influence of residual stress has no significance. Table 1 shows the results of a rolling life test using an excessive load, which was conducted to prove the points mentioned above. Each test piece had a diameter of 6 mm x 12 mm, and was tested using a line contact type rolling life tester by applying pressure while rotating the test piece. As a result, it was found that there is no difference in the peeling life of specimens with different core hardnesses, or rather, the rolling life is longer when the core hardness is higher.

【表】 次に、ころ割れの発生は、内部硬さところ内部
に働く応力によつて決まり、軸受に負荷が作用し
たとき、ころの内部に働いてころ割れの要因とな
る引張応力σx及び圧縮応力σyは第6図と次式で
表わすことができる。 σx=2P/π{cosθ1sin2θ1/r1+cosθ2sin2θ2/r2
}+2p/πd σy=−2P/π{cos3θ1/r1+cos3θ2/r2}+2p/πd σxとσyは互に直交する方向をもつ応力であり、
ころの回転に伴なつて引張応力σxと圧縮応力σy
とは交互に繰返されることになる。従つて応力振
幅は(σx−σy)/2となり、これを縦軸に、コ
ア硬度を横軸にして接触応力が約5.0〜7.2Gpaと
いう高荷重下で行なつた上記のようなころ割れ試
験をプロツトすれば第7図の如くなり、コア硬度
ところ割れの発生する臨界応力振幅値との相関は
同図直線で示されるように明瞭であり、直線より
上部がころ割れの生じる範囲である。 なお、一般に剥離は接触荷重による剪断応力の
繰返しにより発生すると考えられるが、この発明
に関するころ割れは、上記の理由で接触荷重によ
る表層の剪断応力τとは全く関係がない。 一方軸受鋼ころを過大荷重下で使用すれば、上
述の如きころ割れはないが、剥離発生後、過大荷
重のため表層に発生した圧縮残留応力にバランス
して生じるコアの引張残留応力のため、剥離きれ
つを起点として内部が円周方向に割れることがあ
る。 きれつがある時の材料の強さは破壊靭性値Klc
で表わされ、第8図はこの発明に該当する浸炭こ
ろ及び軸受鋼ころのコアを想定し、中炭素鋼及び
軸受鋼の硬さHRCと破壊靭性値Klcの関係を示し
ている。 同図の如く、浸炭ころのコア硬さをHRC57以下
にすれば破壊靭性値Klcは急激に増大し、例えば
コア硬度HRC50の時のKlcは軸受鋼HRC60〜62の
Klcの5倍以上である。 従つて、過大荷重下で使用される浸炭ころにお
いて、剥離からのころ割れを防ぐには、コア硬度
を破壊靭性値Klcの急激に増大する硬度から低い
範囲に設定する必要があり、このような観点から
過大荷重下で使用される小型軸受の浸炭ころのコ
ア硬度は、硬度HRC48を越えてHRC57以下、好ま
しくはHRC55以下に設定するのが最適であるとい
える。なお、軸受鋼からなる小型ころでは表層硬
度をHRC60以上とし、コア硬度をHRC57以下に制
御することは困難であるので、この発明は浸炭こ
ろに限るということができる。 以上のように、この発明によると、過大荷重下
で使用される小型軸受において、浸炭ころのコア
硬度をHRC48を越えてHRC57以下に設定したので、
高荷重が作用してもころ割れの発生がなくなり、
剥離寿命を有効に生かすことができ、小型軸受の
耐久性を大幅に向上させることができる。 また、浸炭深さを深くしてコア硬度をHRC48を
越えてHRC57にする浸炭条件は、結果として表層
の炭素濃度を高めるので、転動疲労に対して有利
になり、高荷重以外の一般使用条件においても小
型軸受の寿命を延ばすことができる。
[Table] Next, the occurrence of roller cracking is determined by the internal hardness and stress acting inside the bearing. When a load is applied to the bearing, the tensile stress σx and compressive stress that act inside the roller and cause roller cracking. The stress σy can be expressed by the following equation as shown in FIG. σx=2P/π{cosθ 1 sin 2 θ 1 /r 1 +cosθ 2 sin 2 θ 2 /r 2
}+2p/πd σy=-2P/π{cos 3 θ 1 /r 1 +cos 3 θ 2 /r 2 }+2p/πd σx and σy are stresses with mutually orthogonal directions,
As the roller rotates, tensile stress σx and compressive stress σy
will be repeated alternately. Therefore, the stress amplitude is (σx − σy)/2, and the above roller cracking test was conducted under a high load with a contact stress of approximately 5.0 to 7.2 Gpa, with this as the vertical axis and the core hardness as the horizontal axis. If plotted, the result will be as shown in FIG. 7, and the correlation between the core hardness and the critical stress amplitude value at which cracking occurs is clear as shown by the straight line in the figure, and the area above the straight line is the range where roller cracking occurs. Although peeling is generally considered to occur due to repeated shear stress due to contact load, the roller cracking related to the present invention has no relation to the shear stress τ of the surface layer due to contact load for the above-mentioned reasons. On the other hand, if bearing steel rollers are used under excessive loads, the rollers will not crack as described above, but after peeling occurs, tensile residual stress in the core will occur in balance with the compressive residual stress generated in the surface layer due to the excessive load. The interior may crack in the circumferential direction starting from the peeling crack. The strength of the material when there is a crack is the fracture toughness value Klc
Fig. 8 shows the relationship between hardness HRC and fracture toughness value Klc of medium carbon steel and bearing steel, assuming the cores of carburized rollers and bearing steel rollers according to the present invention. As shown in the figure, if the core hardness of the carburized roller is set to H RC 57 or less, the fracture toughness value Klc increases rapidly.
It is more than 5 times the price of KLC. Therefore, in order to prevent roller cracking due to peeling in carburized rollers used under excessive loads, it is necessary to set the core hardness to a range lower than the hardness at which the fracture toughness value Klc rapidly increases. From this point of view, it can be said that the core hardness of the carburized rollers of small bearings used under excessive loads is optimally set to a hardness of more than H RC 48 and less than H RC 57, preferably less than H RC 55. In addition, since it is difficult to control a small roller made of bearing steel to have a surface hardness of H RC 60 or more and a core hardness of H RC 57 or less, this invention can be said to be limited to carburized rollers. As described above, according to the present invention, in small bearings used under excessive loads, the core hardness of the carburized rollers is set to exceed H RC 48 and below H RC 57.
No more roller cracking even under high loads,
The peeling life can be effectively utilized, and the durability of small bearings can be greatly improved. In addition, carburizing conditions that increase the carburizing depth to raise the core hardness from H RC 48 to H RC 57 increase the carbon concentration in the surface layer, which is advantageous against rolling fatigue and is suitable for applications other than high loads. The life of small bearings can be extended even under normal usage conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は浸炭ころの断面図、第2図は浸炭ころ
の浸炭深さと寿命の関係を示すグラフ、第3図は
剪断応力の分布と適正硬さ分布の関係を示すグラ
フ、第4図はコア硬度と転動寿命の関係を示す説
明図、第5図は浸炭深さと表層残留応力との関係
を示すグラフ、第6図はころの内部に働く引張応
力と圧縮応力の関係を示す説明図、第7図はころ
割れに及ぼすコア硬度の影響を示す説明図、第8
図はコア硬さと破壊靭性値との関係を示すグラフ
である。 1は浸炭ころ、2は浸炭層、3はコア。
Figure 1 is a cross-sectional view of a carburized roller, Figure 2 is a graph showing the relationship between carburization depth and life of the carburized roller, Figure 3 is a graph showing the relationship between shear stress distribution and appropriate hardness distribution, and Figure 4 is a graph showing the relationship between shear stress distribution and appropriate hardness distribution. An explanatory diagram showing the relationship between core hardness and rolling life. Figure 5 is a graph showing the relationship between carburization depth and surface residual stress. Figure 6 is an explanatory diagram showing the relationship between tensile stress and compressive stress acting inside the roller. , Fig. 7 is an explanatory diagram showing the influence of core hardness on roller cracking, Fig. 8
The figure is a graph showing the relationship between core hardness and fracture toughness value. 1 is a carburized roller, 2 is a carburized layer, and 3 is a core.

Claims (1)

【特許請求の範囲】[Claims] 1 ころ径が15mm以下の小型軸受用ころにおい
て、浸炭ころのコア硬度がHRC48を越えてHRC57
以下であることを特徴とする小型軸受用ころ。
1. For small bearing rollers with a roller diameter of 15 mm or less, the core hardness of carburized rollers exceeds H RC 48 and H RC 57.
A small bearing roller characterized by the following:
JP5197984A 1984-03-16 1984-03-16 Roller for small bearing Granted JPS60196432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197984A JPS60196432A (en) 1984-03-16 1984-03-16 Roller for small bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197984A JPS60196432A (en) 1984-03-16 1984-03-16 Roller for small bearing

Publications (2)

Publication Number Publication Date
JPS60196432A JPS60196432A (en) 1985-10-04
JPH0128247B2 true JPH0128247B2 (en) 1989-06-01

Family

ID=12901978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197984A Granted JPS60196432A (en) 1984-03-16 1984-03-16 Roller for small bearing

Country Status (1)

Country Link
JP (1) JPS60196432A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2575545B1 (en) 2010-05-25 2016-07-06 Julius Blum GmbH Rolling body of a moving carriage cage for drawer guides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346777A (en) * 1976-10-12 1978-04-26 Seiko Epson Corp Electronic wristwatch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346777A (en) * 1976-10-12 1978-04-26 Seiko Epson Corp Electronic wristwatch

Also Published As

Publication number Publication date
JPS60196432A (en) 1985-10-04

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
JPS62132031A (en) Rolling bearing
KR101551316B1 (en) Bearing roller, bearing, and bearing roller processing method
US3677032A (en) Shell type needle bearing
JP2006329319A (en) Rolling/sliding component, rolling bearing, cam follower, and surface improving method for rolling/sliding component
US20180156275A1 (en) Method for producing rolling bearing rings and rolling bearing
CN107955874B (en) Shaft part with surface local quenching transition area and machining process thereof
EP1138795A1 (en) Law material for bearing parts
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JPH0128247B2 (en)
JP3543376B2 (en) Rolling bearing with surface hardened layer
JP2013238274A (en) Inner ring for radial rolling bearing and method for manufacturing the inner ring
Kepple et al. Rolling element fatigue and macroresidual stress
JP2005098475A5 (en)
JPH03199716A (en) Bearing part
JP2769206B2 (en) Roller bearing
JP2002115031A (en) Rolling bearing parts, driving device and roll supporting device
JP2004011737A (en) Self-aligning roller bearing
JP4026514B2 (en) Rolling bearing member and method for manufacturing rolling bearing member
JP2003329048A (en) Manufacturing method for bearing raceway member
CN110939658A (en) Large rolling bearing ring, method for producing a large rolling bearing ring and use thereof
WO2012036067A1 (en) Rolling bearing
JP7073193B2 (en) Rolling parts, bearings and their manufacturing methods
JP2009019713A (en) Rolling bearing
JPH06109021A (en) Rolling bearing