JPH03199716A - Bearing part - Google Patents

Bearing part

Info

Publication number
JPH03199716A
JPH03199716A JP1339199A JP33919989A JPH03199716A JP H03199716 A JPH03199716 A JP H03199716A JP 1339199 A JP1339199 A JP 1339199A JP 33919989 A JP33919989 A JP 33919989A JP H03199716 A JPH03199716 A JP H03199716A
Authority
JP
Japan
Prior art keywords
depth
residual stress
layer
contact
shot peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339199A
Other languages
Japanese (ja)
Inventor
Ikuro Marumoto
丸本 幾郎
Masazumi Onishi
昌澄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1339199A priority Critical patent/JPH03199716A/en
Publication of JPH03199716A publication Critical patent/JPH03199716A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/41Couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Abstract

PURPOSE:To extend a fatigue life of a bearing by providing a surface hardening treated layer, in which depth of a peak in distribution of compression residual stress is set to the almost equal depth when a rolling unit is brought into contact, in a contact part with the rolling unit. CONSTITUTION:A cemented hardened layer 14 and a shot peening hardened layer 15 are compound-formed on a surface layer part of a bearing part 12, and a contact surface 13 with a rolling unit 11 is formed in a lapping finished skin. The cemented hardened layer 14 is set to a depth of about 1mm, and the shot peening hardened layer 15 is set to a depth of about 0.3mm. An internal quality of the shot peening layer is adjusted so as to provide distribution of compression residual stress in a similar figure to distribution S of shearing force generated when the rolling unit 11 is brought into contact with the contact surface 13. Thus, a life is extended by increasing fatigue strength in a region where fatigue destruction is easily generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポールベアリングのレースや等速ジヨイント
のレース等、転動体に接触する軸受部品に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to bearing parts that come into contact with rolling elements, such as races of pole bearings and races of constant velocity joints.

(従来の技術) 例えば、車両用等速ジ電インドの一つであるバーフィー
ルド型等速ジヨイントは、第9図に示すように、一方の
回転軸1の一端に取付けられたアウタレース2と、他方
の回転軸3の一端に取付けられたインナレース4と、ケ
ージ5によって保持され両レース2.4の軌道溝2a 
、 4a間で転動するポール6とから戊っている。か覧
る等速ジヨイントにおいて、前記アウタレース2および
インナレース4はポール(転動体)6から高荷重を繰返
し受けることとなり、その寿命は、主として軌道面(接
触面)に発生するピッチングやフレーキング等の疲労破
壊によって決まるようになる。このため、従来一般には
、各レース2,4の、少なくともポール6との接触部に
浸炭焼入れ、高周波焼入れ等の表面硬化処理を施し、表
面硬さおよび圧縮残留応力を高めて、耐疲労性を向上さ
せる対策が広〈実施されていた。しかしながら、これら
の対策によれば、得られる表面硬さおよび圧縮残留応力
には一定の限界があり、思うように疲労寿命が延長しな
いという問題があった。
(Prior Art) For example, a Barfield type constant velocity joint, which is one of the constant velocity joints for a vehicle, has an outer race 2 attached to one end of one rotating shaft 1, as shown in FIG. The inner race 4 attached to one end of the other rotating shaft 3 and the raceway grooves 2a of both races 2.4 held by the cage 5
, 4a, and is separated from the rolling pole 6. In a visible constant velocity joint, the outer race 2 and inner race 4 are repeatedly subjected to high loads from the poles (rolling elements) 6, and their lifespan is mainly limited by pitting, flaking, etc. that occur on the raceway surface (contact surface). It is determined by the fatigue failure of For this reason, conventionally, at least the contact portion of each race 2, 4 with the pole 6 is subjected to surface hardening treatment such as carburizing and quenching, induction hardening, etc. to increase surface hardness and compressive residual stress, thereby improving fatigue resistance. Measures to improve the situation were widely implemented. However, according to these measures, there is a certain limit to the surface hardness and compressive residual stress that can be obtained, and there is a problem that the fatigue life cannot be extended as expected.

そこで、特開平1−182825号公報には、浸炭焼入
れをした後、さらに高硬さショツト粒によりショットピ
ーニングを施すことの有用性が報告されている。この対
策によれば、単に浸炭焼入れをしあるいは高周波焼入れ
をする対策に比して表面硬さおよび圧縮残留応力が増大
し、疲労寿命が延長するようになる。
Therefore, JP-A-1-182825 reports the usefulness of performing shot peening using high hardness shot grains after carburizing and quenching. According to this measure, the surface hardness and compressive residual stress are increased, and the fatigue life is extended, compared to the measures of simply carburizing and quenching or induction hardening.

(発明が解決しようとする課題) しかしながら、最近、車両のエンジンは益々高出力、高
回転化の傾向にあるため、上記した等速ジヨイントにか
かる負荷も増大するようになり、上記浸炭焼入れとショ
ットピーニングとを組合わせる対策によってもなお、充
分なる疲労寿命を確保するのが困難であるという問題が
あった。
(Problem to be Solved by the Invention) However, recently, vehicle engines tend to have higher output and higher rotation speed, so the load on the above-mentioned constant velocity joint has also increased, and the above-mentioned carburizing and quenching and shot Even with the measures taken in combination with peening, there was still a problem in that it was difficult to ensure a sufficient fatigue life.

本発明は、上記従来の問題を解決することを課題として
なされたもので、その目的とするところは、従来にも増
して疲労寿命が延長する軸受部品を提供することにある
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to provide a bearing component that has a longer fatigue life than ever before.

(課題を解決するための手段) 上記目的を遠戚するため、本発明は、少なくとも転動体
との接触部に表面硬化処理層を設け、かつ該表面硬化処
理層の圧縮残留応力分布のピーク深さを、前記転動体と
接触した際に発生するせん順応力分布のピーク深さとほ
ゞ一致させるように構成したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a surface hardening layer at least in the contact portion with the rolling element, and the peak depth of the compressive residual stress distribution of the surface hardening layer. It is characterized in that the depth is configured to substantially match the peak depth of the shear accommodation force distribution generated when the rolling element comes into contact with the rolling element.

一般に、転動体と軸受部品との接触を考えた場合、軸受
部品に発生するせん順応力分布は、ヘルツの接触圧力の
理論により、第1図に示すように、転動体11に接触す
る軸受部品12の接触面13から所定距離Zoだけ内部
に入った領域にピーク応力値τ0を有する状態となる(
荷重Pのもと)、シたがって、軸受部品12の疲労寿命
の延長策としても、前記せん順応力分布のピーク深さZ
o領領域優先的に強化しなければ、その効果を最大限に
発揮させることができないようになる6本発明は、この
点に着目してなされたもので、少なくとも転動体11と
の接触面13を含む表層部に表面硬化処理層を設け、こ
の表面硬化処理層の圧縮残留応力分布のピーク深さを、
前記せん順応力分布のピーク深さZoとはf一致させる
ようにしたのである。この場合、前記せん順応力分布の
ピーク深さZoは、転動体11と軸受部品12との接触
荷重P、接触楕円の大きさ、ヤング率等によって異なる
ので、予め設計条件を勘案してこのピーク深さZaを推
定し、これに合せて表面硬化処理層の内質を変化させる
ようにする。
Generally, when considering the contact between rolling elements and bearing parts, the distribution of shear force generated in the bearing parts is determined by the Hertzian contact pressure theory, as shown in FIG. A state where the peak stress value τ0 is reached in a region that is a predetermined distance Zo from the contact surface 13 of 12 (
Therefore, as a measure to extend the fatigue life of the bearing component 12, the peak depth Z of the shear adaptation force distribution
If the o area is not strengthened preferentially, the effect cannot be maximized.6 The present invention has been made with attention to this point, and at least the contact surface 13 with the rolling element 11 is strengthened. A surface hardening layer is provided on the surface layer including
The peak depth Zo of the shear adaptation force distribution is made to coincide with f. In this case, the peak depth Zo of the shear adaptation force distribution varies depending on the contact load P between the rolling elements 11 and the bearing component 12, the size of the contact ellipse, Young's modulus, etc. The depth Za is estimated and the internal quality of the surface hardened layer is changed accordingly.

本発明は、上記表面硬化処理層を設けるための方法を特
定するものでないが1周知の浸炭焼入れや高周波焼入れ
によって上記表層部の硬さと圧縮残留応力とを高め、そ
の上で、シii −/ トピーニングあるいはローラ加
工を付加して、その表面硬化層の圧縮残留応力分布のピ
ーク深さを、前記せん順応力分布のピーク深さZoとほ
ぐ一致させる方法を用いることができる。なお、ショッ
トピーニングを行う場合は、ショットの硬さや粒径、あ
るいはその投射速度などを変えることで圧縮残留応力分
布のピーク深さZOを変更できるが、実験によれば、シ
ョットの粒径と圧縮残留応力分布のピーク深さZoとの
間には良い相関があるので、シ璽ットの粒径を変えて圧
縮残留応力分布のピーク深さZoを制御するのが望まし
い、また疲れ強さに対しては仕上げ面の粗さも影響する
ので、前記ショットピーニング後、転動体と接触する軸
受部品12の接触面13をラッピングにより仕上げ、表
面粗さを可及的に細かくすることが望ましい。
Although the present invention does not specify a method for providing the surface hardening layer, the hardness and compressive residual stress of the surface layer are increased by well-known carburizing and quenching or induction hardening, and then A method can be used in which topeening or roller processing is added to loosen the peak depth of the compressive residual stress distribution of the hardened surface layer to match the peak depth Zo of the shear conforming force distribution. When performing shot peening, the peak depth ZO of the compressive residual stress distribution can be changed by changing the hardness and particle size of the shot, or its projection speed, but according to experiments, the peak depth ZO of the compressive residual stress distribution Since there is a good correlation between the peak depth Zo of the residual stress distribution, it is desirable to control the peak depth Zo of the compressive residual stress distribution by changing the grain size of the sheet. Since the roughness of the finished surface also affects the shot peening, it is desirable to finish the contact surface 13 of the bearing component 12 that contacts the rolling elements by lapping to make the surface roughness as fine as possible.

(作用) 上記のように構成した軸受部品においては、表面硬化処
理層の圧縮残留応力分布のピーク深さを、転動体と接触
した際に発生するせん断応力のピーク深さとほゞ一致さ
せるようにしたので、疲労破壊が発生し易い領域の疲れ
強さが可及的に高められる。
(Function) In the bearing component configured as described above, the peak depth of the compressive residual stress distribution of the surface hardening treatment layer is made to almost match the peak depth of the shear stress generated when it comes into contact with the rolling elements. Therefore, the fatigue strength in areas where fatigue fracture is likely to occur can be increased as much as possible.

(実施例) 以下、本発明の実施例を添付図面にもとづいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は、本発明にか\る軸受部品12を示したもので
、その表層部には浸炭焼入層14とショットピーニング
硬化層15とが複合形成され、またその転動体11どの
接触面13はラッピング仕上げ肌とされている。浸炭焼
入層14は、はぐ製品形状に機械加工した加工品を浸炭
焼入れして形威されたもので、その深さは1Ill16
程度とされている。一方、ショットピーニング硬化層1
5は、前記浸炭焼入層14上に高硬さのショットを投射
することによって形威されたもので、その深さは約0.
3m鵬とされている。しかして、このショットピーニン
グ硬化層15は、後に詳述するように、軸受部品12の
接触面13に転動体11が接触した際に発生するせん順
応力分布Sと相似形の圧縮残留応力分布を有するように
、その内質が調整されている。このようにショットピー
ニング硬化層15の圧縮残留応力分布を調整したことに
より、該圧縮残留応力分布のピーク深さは、せん順応力
分布のピーク深さZOとは〈−致するようになり、この
結果、疲労破壊が発生し易い領域の疲れ強さが可及的に
高められ、ピッチングやフレーキング等の疲労破壊に対
する抵抗力が著しく増大するようになる。
FIG. 1 shows a bearing component 12 according to the present invention, in which a carburized hardened layer 14 and a shot peened hardened layer 15 are formed in a composite manner on the surface layer, and which contact surfaces of the rolling elements 11 are formed. 13 is considered to be the wrapping finished skin. The carburized and quenched layer 14 is formed by carburizing and quenching a machined product into the shape of a peelable product, and its depth is 1Ill16.
It is said that the degree of On the other hand, shot peening hardened layer 1
No. 5 is formed by projecting a highly hard shot onto the carburized and quenched layer 14, and its depth is approximately 0.5 mm.
It is said to be 3m long. As described in detail later, this shot peening hardened layer 15 has a compressive residual stress distribution similar to the shear force distribution S that occurs when the rolling elements 11 come into contact with the contact surface 13 of the bearing component 12. Its inner quality has been adjusted so that it has. By adjusting the compressive residual stress distribution of the shot peening hardened layer 15 in this way, the peak depth of the compressive residual stress distribution becomes equal to the peak depth ZO of the shear conforming force distribution, and this As a result, the fatigue strength in areas where fatigue fractures are likely to occur is increased as much as possible, and the resistance to fatigue fractures such as pitting and flaking is significantly increased.

以下、本発明の実施例をより具体的に説明する。Examples of the present invention will be described in more detail below.

実施例1 疲労寿命試験として、第5.6図に示す20一ラ式転勤
疲労試験を行うことを前提とし、JIS 90M420
素材から直径Bowmの円板状試料16を作製し、先ず
これに浸炭焼入れ処理を施してその外周部に約1mm深
さの浸炭焼入層を形威し、次にその外周面を砥石研摩し
、その後、該外周面に対して、硬さ約Hマフ501粒径
約0.8■のショットを用いて、エア圧?kg、ノズル
径8■。
Example 1 As a fatigue life test, it is assumed that the 20-1 type transfer fatigue test shown in Fig. 5.6 will be conducted, and JIS 90M420
A disk-shaped sample 16 with a diameter Bowm was prepared from the material, and first, it was carburized and quenched to form a carburized and quenched layer with a depth of about 1 mm on its outer periphery, and then its outer periphery was polished with a whetstone. Then, a shot with a hardness of about H Muff 501 and a grain size of about 0.8 cm was applied to the outer peripheral surface using air pressure. kg, nozzle diameter 8■.

投射時間10分の条件でショットピーニングを行い、最
終、ラッピングを行って外周面の表面粗さを0,1ル鵬
Rzに仕上げ、これを実施例試料Al として後述する
、残留応力測定試験、硬さ試験および疲労寿命試験に供
した。
Shot peening was performed under the conditions of 10 minutes of projection time, and finally, lapping was performed to finish the surface roughness of the outer peripheral surface to 0.1 Rz. It was subjected to a fatigue life test and a fatigue life test.

実施例2 ショットピーニングにおけるショットとして粒径1.2
mmのものを選択した以外は実施例1と同様の手順で実
施例試料A2を完成し、これを同じく残留応力測定試験
、硬さ試験および疲労寿命試験に供した。
Example 2 Particle size 1.2 as shot in shot peening
Example sample A2 was completed in the same manner as in Example 1 except that a sample having a diameter of mm was selected, and was similarly subjected to a residual stress measurement test, a hardness test, and a fatigue life test.

実施例3 ショットピーニングにおけるショットとして粒径1.8
mmのものを選択した以外は実施例1と同様の手順で実
施例試fI4A 2を完威し、これを同じく残留応力測
定試験、硬さ試験および疲労寿命試験に供した。
Example 3 Particle size 1.8 as shot in shot peening
Example sample fI4A 2 was tested in the same manner as in Example 1 except that a sample of mm was selected, and it was also subjected to a residual stress measurement test, a hardness test, and a fatigue life test.

比較例I JIS 5CN420素材から直径Hasの円板状試料
16(第5.6図)を作製し、先ずこれに実施例1と同
様の浸炭焼入れ処理を施してその外周部に約1mm深さ
の浸炭焼入層を形成し、次にその外周面を砥石研摩し、
最終、ラッピングを行って外周面の表面粗さを0.1 
JLmRzに仕上げ、これを比較試料B1として、後述
する残留応力測定試験、硬さ試験および疲労寿命試験に
供した。
Comparative Example I A disk-shaped sample 16 (Fig. 5.6) with a diameter Has was prepared from a JIS 5CN420 material, and first, it was subjected to the same carburizing and quenching treatment as in Example 1, and a depth of approximately 1 mm was formed on the outer periphery. A carburized and quenched layer is formed, and then its outer peripheral surface is polished with a whetstone.
Finally, lapping is performed to reduce the surface roughness of the outer peripheral surface to 0.1
JLmRz was finished, and this was used as comparative sample B1 and subjected to a residual stress measurement test, a hardness test, and a fatigue life test, which will be described later.

比較例2 ショットピーニングにおけるショットとして粒径0.3
■のものを選択した以外は実施例1と同様の手順で比較
試料B2を完成し、これを同じく残留応力測定試験、硬
さ試験および疲労寿命試験に供した。
Comparative Example 2 Particle size 0.3 as shot in shot peening
Comparative sample B2 was completed in the same manner as in Example 1, except that sample (2) was selected, and was similarly subjected to a residual stress measurement test, a hardness test, and a fatigue life test.

試験結果 第2図は、残留応力の測定結果を示したものである。こ
れより、ショットピーニングを行わない比較試料B1で
はごくわずかの圧縮残留応力が得られるだけなのに対し
、ショットピーニングを行った実施例試料Al−A3お
よび比較試料B2では、きわめて大きな圧縮残留応力が
得られ、ショットピーニングが圧縮残留応力の増大にき
わめて有効に作用することが明らかである。またショッ
トピーニングを行ったものでは、表面かられずか内部に
入った部位に圧縮残留応力分布のピークが認められるが
、そのピーク深さは、粒径の大きなショットを用いたも
のほど内部側へ移行している(Bl <Al <A2<
A3 ) 、第3図は、この圧縮残留応力分布のピーク
深さ第0をシッットの粒径dで整理したもので、両者の
間に密接な相関が認められ、これより、圧縮残留応力分
布のピーク深さ第0を変更するにはショットの粒径dを
変えれば良いことが分かる。
Test Results Figure 2 shows the measurement results of residual stress. From this, comparative sample B1, which was not subjected to shot peening, obtained only a small amount of compressive residual stress, whereas example sample Al-A3 and comparative sample B2, which were subjected to shot peening, obtained very large compressive residual stress. It is clear that shot peening has a very effective effect on increasing compressive residual stress. In addition, in shot peened products, a peak of the compressive residual stress distribution is observed at the part that penetrates from the surface to the inside, but the depth of the peak shifts to the inside as the shot with a larger particle size is used. (Bl <Al <A2<
A3), Figure 3 shows the peak depth 0 of this compressive residual stress distribution arranged by the Sitt particle size d, and a close correlation is recognized between the two, and from this, it can be seen that the compressive residual stress distribution It can be seen that the peak depth 0th can be changed by changing the grain size d of the shot.

第4図は、硬さ試験の結果を示したものである。これよ
り、表層部の硬さは、ショットピーニングを行わない比
較試料B、に比して、ショットピーニングを行った実施
例試料At 〜A3および比較試料B2は、何れも表層
部の硬さが大きく、ショットピーニングが表層部の硬さ
の増大ににきわめて有効に作用することが明らかである
。また各試料の硬さ分布のピーク深さは、上記圧縮残留
応力分布(第2図)のピーク深さにはf対応し、ショッ
トとして大きな粒径を選択したものほど、内部側へ移行
している。
FIG. 4 shows the results of the hardness test. From this, it can be seen that the hardness of the surface layer of the example samples At to A3 and comparative sample B2, which were subjected to shot peening, is greater than that of comparative sample B, which was not subjected to shot peening. It is clear that shot peening is extremely effective in increasing the hardness of the surface layer. In addition, the peak depth of the hardness distribution of each sample corresponds to the peak depth of the compressive residual stress distribution (Fig. 2) mentioned above, and the larger the grain size selected as shot, the more it migrates to the inside. There is.

疲労寿命試験は、第5.6図に示すように、各試料16
に対して同径(Eihm)の駆動ローラ17を所定の荷
重で押付け1両者の間に潤滑油を供給しつ\回転させる
、いわゆる20一ラ式転動疲労試験により行い、累積破
損率(%)を求めた。こへで、試験条件は、回転数30
0Orpm、面圧44Bkg/12.滑り率O%とし、
また潤滑油としてマシン油#lOを用いた。この試験条
件により試料16に発生するせん断応力分布は、第7図
に示すようになり、そのピーク深さZoは0.0831
1mとなっている。
The fatigue life test was conducted on each sample 16 as shown in Figure 5.6.
A driving roller 17 of the same diameter (Eihm) is pressed under a predetermined load and rotated while supplying lubricating oil between the two rollers. ) was sought. Here, the test conditions are 30 rotations.
0Orpm, surface pressure 44Bkg/12. The slip rate is 0%,
Further, machine oil #1O was used as a lubricating oil. The shear stress distribution generated in sample 16 under these test conditions is as shown in FIG. 7, and the peak depth Zo is 0.0831.
It is 1m.

第8図は、上記条件で行った疲労寿命試験の結果を示し
たものである。これより、ショットピーニングを行わな
い比較試料B1に比し、ショットピーニングを行った実
施例試料A、〜A3および比較試料B2の疲労寿命が延
長し、ショットピーニングが疲労寿命の延長に有効であ
ることが明らかである。またショットピーニングを行っ
たものでは、比較試料B2に比して実施例試料A、−A
3の方が、伺れも疲労寿命が延長し、中でも実施例試I
4A 2のそれが最も延長している。これら比較試料B
2および実施例試料A、−A3の違いは、ショットの粒
径の違いすなわち圧縮残留応力のピーク深さδ0(第3
図)の違いであり、上記した結果は、この圧縮残留応力
のピーク深さδ0が前記したせん順応力のピーク深さZ
 o  (0,083mm )に近いものほど(BI<
AI <A3 <A2 )疲労寿命が延長することを表
わしている。
FIG. 8 shows the results of a fatigue life test conducted under the above conditions. From this, the fatigue life of Example Samples A, ~A3, and Comparative Sample B2, which were subjected to shot peening, was extended compared to Comparative Sample B1, which was not subjected to shot peening, indicating that shot peening is effective in extending fatigue life. is clear. In addition, in those subjected to shot peening, Example samples A and -A were compared to Comparative sample B2.
3 has a longer fatigue life, especially example test I.
That of 4A2 is the longest. These comparative samples B
2 and Example Samples A and -A3 are the difference in shot particle size, that is, the peak depth δ0 of compressive residual stress (third
), and the above result is that the peak depth δ0 of this compressive residual stress is the same as the peak depth Z of the shear accommodation force mentioned above.
o (0,083mm), the closer (BI<
AI < A3 < A2 ) This indicates that the fatigue life is extended.

(発明の効果) 以上、詳細に説明したように、本発明にか\る軸受部品
によれば、表面硬化処理層の圧縮残留応力分布のピーク
深さを、転動体と接触した際に発生するせん順応力のピ
ーク深さとはX −致させるようにしたので、疲労破壊
が発生し易い領域の疲れ強さが可及的に高められ、疲労
寿命が大幅に向上する効果が得られる。
(Effects of the Invention) As described above in detail, according to the bearing component according to the present invention, the peak depth of the compressive residual stress distribution of the surface hardened layer is adjusted to the depth that occurs when it comes into contact with the rolling elements. Since the peak depth of the shear accommodation force is made to coincide with X -, the fatigue strength in the area where fatigue fracture is likely to occur is increased as much as possible, and the effect of significantly improving the fatigue life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にか\る軸受部品の表層部の状態を模
式的に示す断面図、第2図は、本軸受部品の表層部の残
留応力分布を比較例と対比して示すグラフ、第3図は、
第2図に現われる圧縮残留応力のピーク深さをショツト
粒径で整理して示すグラフ、第4図は、本軸受部品の表
層部の硬さ分布を比較例と対比して示すグラフ、第5図
と第6図は、疲労寿命試験の方法を示す模式図、第7図
は、疲労寿命試験におけるせん断応力分布を示すグラフ
、第8図は、本軸受部品の疲労寿命を比較例と対比して
示すグラフ、第9図は、軸受部品の等速ジヨイントへの
適用例を示す断面図である。 11  ・・・ 転動体 12  ・・・ 軸受部品 13  ・・・ 接触面 14  ・・・ 浸炭焼入層 15  ・・・ ショットピーニング硬化層(ほか2名
) 第1 図 箪 図 表面かじの距離(mm) 第 図 表面力)りの距禽屹(mm) 第 図 第4 図 表面からのえII(mm) 第8 図 第9 図
FIG. 1 is a cross-sectional view schematically showing the state of the surface layer of the bearing component according to the present invention, and FIG. 2 is a graph showing the residual stress distribution of the surface layer of the present bearing component in comparison with a comparative example. , Figure 3 is
Figure 2 is a graph showing the peak depth of compressive residual stress organized by shot particle size; Figure 4 is a graph showing the hardness distribution of the surface layer of this bearing component in comparison with a comparative example; Figure 6 and Figure 6 are schematic diagrams showing the fatigue life test method, Figure 7 is a graph showing the shear stress distribution in the fatigue life test, and Figure 8 is a comparison of the fatigue life of this bearing component with a comparative example. The graph shown in FIG. 9 is a sectional view showing an example of application of a bearing component to a constant velocity joint. 11... Rolling element 12... Bearing parts 13... Contact surface 14... Carburized and hardened layer 15... Shot peened hardened layer (and 2 others) Figure 1 Distance of surface rudder (mm) ) Fig. Surface force) (mm) Fig. 4 Fig. 4 Depth from the surface (mm) Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも転動体との接触部に表面硬化処理層を
設け、かつ該表面硬化処理層の圧縮残留応力分布のピー
ク深さを、前記転動体と接触した際に発生するせん断応
力分布のピーク深さとほゞ一致させたことを特徴とする
軸受部品。
(1) A surface-hardened layer is provided at least in the contact portion with the rolling element, and the peak depth of the compressive residual stress distribution of the surface-hardened layer is the peak depth of the shear stress distribution that occurs when it comes into contact with the rolling element. A bearing part characterized by having substantially the same depth.
JP1339199A 1989-12-27 1989-12-27 Bearing part Pending JPH03199716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339199A JPH03199716A (en) 1989-12-27 1989-12-27 Bearing part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339199A JPH03199716A (en) 1989-12-27 1989-12-27 Bearing part

Publications (1)

Publication Number Publication Date
JPH03199716A true JPH03199716A (en) 1991-08-30

Family

ID=18325180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339199A Pending JPH03199716A (en) 1989-12-27 1989-12-27 Bearing part

Country Status (1)

Country Link
JP (1) JPH03199716A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571454U (en) * 1992-02-28 1993-09-28 エヌティエヌ株式会社 Constant velocity universal joint
DE4311507A1 (en) * 1992-04-07 1994-01-13 Nsk Ltd Rolling / sliding part
US5520987A (en) * 1993-07-23 1996-05-28 Nsk, Ltd. Rolling/sliding member
US5611250A (en) * 1992-07-23 1997-03-18 Nsk, Ltd. Rolling/sliding part
US5735769A (en) * 1994-04-18 1998-04-07 Nsk Ltd. Toroidal type continuously variable transmission parts having increased life
WO2000060254A1 (en) * 1999-04-06 2000-10-12 Nsk Ltd. Power roller bearing of toroidal type continuously variable transmission
WO2006013696A1 (en) 2004-08-02 2006-02-09 Ntn Corporation Rolling bearing for rocker arm
JP2009019670A (en) * 2007-07-11 2009-01-29 Nsk Ltd Rolling bearing
US7685717B2 (en) 2002-05-14 2010-03-30 Jtekt Corporation Method for manufacturing a bearing raceway member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571454U (en) * 1992-02-28 1993-09-28 エヌティエヌ株式会社 Constant velocity universal joint
DE4311507A1 (en) * 1992-04-07 1994-01-13 Nsk Ltd Rolling / sliding part
DE4311507C2 (en) * 1992-04-07 1997-12-18 Nsk Ltd Rolling / sliding part and cam follower device for engines
US5611250A (en) * 1992-07-23 1997-03-18 Nsk, Ltd. Rolling/sliding part
US5520987A (en) * 1993-07-23 1996-05-28 Nsk, Ltd. Rolling/sliding member
US5735769A (en) * 1994-04-18 1998-04-07 Nsk Ltd. Toroidal type continuously variable transmission parts having increased life
WO2000060254A1 (en) * 1999-04-06 2000-10-12 Nsk Ltd. Power roller bearing of toroidal type continuously variable transmission
US6905437B2 (en) 1999-04-06 2005-06-14 Nsk, Ltd. Power roller bearing of toroidal-type continuously variable transmission unit
US7685717B2 (en) 2002-05-14 2010-03-30 Jtekt Corporation Method for manufacturing a bearing raceway member
WO2006013696A1 (en) 2004-08-02 2006-02-09 Ntn Corporation Rolling bearing for rocker arm
US7614374B2 (en) 2004-08-02 2009-11-10 Ntn Corporation Rolling bearing for rocker arm
EP2159437A2 (en) 2004-08-02 2010-03-03 Ntn Corporation Rolling bearing for rocker arm
EP2345822A2 (en) 2004-08-02 2011-07-20 NTN Corporation Rolling bearing for rocker arm
JP2009019670A (en) * 2007-07-11 2009-01-29 Nsk Ltd Rolling bearing

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
JPH03199716A (en) Bearing part
JP3656372B2 (en) Rolling bearing
JPH09257041A (en) Rolling bearing resistant for surface flaw
EP1138795B1 (en) Law material for bearing parts
JPH08303470A (en) Rolling bearing
JP4217818B2 (en) Rolling bearing, and rolling ring bearing ring and rolling element manufacturing method
JP3752577B2 (en) Manufacturing method of machine parts
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2002194438A (en) Rolling bearing
JPH04333521A (en) Production of bearing ring
JPH0559169B2 (en)
JP2003329048A (en) Manufacturing method for bearing raceway member
JPH02168022A (en) Bearing parts
JP2003183771A (en) Rolling bearing
JP2004011737A (en) Self-aligning roller bearing
JP2000234658A (en) Power roller for toroidal continuously variable transmission and manufacture therefor
JP2003307223A (en) Rolling bearing and method of manufacture
JPH04191327A (en) Manufacture of cast crank shaft
WO2001011252A1 (en) Rolling bearing
JPH01182625A (en) Part of equal velocity joint for vehicle
JPS6170220A (en) Roller bearing used in grease lubrication
JPH0198711A (en) Cemented bearing body and manufacture thereof
JPH025817B2 (en)
JP2021089067A (en) Thrust roller bearing