JP2004011737A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2004011737A
JP2004011737A JP2002165379A JP2002165379A JP2004011737A JP 2004011737 A JP2004011737 A JP 2004011737A JP 2002165379 A JP2002165379 A JP 2002165379A JP 2002165379 A JP2002165379 A JP 2002165379A JP 2004011737 A JP2004011737 A JP 2004011737A
Authority
JP
Japan
Prior art keywords
inner ring
self
roller bearing
aligning roller
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002165379A
Other languages
Japanese (ja)
Inventor
Masatake Uragami
浦上 正剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002165379A priority Critical patent/JP2004011737A/en
Publication of JP2004011737A publication Critical patent/JP2004011737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors

Abstract

<P>PROBLEM TO BE SOLVED: To prevent cracking of an inner ring even in an operation environment of a wind power generator or the like in which a high engagement stress is loaded, and in which oil film is not sufficiently formed in low speed rotation, and attain a long life. <P>SOLUTION: In this self-aligning roller bearing 30, a plurality of rollers 33 are disposed between the inner ring 31 and an outer ring 32 to be capable of rolling in a circumferential direction. For the inner ring 31, carbonitriding treatment is applied to material comprising C 0.9wt%-1.3wt%, and Si 0.1wt%-1.5wt% at a core part, and shot-peening treatment is then added, so that maximum residual stress of a finished race ring is -700 to -1,200MPa. Residual austenite quantity γ<SB>R</SB>on the surface of a carbonitrided layer by the carbonitriding treatment is set to be 5-15%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内輪と外輪との間に複数のころが周方向に転動可能に配設された自動調心ころ軸受に関し、特に風力発電機用軸受などの高負荷、高剛性が要求される軸受に好適な自動調心ころ軸受に関する。
【0002】
【従来の技術】
風力発電機では、通常、自動調心ころ軸受、円すいころ軸受、円筒ころ軸受などのころ軸受が使用されている。これはころ軸受が玉軸受に比して負荷容量が高く剛性が大であり、且つすべり軸受に比して焼付きに対する信頼性が高く長寿命という特徴を有するからである。また、風力発電機に用いられるころ軸受は、軸と内輪との間で生じるクリープを防止するために、内輪に100MPaを超える高い嵌め合い応力を付与して使用される。
【0003】
ところで、自動調心ころ軸受の材料としては、一般に、高炭素クロム軸受鋼(C:約1重量%、Cr:約1.5重量%含有)のような完全硬化鋼に焼入れ、焼戻し処理を行ったものが使用されているが、この完全硬化鋼からなる内輪に100MPaを超える嵌め合い応力を与えて軸受を使用すると、嵌め合い応力と転がり応力との組み合わせにより、軌道面近くに介在している非金属介在物などを起点として内輪が軸方向に割損する場合があった。
【0004】
このような内輪の割損を防止するために、従来においては、軌道面の圧縮残留応力や材料自体の破壊靭性を高めることが有効という一般的知識により、完全硬化鋼にオーステンパー処理を行うか、或いは浸炭鋼を用いることにより、軌道面の圧縮残留応力を高めることが行われてきた。
【0005】
【発明が解決しようとする課題】
しかしながら、完全硬化鋼にオーステンパー処理を行う方法では、オーステンパー処理により軌道面に付与できる圧縮残留応力は−100MPa前後であるため、使用条件として130MPaを超えるようなより高い嵌め合い応力下で使用する場合には、内輪の割損を防止することができない。
【0006】
一方、浸炭鋼を用いる方法では、浸炭、焼入れ、および焼戻しの条件を制御することにより、軌道面に−200MPa程度の圧縮残留応力を付与することができるため、130MPaを超える嵌め合い応力下で使用される内輪の割損防止にも有効である。
しかしながら、自動調心ころ軸受に関しては、円すいころ軸受や円筒ころ軸受のような線接触とは異なり、大きな接触楕円を持つ点接触となるため差動すべりが生じる。また、風力発電機用転がり軸受は数10min−1といった低速回転で、十分な油膜が形成されず、前記差動すべりとの相乗で大きな接線力、即ち、引張応力が加わるため、自動調心ころ軸受においては、浸炭鋼を用いた場合にもその耐摩耗特性を十分に発揮することが難しい。
【0007】
従って、自動調心ころ軸受においては、上記材料や熱処理では軸受損傷などが発生し、寿命が短縮される虞れがあり、その結果、軸受交換などの頻度、例えば、風力発電機のメンテンナンス頻度やメンテナンスコストが高くなる。
本発明はこのような不都合を解消するためになされたものであり、内輪の割損を防止して寿命の向上を図ることができる自動調心ころ軸受を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、内輪と外輪との間に複数のころが周方向に転動可能に配設された自動調心ころ軸受において、内輪として、心部のC濃度が0.9重量%〜1.3重量%、Si濃度が0.1重量%〜1.5重量%である素材に浸炭窒化処理を施してからショットピーニング処理を施すことにより、完成品軌道輪の最大圧縮残留応力が−700〜−1200MPaとされたものを用い、且つ前記浸炭窒化処理による浸炭窒化層の表面の残留オーステナイト量γが5〜15%であることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である自動調心ころ軸受の要部断面図、図2はショットピーニング装置の概略図である。
この自動調心ころ軸受30は、図1に示すように、内輪31の2列の軌道溝31a,31bと外輪32の軌道面32aとの間に二列のころ33が保持器34を介して周方向に転動可能に介装されている。
【0010】
ここで、この実施の形態では、内輪31として、心部のC濃度が0.9重量%〜1.3重量%、Si濃度が0.1重量%〜1.5重量%である素材に浸炭窒化処理を施した後、ショットピーニング処理を施すことにより、完成品軌道輪の最大圧縮残留応力が−700〜−1200MPaとされたものを用い、且つ前記浸炭窒化処理による浸炭窒化層の表面の残留オーステナイト量γを5〜15%の範囲としている。これにより、高い嵌め合い応力が負荷され、低速回転などで油膜の形成が不十分な風力発電機等のような運転環境においても内輪の割損が防止されてより長寿命とすることができ、その結果、軸受交換などの頻度、即ち、風力発電機のメンテンナンス頻度やメンテナンスコストを大幅に下げることができる。
【0011】
図2は内輪素材の浸炭窒化後にショットピーニング処理を施す直圧式ノズル型ショットピーニング装置を示したものである。
この装置は、ショット粒1が充填された加圧タンク2と、この加圧タンク2に加圧空気を供給する加圧空気供給管3と、加圧タンク2内に供給された空気を排気する排気管4と、加圧タンク2の下部に配設され、加圧空気供給管3の分岐管5からの圧縮空気とショット粒1とを混合するミキサ6と、ショット7を先端のノズル8から被処理物表面に投射するホース9と、加圧タンク2内にシャッタ10を介してショット粒1を供給するホッパ11と、分岐管5の途中に設けられ、ショット粒1の投射速度を調節する空気圧を調整可能なバルブ12とを備えている。
【0012】
本実施形態では、ショット粒1として、平均粒径0.72mm、平均硬さHRC61の鋼球を使用し、ショット投射速度が32〜120m/sec(平均投射速度80m/sec)となるようにショットピーニング処理を行った。ショットピーニング加工は、表面硬さ及び圧縮残留応力を被加工物に付与するために長時間の熱処理等を必要としないため、熱処理生産性が低下することがない。なお、このショットピーニングの際、バルブ12の開度を調整して空気圧を変更することにより、完成品軌道輪の圧縮残留応力を調整することができる。
【0013】
次に、本発明における各数値限定の臨界的意義について説明する。
前述の差動滑りにより表面に存在する介在物を起点とした剥離が誘発する。従って、表面起点の剥離を抑制するには、浸炭窒化処理し表面を強化すると同時に素材の高清浄度化が必要であるため、C濃度が0.9重量%以上の高炭素鋼を選定する。
【0014】
ここで、浸炭窒化処理を施す高炭素鋼においては、浸炭窒化後の素材の各主成分特性と表面のC濃度、表面のN濃度を無視することは出来ないため、下記に示す範囲に適合させることが望ましい。
(素材のC濃度)
軸受に必要とされる硬さと炭化物を得るための元素であり、寿命に必要十分な硬さと炭化物の面積率、本発明に好適な清浄度を得るためには素材のC濃度は0.9重量%以上は必要である。また、C濃度が1.3重量%を超えて含有された場合、凝固時に大型の炭化物が生成し、転動疲労寿命を著しく低下させるため上限を1.3重量%とする。
(浸炭窒化処理後の完成品軌道輪表面のC濃度について)
浸炭窒化処理を実施し、表面C濃度を1.1重量%以上2.0重量%以下とする。表面C濃度を1.1重量%以上としたのは、製品に必要な転がり疲れ強さを得るためであり、且つ所要の炭化物を形成させるためである。一方、表面C濃度が2.0重量%を超えるとセメンタイト系炭化物が粗大化して、それらが起点となり製品軸受の転がり疲労特性及び割れ強度を劣化させるため上限を2.0重量%とした。
(浸炭窒化処理後の完成品軌道輪表面のN濃度について)
浸炭窒化処理を実施し、表面N濃度を0.1重量%以上0.7重量%以下とする。完成品軌道輪の表面層のN量が0.1重量%未満であると、Nの固溶不足により十分な表面硬さと残留オーステナイト量γが得られず、寿命が向上しない。また、窒素量を増加していくと、窒化物が析出し耐摩耗性が向上するが、表面N濃度が0.7重量%以上となると研磨加工が困難になり、生産性の低下を招くため上限を0.7重量%とした。。
(Siについて)
Siは製鋼時の脱酸剤として0.1重量%以上必要であり、さらに焼戻し軟化抵抗性を高めるが、多量に添加すると、靭性を低下させ、また、浸炭窒化時にその浸透深さが急激に減少することとなるので、上限を1.5重量%とした。
(圧縮残留応力について)
内輪については、嵌め合い応力と低速回転時に生じる油膜不足と差動すべりとの相乗による過大な引張応力が生じた場合にクラックの発生、進展を防止する効果を与えるため、ショットピーニング処理を実施して−700MPa以上の最大圧縮残留応力を与える必要がある。しかしながら、最大圧縮残留応力が−1200MPaを超えるような加工を施した場合、表層部、特に表面近傍にマイクロクラックと称する微視亀裂が著しく深くなり、後の研磨工程がコストアップとなると共に−1200MPaにて十分な転がり寿命を有することを確認したため、上限を−1200MPaとした。
(残留オーステナイト量γについて)
上記圧縮残留応力の付与のみでは亀裂の発生・進展を抑えきれず、残留オーステナイト量γの併存により靭性を確保して亀裂の発生・進展を遅らせる必要がある。この際、5%未満の場合はクラック発生防止の効果をあまり期待出来ず、また、15%より多くなると必要な表面硬さを得ることが出来なくなる為、上限を15%とした。
【0015】
【実施例】
次に、軸受の疲労寿命試験について説明する。
まず、図1と同一構造で、内径φ55mm、外径φ100mm、組立幅25mm、基本動定格荷重C=119kN、基本静定格荷重C0=144kNの自動調心ころ軸受を、内輪については、表1に示す実施例1及び実施例2(本発明例)、比較例1〜比較例6を用い、それぞれ10個作成した。
【0016】
また、浸炭窒化処理(Rxガス+アンモニアガス+エンリッチガスの雰囲気で950〜960°Cで30〜200時間)を施したものは処理後の焼入れ(820〜840°Cで1時間)・焼戻し(160〜180°Cで2時間)処理により有効硬化深さ(ビッカース硬さHv550以上の表面層厚さ)を1.5mmとしてある。外輪及びころはSUJ2に焼入れ・焼戻し処理を施したものを使用し、転がり面(内輪及び外輪の軌道面、及びころの転動面)の表面粗さは約0.1μmRaとした。
【0017】
浸炭窒化処理後のショットピーニング加工については、図2の装置を用い、バルブ12の開度を調整して空気圧を変更することにより、内輪の完成品軌道輪の圧縮残留応力を調整した。
【0018】
【表1】

Figure 2004011737
【0019】
寿命試験方法は、外輪(固定輪)を寿命試験機のハウジングに組み込むとともに、内輪(回転輪)を回転軸に嵌め合わせ、ラジアル荷重Frとアキシャル荷重Faを自動調心ころ軸受に負荷し、回転軸を回転させることで評価を行った。この際、内輪と回転軸との嵌め合い応力として130MPaを付与した。
試験条件は次の通りである。
ラジアル荷重Fr=28.62kN
アキシャル荷重Fa=5.72kN
動等価荷重P=45.22N  P/C=0.38
内輪の回転速度N=60min−1
潤滑剤:ISO VG15相当の潤滑油
試験温度:130°Cとし、低速時と同様に油膜形成が不十分な状態とする。
粘度比κ=0.2
定格疲れ寿命(10%破損寿命の計算値)=168時間
表1に試験結果を併せて示す。
【0020】
表1から明らかなように、本発明例である実施例1及び2は、比較例1〜6に比べて寿命L10が大幅に延長されるのが判る。
比較例1と比較例6は内輪に肌焼鋼を用いて浸炭焼入を行っており、また、比較例6についてはショットピーニング処理を施して圧縮残留応力を本発明範囲内まで高めたが、試験中差動すべりによる表面起点剥離が多く発生した。
【0021】
比較例2は内輪にSUJ2を用いた例であるが、高い嵌め合い応力の付与により引張応力が発生し定格疲れ寿命以下にて破損した。また、比較例3では表面のC濃度が過大なため、寿命が比較的短い結果となった。
比較例5ではクラックの発生が目立った。これは高い圧縮残留応力を付与しているがショットピーニング処理により残留オーステナイトが分解され靭性が不足して破損したものと思われる。
【0022】
比較例4ではSi量を過大に添加しており浸炭窒化処理において表面窒素を侵入させることが出来ず、また、靭性も低かったものと思われる。
これに対し、本発明例である実施例1及び実施例2では、高い嵌め合い応力が負荷され、低速回転で油膜の形成が不十分な条件でも、内輪が割損することなく寿命L10が大幅に延長され、これにより、風力発電機のような運転環境においても、内輪の割損を防止し、より長寿命となる自動調心ころ軸受を提供することができる。
【0023】
【発明の効果】
上記の説明から明らかなように、本発明によれば、高い嵌め合い応力が負荷され、低速回転で油膜の形成が不十分な風力発電機等のような運転環境においても、内輪の割損を防止し、より長寿命となる自動調心ころ軸受を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である自動調心ころ軸受の要部断面図である。
【図2】ショットピーニング装置の概略図である。
【符号の説明】
30…自動調心ころ軸受
31…内輪
32…外輪
33…ころ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-aligning roller bearing in which a plurality of rollers are arranged between an inner ring and an outer ring so as to be able to roll in the circumferential direction, and in particular, a high load and a high rigidity such as a bearing for a wind power generator are required. The present invention relates to a self-aligning roller bearing suitable for a bearing.
[0002]
[Prior art]
Roller bearings such as self-aligning roller bearings, tapered roller bearings, and cylindrical roller bearings are usually used in wind power generators. This is because the roller bearing has features of higher load capacity and higher rigidity than ball bearings, and higher reliability against seizure and longer life than plain bearings. Further, a roller bearing used in a wind power generator is used by applying a high fitting stress exceeding 100 MPa to the inner ring in order to prevent creep occurring between the shaft and the inner ring.
[0003]
By the way, as a material of the self-aligning roller bearing, a hardened steel such as a high carbon chromium bearing steel (C: about 1% by weight, Cr: about 1.5% by weight) is generally quenched and tempered. However, when a bearing is used by applying a fitting stress exceeding 100 MPa to the inner ring made of the completely hardened steel, the bearing is interposed near the raceway surface due to a combination of the fitting stress and the rolling stress. In some cases, the inner ring broke in the axial direction starting from a nonmetallic inclusion or the like.
[0004]
In order to prevent such breakage of the inner ring, conventionally, it is effective to increase the compressive residual stress on the raceway surface and the fracture toughness of the material itself. Alternatively, the use of carburized steel has increased the compressive residual stress of the raceway surface.
[0005]
[Problems to be solved by the invention]
However, in the method in which the austempering treatment is performed on the fully hardened steel, since the compressive residual stress that can be applied to the raceway surface by the austempering treatment is about -100 MPa, it is used under a higher fitting stress such as exceeding 130 MPa as a use condition. In this case, the inner ring cannot be prevented from being broken.
[0006]
On the other hand, in the method using carburized steel, by controlling the conditions of carburizing, quenching, and tempering, a compressive residual stress of about -200 MPa can be given to the raceway surface, so that it is used under a fitting stress exceeding 130 MPa. This is also effective in preventing the inner ring from being broken.
However, regarding a self-aligning roller bearing, unlike a linear contact such as a tapered roller bearing and a cylindrical roller bearing, a point slip having a large contact ellipse occurs, so that a differential slip occurs. In addition, the rolling bearing for wind power generators rotates at a low speed of several tens of min- 1 and does not form a sufficient oil film, and a large tangential force, that is, a tensile stress is applied in synergy with the differential slip. It is difficult for bearings to sufficiently exhibit their wear resistance even when carburized steel is used.
[0007]
Therefore, in the self-aligning roller bearing, the material or the heat treatment may cause damage to the bearing and shorten the service life. As a result, the frequency of replacement of the bearing, for example, the maintenance frequency of the wind power generator, Maintenance costs increase.
The present invention has been made in order to solve such inconveniences, and an object of the present invention is to provide a self-aligning roller bearing which can prevent a breakage of an inner ring and improve the life.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in a self-aligning roller bearing in which a plurality of rollers are arranged so as to be able to roll in the circumferential direction between an inner ring and an outer ring, the inner ring has a C concentration of 0.9 weight as an inner ring. % To 1.3% by weight and a carbon concentration of 0.1% to 1.5% by weight and then a shot peening treatment to obtain the maximum compressive residual stress of the finished race. There used those with -700~-1200MPa, and the amount of residual austenite gamma R of the surface of the carbonitrided layer by the carbonitriding process is characterized in that 5 to 15%.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a main part of a self-aligning roller bearing according to an embodiment of the present invention, and FIG. 2 is a schematic view of a shot peening apparatus.
As shown in FIG. 1, the self-aligning roller bearing 30 includes two rows of rollers 33 between two rows of raceway grooves 31 a and 31 b of the inner race 31 and a raceway surface 32 a of the outer race 32 via a retainer 34. It is interposed so that it can roll in the circumferential direction.
[0010]
Here, in this embodiment, the inner ring 31 is carburized with a material having a C concentration of 0.9 to 1.3% by weight and a Si concentration of 0.1 to 1.5% by weight in the core. After the nitriding treatment, a shot peening treatment is performed to use a finished bearing ring having a maximum compressive residual stress of -700 to -1200 MPa, and the residual carbonitrided layer surface by the carbonitriding treatment is used. the austenite gamma R is in the range of 5-15%. Thereby, a high fitting stress is applied, and even in an operating environment such as a wind power generator where an oil film is insufficiently formed at a low speed rotation or the like, breakage of the inner ring can be prevented and a longer life can be achieved. As a result, the frequency of bearing replacement and the like, that is, the maintenance frequency and maintenance cost of the wind power generator can be significantly reduced.
[0011]
FIG. 2 shows a direct-pressure nozzle type shot peening apparatus which performs a shot peening process after carbonitriding of the inner race material.
This apparatus has a pressurized tank 2 filled with shot grains 1, a pressurized air supply pipe 3 for supplying pressurized air to the pressurized tank 2, and an air exhausted in the pressurized tank 2. An exhaust pipe 4, a mixer 6 arranged below the pressurized tank 2 and mixing the compressed air from the branch pipe 5 of the pressurized air supply pipe 3 with the shot particles 1, and a shot 7 from the nozzle 8 at the tip end A hose 9 for projecting onto the surface of the workpiece, a hopper 11 for supplying the shot particles 1 into the pressurized tank 2 via a shutter 10, and provided in the middle of the branch pipe 5 to adjust a projection speed of the shot particles 1. A valve 12 capable of adjusting the air pressure.
[0012]
In the present embodiment, a steel ball having an average particle size of 0.72 mm and an average hardness of HRC61 is used as the shot particle 1, and the shot is set to have a shot projection speed of 32 to 120 m / sec (average projection speed of 80 m / sec). Peening treatment was performed. Shot peening does not require long-time heat treatment or the like in order to impart surface hardness and compressive residual stress to a workpiece, so that heat treatment productivity does not decrease. At the time of this shot peening, the compressive residual stress of the completed raceway can be adjusted by adjusting the opening of the valve 12 and changing the air pressure.
[0013]
Next, the critical significance of each numerical limitation in the present invention will be described.
The above-described differential slip induces peeling starting from inclusions existing on the surface. Therefore, in order to suppress the peeling of the starting point of the surface, it is necessary to strengthen the surface by carbonitriding treatment and at the same time to increase the cleanliness of the material.
[0014]
Here, in the case of high carbon steel subjected to carbonitriding, the properties of each main component of the material after carbonitriding, the C concentration of the surface, and the N concentration of the surface cannot be neglected. It is desirable.
(C concentration of material)
It is an element for obtaining the hardness and carbide required for the bearing, and the hardness and the area ratio of the carbide necessary for the life, and the C concentration of the material is 0.9 weight to obtain the cleanliness suitable for the present invention. % Or more is necessary. When the C concentration exceeds 1.3% by weight, large carbides are generated during solidification, and the rolling fatigue life is remarkably reduced. Therefore, the upper limit is set to 1.3% by weight.
(About C concentration on the surface of the finished raceway after carbonitriding)
A carbonitriding process is performed to adjust the surface C concentration to 1.1 wt% or more and 2.0 wt% or less. The reason why the surface C concentration is set to 1.1% by weight or more is to obtain the required rolling fatigue strength of the product and to form the required carbide. On the other hand, when the surface C concentration exceeds 2.0% by weight, the cementite-based carbides coarsen, and they become the starting points to deteriorate the rolling fatigue characteristics and the crack strength of the product bearing, so the upper limit was made 2.0% by weight.
(About N concentration on the surface of the finished raceway after carbonitriding)
A carbonitriding process is performed to adjust the surface N concentration to 0.1% by weight or more and 0.7% by weight or less. When the N content of the surface layer of the finished bearing ring is less than 0.1 wt%, sufficient surface hardness and residual austenite amount gamma R is obtained by solid solution lack of N, not improved lifetime. Also, as the amount of nitrogen is increased, nitrides precipitate and the wear resistance is improved. However, when the surface N concentration is 0.7% by weight or more, polishing becomes difficult and productivity is reduced. The upper limit was set to 0.7% by weight. .
(About Si)
Si needs to be 0.1% by weight or more as a deoxidizing agent in steelmaking, and further enhances temper softening resistance. However, when added in a large amount, it lowers toughness, and its penetration depth rapidly during carbonitriding. Therefore, the upper limit was set to 1.5% by weight.
(About compressive residual stress)
For the inner ring, shot peening was performed to prevent cracks from forming and developing when excessive tensile stress was generated due to the synergistic effect of the lack of oil film generated during low-speed rotation with the fitting stress and differential slip. It is necessary to give a maximum compressive residual stress of -700 MPa or more. However, when processing is performed such that the maximum compressive residual stress exceeds -1200 MPa, a microcrack called a microcrack in the surface layer portion, particularly near the surface, becomes extremely deep, which increases the cost of the subsequent polishing step and -1200 MPa. , The rolling life was confirmed to be sufficient, so the upper limit was set to -1200 MPa.
(Remaining austenite amount γ R )
The only application of the compressive residual stress uncontrollably the generation and progress of cracking, it is necessary to delay the generation and development of a crack by securing the toughness by concurrent amount of retained austenite gamma R. At this time, if it is less than 5%, the effect of preventing cracks cannot be expected much, and if it exceeds 15%, the required surface hardness cannot be obtained, so the upper limit is made 15%.
[0015]
【Example】
Next, the fatigue life test of the bearing will be described.
First, a self-aligning roller bearing having the same structure as that shown in FIG. Using Example 1 and Example 2 (Example of the present invention) and Comparative Examples 1 to 6 shown below, 10 pieces were produced, respectively.
[0016]
Those subjected to carbonitriding (Rx gas + ammonia gas + enriched gas atmosphere at 950 to 960 ° C for 30 to 200 hours) are subjected to quenching (820 to 840 ° C for 1 hour) and tempering after the treatment. The effective hardening depth (surface layer thickness of Vickers hardness Hv550 or more) is set to 1.5 mm by the treatment at 160 to 180 ° C. for 2 hours. The outer ring and the rollers used were those obtained by subjecting SUJ2 to quenching and tempering, and the surface roughness of the rolling surfaces (the raceways of the inner and outer rings and the rolling surfaces of the rollers) was about 0.1 μmRa.
[0017]
Regarding the shot peening after the carbonitriding, the compression residual stress of the finished raceway ring of the inner race was adjusted by adjusting the opening of the valve 12 and changing the air pressure using the apparatus shown in FIG.
[0018]
[Table 1]
Figure 2004011737
[0019]
The life test method is as follows. The outer ring (fixed ring) is incorporated into the housing of the life tester, the inner ring (rotating wheel) is fitted to the rotating shaft, the radial load Fr and the axial load Fa are applied to the self-aligning roller bearing, The evaluation was performed by rotating the shaft. At this time, 130 MPa was applied as a fitting stress between the inner ring and the rotating shaft.
The test conditions are as follows.
Radial load Fr = 28.62kN
Axial load Fa = 5.72 kN
Dynamic equivalent load P = 45.22N P / C = 0.38
Inner ring rotation speed N = 60 min -1
Lubricant: Lubricating oil test temperature equivalent to ISO VG15: 130 ° C., and the oil film formation is insufficient as in the case of low speed.
Viscosity ratio κ = 0.2
Rated fatigue life (calculated value of 10% failure life) = 168 hours Table 1 also shows the test results.
[0020]
As is evident from Table 1, Examples 1 and 2 are the examples of the present invention, it can be seen that the life L 10 compared to Comparative Examples 1 to 6 are significantly extended.
Comparative Example 1 and Comparative Example 6 were carburized and quenched using case hardened steel for the inner ring, and shot-peening treatment was performed on Comparative Example 6 to increase the compressive residual stress to within the range of the present invention. During the test, surface-originated peeling due to differential slip occurred frequently.
[0021]
Comparative Example 2 is an example in which SUJ2 was used for the inner ring. However, tensile stress was generated by applying a high fitting stress, and the inner ring was broken below the rated fatigue life. Further, in Comparative Example 3, since the C concentration on the surface was excessively large, the life was relatively short.
In Comparative Example 5, cracks were noticeable. This is thought to be due to the high compressive residual stress applied, but the residual austenite was decomposed by the shot peening treatment and the toughness was insufficient to cause damage.
[0022]
In Comparative Example 4, the amount of Si was excessively added, so that surface nitrogen could not be penetrated in the carbonitriding treatment, and the toughness was considered to be low.
In contrast, in the present invention example and a first and second embodiments, the high mating stress load, even in insufficient conditions formation of the oil film at low speed, drastically life L 10 without inner ring Sonsuru split Accordingly, even in an operating environment such as a wind power generator, it is possible to prevent a breakage of the inner ring and provide a self-aligning roller bearing having a longer life.
[0023]
【The invention's effect】
As is clear from the above description, according to the present invention, a high fitting stress is applied, and even in an operating environment such as a wind power generator where the formation of an oil film is insufficient at a low speed rotation, the inner ring can be broken. It is possible to provide a self-aligning roller bearing which prevents the self-aligning roller bearing and has a longer life.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part of a self-aligning roller bearing which is an example of an embodiment of the present invention.
FIG. 2 is a schematic diagram of a shot peening apparatus.
[Explanation of symbols]
30 ... Spherical roller bearing 31 ... Inner ring 32 ... Outer ring 33 ... Roller

Claims (1)

内輪と外輪との間に複数のころが周方向に転動可能に配設された自動調心ころ軸受において、内輪として、心部のC濃度が0.9重量%〜1.3重量%、Si濃度が0.1重量%〜1.5重量%である素材に浸炭窒化処理を施してからショットピーニング処理を施すことにより、完成品軌道輪の最大圧縮残留応力が−700〜−1200MPaとされたものを用い、且つ前記浸炭窒化処理による浸炭窒化層の表面の残留オーステナイト量γが5〜15%であることを特徴とする自動調心ころ軸受。In a self-aligning roller bearing in which a plurality of rollers are arranged between an inner ring and an outer ring so as to be able to roll in the circumferential direction, the inner ring has a C concentration of 0.9 to 1.3% by weight in the core, By subjecting a material having a Si concentration of 0.1% by weight to 1.5% by weight to carbonitriding and then to shot peening, the maximum compressive residual stress of the finished race is -700 to -1200 MPa. the used, and the self-aligning roller bearings, wherein the amount of residual austenite gamma R of the surface of the carbonitrided layer by carbonitriding is 5-15% that was.
JP2002165379A 2002-06-06 2002-06-06 Self-aligning roller bearing Pending JP2004011737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165379A JP2004011737A (en) 2002-06-06 2002-06-06 Self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165379A JP2004011737A (en) 2002-06-06 2002-06-06 Self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2004011737A true JP2004011737A (en) 2004-01-15

Family

ID=30433233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165379A Pending JP2004011737A (en) 2002-06-06 2002-06-06 Self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2004011737A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118575A (en) * 2004-10-20 2006-05-11 Nsk Ltd Rolling bearing for windmill
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US7922396B2 (en) 2004-09-21 2011-04-12 Ntn Corporation Double row self-aligning roller bearing and main shaft support structure of wind power generator
US20120003096A1 (en) * 2010-02-12 2012-01-05 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
US20120208669A1 (en) * 2010-02-12 2012-08-16 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
JP2013532583A (en) * 2010-08-05 2013-08-19 新東工業株式会社 Shot peening method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918649B2 (en) 2003-11-18 2011-04-05 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US7922396B2 (en) 2004-09-21 2011-04-12 Ntn Corporation Double row self-aligning roller bearing and main shaft support structure of wind power generator
JP2006118575A (en) * 2004-10-20 2006-05-11 Nsk Ltd Rolling bearing for windmill
US20120003096A1 (en) * 2010-02-12 2012-01-05 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
US20120208669A1 (en) * 2010-02-12 2012-08-16 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
US8657578B2 (en) * 2010-02-12 2014-02-25 Mitsubishi Heavy Industries, Ltd. Gear box for wind turbine generator and wind turbine generator
JP2013532583A (en) * 2010-08-05 2013-08-19 新東工業株式会社 Shot peening method

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
JP4423754B2 (en) Manufacturing method of rolling shaft
JP2921112B2 (en) Rolling bearing
EP1462669A2 (en) Rolling bearings
JP2010248568A (en) Rolling bearing for use in hydrogen atmosphere
JP2007009997A (en) Rolling bearing
JP3656372B2 (en) Rolling bearing
US6652672B1 (en) Material for bearing parts
JP2004339575A (en) Method for producing parts of rolling device
JP2949794B2 (en) Rolling bearing
JP3956514B2 (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP2004011737A (en) Self-aligning roller bearing
JP2006038167A (en) Roller bearing
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2013160314A (en) Rolling bearing
JP3941782B2 (en) Rolling bearing
JP2000161348A (en) Tapered roller bearing and gear shaft supporting device for vehicle
JP3645416B2 (en) Roll support equipment for rolling equipment
JP2006045591A (en) Tapered roller bearing
JP2003148488A (en) Rolling device, and method for manufacturing the same
JP3934266B2 (en) Rolling bearing
JP2008138262A (en) Method for forming shot-peening worked surface
JP2000234145A (en) Roller bearing
JP4284956B2 (en) Manufacturing method of rolling sliding member