JP3941782B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP3941782B2
JP3941782B2 JP2004026069A JP2004026069A JP3941782B2 JP 3941782 B2 JP3941782 B2 JP 3941782B2 JP 2004026069 A JP2004026069 A JP 2004026069A JP 2004026069 A JP2004026069 A JP 2004026069A JP 3941782 B2 JP3941782 B2 JP 3941782B2
Authority
JP
Japan
Prior art keywords
weight
life
content
bearing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004026069A
Other languages
Japanese (ja)
Other versions
JP2004205047A (en
Inventor
滋 沖田
宣晶 三田村
進 田中
賢二 山村
學 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004026069A priority Critical patent/JP3941782B2/en
Publication of JP2004205047A publication Critical patent/JP2004205047A/en
Application granted granted Critical
Publication of JP3941782B2 publication Critical patent/JP3941782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、製鉄用、自動車、農業機械、建設機械等に使用される転がり軸受に係り、特に、異物混入潤滑下でも長寿命な転がり軸受に関する。   The present invention relates to a rolling bearing used for iron making, automobiles, agricultural machines, construction machines, and the like, and more particularly, to a rolling bearing having a long life even under foreign matter-mixed lubrication.

一般に、転がり軸受の転動体(玉および各種転がり軸受用ころ。以下すべて同様)及び内外輪(内輪および外輪。以下すべて同様)の材料として、軸受鋼であればSUJ2が、肌焼鋼であればSCR420相当の鋼材が使用されている。転がり軸受は高面圧下で繰り返しせん断応力を受けて用いられるため、そのせん断応力に耐えて転がり疲労寿命を確保するべく、軸受鋼は焼入・焼戻し、肌焼鋼は浸炭又は浸炭窒化処理後に焼入・焼戻しが施されてHRC58〜64の硬度とされている。   Generally, as a material for rolling elements (balls and various types of rolling bearings; the same applies hereinafter) and inner and outer rings (inner and outer rings; the same applies hereinafter) of rolling bearings, SUJ2 is used for case-hardened steel. A steel material equivalent to SCR420 is used. Since rolling bearings are used under repeated shear stress under high surface pressure, bearing steel is quenched and tempered and case-hardened steel is tempered after carburizing or carbonitriding to withstand the shearing stress and ensure a rolling fatigue life. It is hardened and tempered to have a hardness of HRC 58-64.

しかし、転がり軸受は使用環境が多種多用であり、疲労寿命の他に、潤滑条件等の不備や周辺機器からの異物の混入等による摩耗や早期剥離等によって、軸受の寿命が大きく左右される場合があることも見逃せない。また、例えば、大きなアキシャル加重を受ける円錐ころ軸受においては、転送面のすべりによる摩耗及び大つば部での純すべりによる摩耗により不具合を起こす場合があり、また、スラスト軸受、自動調心ころ軸受等の円錐ころ軸受以外の転がり軸受であっても、使用条件が厳しい場合にすべりによる摩耗が問題となることもある。そこで、疲労寿命の確保のみならず、異物混入潤滑下でも長寿命が保証され摩耗や早期剥離を防止できる、耐摩耗性が良好で且つ安価な転がり軸受が要望されている。   However, rolling bearings are used in a wide variety of environments, and in addition to fatigue life, the life of the bearing is greatly influenced by inadequate lubrication conditions, wear due to contamination by foreign substances from peripheral devices, and early peeling. I can't overlook that. In addition, for example, in a tapered roller bearing that receives a large axial load, trouble may occur due to wear due to sliding of the transfer surface and wear due to pure slip at the large brim, and thrust bearings, spherical roller bearings, etc. Even in the case of rolling bearings other than these tapered roller bearings, wear due to sliding may be a problem when the usage conditions are severe. Accordingly, there is a demand for a rolling bearing that has a good wear resistance and is inexpensive and that can ensure not only fatigue life but also a long life even under lubrication mixed with foreign matter and prevent wear and early peeling.

本願発明者らは、その要望を実現しうる転がり軸受の新規な材料について研究を重ねてきた。以下に、転がり軸受に一般的に用いられている前記軸受鋼SUJ2と肌焼鋼SCR420との両材料の得失を述べる。
SUJ2は合金組成中にCとCrが多く含有されていて、製鋼時に巨大炭化物や偏析を生じやすい。これをなくすためにソーキング処理などが行われる結果、SCR420に比べて材料費は高くなる。
The inventors of the present application have made studies on a new material for a rolling bearing that can realize the demand. The advantages and disadvantages of both the bearing steel SUJ2 and the case-hardened steel SCR420, which are generally used for rolling bearings, will be described below.
SUJ2 contains a large amount of C and Cr in the alloy composition, and is likely to cause giant carbides and segregation during steelmaking. As a result of performing a soaking process or the like to eliminate this, the material cost is higher than that of the SCR 420.

成形加工に関しては、小形軸受の転動体の場合、素材はほとんど冷間線引材(コイル材)を使用し、冷間型鍛造(ヘッダ加工)により転動体の形に成形され、旋削加工は行われない。その冷間加工性を比べると、SUJ2は合金成分中のCとCrの含有比率が高いのに対して、SCR420の方はC含有比率が低いので、冷間加工性はSCR420の方が良好である。一方、内外輪の場合は、熱間(温間)鍛造により成形されるので、素材による加工性の差はあまり出ない。しかし、その後、切削加工に備えて鍛造後に軟化焼鈍が行われるのではあるが、素材の炭素量の関係でSCR420に比べてSUJ2の方が切削性が悪く、コスト高の傾向にある。   Regarding the forming process, in the case of rolling elements of small bearings, the material is mostly made of cold drawing material (coil material) and is formed into the shape of rolling elements by cold die forging (header processing). I will not. Comparing the cold workability, SUJ2 has a higher content ratio of C and Cr in the alloy component, whereas SCR420 has a lower C content ratio, so the cold workability is better for SCR420. is there. On the other hand, since the inner and outer rings are formed by hot (warm) forging, there is not much difference in workability depending on the material. However, although soft annealing is performed after forging in preparation for cutting, SUJ2 has a lower cutting ability than SCR420 due to the carbon content of the material, and tends to be expensive.

熱処理に関しては、一般的なSUJ2は焼入して焼戻すだけで軸受に必要な硬さが得られるのに対して、SCR420は表面層に必要な硬さを得るために浸炭又は浸炭窒化焼入処理を行い、その後焼戻しを行うか、場合によっては浸炭又は浸炭窒化焼入処理を行った後さらに二次焼入して焼戻しを行う。そのため、SCR420はSUJ2に比べて熱処理費が大幅に高くなる。なお、本明細書中にいう「表面層」とは、最大、表面から転がり接触時に最大せん断応力が発生する深さ(具体的には転動体直径の2%)までの領域をさすものとし、軽荷重で異物の量が多い条件下では上記範囲内で浅くすることができる。   With regard to heat treatment, general SUJ2 is hardened and tempered to obtain the necessary hardness for the bearing, while SCR420 is carburized or carbonitrided to obtain the required hardness for the surface layer. After the treatment, tempering is performed, or in some cases, the carburization or carbonitriding / quenching / quenching treatment is performed, followed by further secondary quenching and tempering. Therefore, the heat treatment cost of SCR 420 is significantly higher than that of SUJ2. In addition, the “surface layer” referred to in the present specification means a region from the surface to the depth at which the maximum shear stress is generated at the time of rolling contact (specifically, 2% of the rolling element diameter), Under light load and a large amount of foreign matter, it can be shallow within the above range.

研削加工性に関しては、SCR420の方が熱処理後の黒皮表面層(すなわち研削前の表面層)における初析セメンタイトや残留オーステナイト量(以下、γR と記す)によってはSUJ2より研削性が悪くなるが、大きな差はない。しかし、SCR420の浸炭窒化を行うと、黒皮表面層に炭窒化物が析出したりして研削性は著しく低下する。
以上の比較から、材料費と加工費を考慮した軸受の総合コストとしては、SUJ2の方がSCR420より低くなる。
Regarding the grindability, SCR420 is worse than SUJ2 depending on the pro-eutectoid cementite and residual austenite amount (hereinafter referred to as γ R ) in the black skin surface layer after heat treatment (that is, the surface layer before grinding). But there is no big difference. However, when carbonitriding SCR420, carbonitride precipitates on the black skin surface layer, and the grindability is remarkably reduced.
From the above comparison, SUJ2 is lower than SCR420 as the total cost of the bearing in consideration of material cost and processing cost.

そして、材料に上記の鋼材を用いて製造した転がり軸受の機能に関しては、転がり寿命ではSCR420を浸炭(又は浸炭窒化)したものは表面層のγR が多く、圧縮残留応力も発生するために、特に異物混入環境下において長寿命の傾向にある。また、軸受として重要な機能である寸法安定性なども、SCR420の方がSUJ2より優れている。
特開平2−125841号公報 特開昭63−303221号公報 特開平2−277764号公報
And, regarding the function of the rolling bearing manufactured using the above steel material as the material, in the rolling life, SCR420 carburized (or carbonitrided) has a lot of surface layer γ R and also generates compressive residual stress. In particular, it tends to have a long life in an environment containing foreign matter. Further, SCR420 is superior to SUJ2 in terms of dimensional stability, which is an important function as a bearing.
Japanese Patent Laid-Open No. 2-125841 JP 63-303221 A Japanese Patent Laid-Open No. 2-27764

しかしながら、上記従来の転がり軸受の材料である肌焼鋼SCR420等にあっては、(1) 浸炭硬化層を深くしようとすると、基地の炭素量が低いため浸炭処理を高温かつ長時間行う必要があり、そのため熱処理生産性が低下する。(2) また、表面炭素濃度を高くすると、Cr含有量が多いために初析炭化物が生じやすく、そのため転がり疲れ寿命が低下する。(3) そこでCr量を減らし、Ni,Moを添加して焼入れ性を改善しようとすると、材料コストが増加してしまうという問題点がある。(4) 更に、とくに耐磨耗性が要求される場合に、Cr,Mo,V等の炭化物形成元素を多量に添加し、軸受表層に炭化物を多量に析出させる方法が知られているが、この方法は、材料コストが上がるだけでなく、鍛造性、切削性、研削性等の低下による加工コスト上昇及び浸炭性低下による熱処理コストの上昇を伴い、非常に高価な転がり軸受になってしまう。   However, in the case-hardened steel SCR420, which is a material of the above-mentioned conventional rolling bearing, (1) When trying to deepen the carburized hardened layer, it is necessary to perform carburizing treatment at a high temperature for a long time because the carbon content of the base is low. Therefore, the heat treatment productivity is lowered. (2) Further, when the surface carbon concentration is increased, pro-eutectoid carbides are likely to be formed due to a large Cr content, so that the rolling fatigue life is reduced. (3) Therefore, if the Cr content is reduced and Ni and Mo are added to improve the hardenability, there is a problem that the material cost increases. (4) Furthermore, when wear resistance is particularly required, a method of adding a large amount of carbide forming elements such as Cr, Mo, V and the like to precipitate a large amount of carbide on the bearing surface layer is known. This method not only increases the material cost, but also increases the processing cost due to a decrease in forgeability, machinability, grindability, and the like, and increases the heat treatment cost due to a decrease in carburization, resulting in a very expensive rolling bearing.

一方、軸受鋼SUJ2の場合は、コストは低く抑えられるが、特に異物混入環境下においての軸受寿命が短いという問題点がある。
こうした問題の対策として、本出願人は先に出願の特許文献1において、材料コストが低く、熱処理生産性が良好で且つ長寿命の転がり軸受を提案した。このものは、軸受の転がり疲れ寿命に有害な初析炭化物を生じ易いCr量を0.35%未満とし、Cr量低下による焼入れ性低下を避けるために、1.2〜1.7重量%のMnを添加するとともに基地カーボン量の多い(C量:0.4〜0.7重量%)中炭素マンガン鋼を用いることにより初析炭化物の発生を抑制し、軸受表面層におけるγR を25〜45体積%の範囲として必要な硬化層深さを得ることにより、異物混入潤滑下での転がり軸受の長寿命化を達成しようとするものである。
On the other hand, in the case of the bearing steel SUJ2, the cost can be kept low, but there is a problem that the bearing life is short especially in a foreign matter mixed environment.
As a countermeasure against such a problem, the present applicant previously proposed a rolling bearing having a low material cost, good heat treatment productivity, and a long life in Patent Document 1 filed earlier. In order to avoid the deterioration of the hardenability due to the Cr content being less than 0.35%, the Cr content that tends to generate proeutectoid carbide harmful to the rolling fatigue life of the bearing is reduced to 1.2 to 1.7% by weight. By adding Mn and using medium carbon manganese steel with a large amount of base carbon (C content: 0.4 to 0.7 wt%), generation of proeutectoid carbide is suppressed, and γ R in the bearing surface layer is 25 to 25%. By obtaining the necessary hardened layer depth in the range of 45% by volume, it is intended to achieve a long life of the rolling bearing under the contamination with foreign matter.

詳しくは、前記特許文献1で、その第1図にも開示されているように、異物混入潤滑下では、表面層にγR を25〜45体積%存在させることにより長寿命が得られる。これを実施するため、少なくとも表面層の固溶炭窒素量を0.8重量%以上とすれば前記γR の範囲を保ち得ることが示されている。
しかしながら、この場合、Mn量による加工性の低下、浸炭窒化したときの研削加工性の低下等の問題があり、また本来転動体と内外輪とでは要求される機能や加工条件が異なることからも、なお改良の余地がある。
Specifically, as disclosed in Patent Document 1 and FIG. 1 thereof, a long life can be obtained by allowing γ R to exist in the surface layer in an amount of 25 to 45% by volume under the contamination with foreign matter. In order to carry out this, it has been shown that the above range of γ R can be maintained if at least the amount of solute carbon in the surface layer is 0.8% by weight or more.
However, in this case, there is a problem such as a decrease in workability due to the amount of Mn, a decrease in grinding workability when carbonitriding, and the originally required functions and processing conditions differ between the rolling elements and the inner and outer rings. There is still room for improvement.

また、上述のように軸受の転動体、外輪、内輪は加工方法が異なっている。転動体は冷間鍛造後、研削工程(ラップ等を含む)を経て加工され、内外輪は熱間(温間)鍛造後、切削加工、研削(超仕上等を含む)の各工程を経て加工される。
このような加工方法の差異に鑑み、転動体においては素材SUJ2の巨大炭窒化物を消失させ、ソーキングを不要とし、冷間鍛造性(金型寿命)の向上を図る必要性があり、また内外輪においては切削加工性(工具寿命)、研削加工性(ドレッシング間隔)の向上を図る必要性があるなど、それぞれに独自の課題を有していた。換言すると、異物混入潤滑下での長寿命を達成しつつ、なお且つ、できる限り低コストな転がり軸受を得るためには、なお改良の余地があった。
Further, as described above, the rolling elements of the bearing, the outer ring, and the inner ring have different processing methods. Rolling elements are processed through a grinding process (including lapping) after cold forging, and inner and outer rings are processed through hot (warm) forging, cutting and grinding (including super finishing). Is done.
In view of such a difference in processing method, it is necessary to eliminate the giant carbonitride of the material SUJ2 in the rolling elements, eliminate the need for soaking, and improve cold forgeability (die life). Each wheel had its own problems, such as the need to improve cutting workability (tool life) and grinding workability (dressing interval). In other words, there is still room for improvement in order to obtain a rolling bearing with as low a cost as possible while achieving a long life under lubrication mixed with foreign matter.

ところで、一般的には、転がり軸受は内輪、外輪及び転動体に全て同一材料が使用されることが多いのであるが、耐磨耗性、耐異物性等が要求される場合には、コストを考慮して内外輪又は固定輪あるいは転動体のみに高価な材料を用いる場合もある。例えば特許文献2に、内外輪と転動体のうち、内外輪の少なくともいずれか一方または転動体に、0.3重量%以上のCと3重量%以上のCrを含む鋼を使用し、残りに高炭素Cr軸受鋼あるいは浸炭鋼を使用することにより長寿命な軸受を得る方法が開示されている。しかし摩耗やコストに対する考慮がなされていない。   By the way, in general, the same material is often used for the inner ring, the outer ring and the rolling element in the rolling bearing. Considering this, an expensive material may be used only for the inner and outer rings, the fixed ring, or the rolling elements. For example, in Patent Document 2, steel containing 0.3 wt% or more of C and 3 wt% or more of Cr is used for at least one of the inner and outer rings or the rolling elements of the inner and outer rings and rolling elements, and the rest A method for obtaining a long-life bearing by using high carbon Cr bearing steel or carburized steel is disclosed. However, no consideration is given to wear and cost.

一方、近年、自動車の高速化、軽量化、低燃費化や、鉄鋼設備のメンテナンスフリー化で軸受の使用条件が非常に過酷化している。このため、異物混入下での転がり寿命の向上に加えて、潤滑油中に混入する異物による表面損傷による剥離や、潤滑不良による磨耗等が問題になる場合がある。
これに対し、特許文献3に開示されているように、高クロム鋼に浸炭又は浸炭窒化を施し、軸受表層に微細炭化物を析出させ、かつ残留オーステナイト量γR を適正化することにより、異物混入潤滑下での長寿命化を図る従来例が知られているが、潤滑不良による磨耗に対する考慮が不十分であった。
On the other hand, in recent years, the use conditions of bearings have become very severe due to the speeding up, weight reduction, fuel consumption reduction and maintenance-free of steel facilities. For this reason, in addition to the improvement of the rolling life in the presence of foreign matter, there are cases where peeling due to surface damage due to foreign matter mixed in the lubricating oil, wear due to poor lubrication, or the like becomes a problem.
In contrast, as disclosed in Patent Document 3, carburization or carbonitriding is performed on high-chromium steel, fine carbides are precipitated on the bearing surface layer, and the amount of retained austenite γ R is optimized, thereby introducing foreign matter. Conventional examples of extending the life under lubrication are known, but the consideration for wear due to poor lubrication has been insufficient.

に高速、低荷重の条件下で使用される乗用車のトランスミッション用等の転がり軸受の場合は、耐磨耗性と共に低コスト化が強く望まれており、軸受製造コストに影響の大きい材料の被削性や研削性等の加工性の良否にも配慮が必要になる。 Fast Specifically, for a rolling bearing, such as for passenger cars which are used under conditions of low load transmission, and cost reduction it is strongly demanded with abrasion resistance, to be of material having a large effect on the bearing manufacturing costs Consideration must be given to the quality of machinability and grindability.

そこで本発明は、耐磨耗性に優れ、異物混入潤滑下でも長寿命であるのみならず、加工性にも優れてコスト的に有利でかつ高速、低荷重の使用に好適な転がり軸受を安価に提供することを目的としている Accordingly, the present invention provides a rolling bearing that is excellent in wear resistance, has a long life even under lubrication mixed with foreign matter, has excellent workability, is advantageous in terms of cost, and is suitable for use at high speed and low load. It has been with the purpose to provide to.

特に高速、低荷重の条件下で使用される乗用車のトランスミッション等用の転がり軸受で耐磨耗性と低コストを両立させる」という上記目的を達成するために、本願の請求項に係る転がり軸受は、内輪、外輪、および転動体の少なくとも一つが、
C :0.3〜0.9重量%
Si:0.1〜0.7重量%
Mn:0.5〜1.5重量%
Cr:0.1〜0.8重量%
を含有し残部Feおよび不可避不純物元素からなる合金鋼で形成され、完成品表面層の炭素量および窒素量が
C :0.6〜1.2重量%
N :0.2〜0.9重量%
であり、更に、Crと窒素の総含有量(素材中のCr含有率と表面層におけるN含有率との合計量:「Cr+N」)が0.4〜1.0重量%
であることを特徴とする。
"In particular high speed, to satisfy both wear resistance and low cost rolling bearings for transmissions such as a passenger car to be used under conditions of low load" in order to achieve the above Symbol purpose of, in a first aspect of the present invention In such a rolling bearing, at least one of the inner ring, the outer ring, and the rolling element is
C: 0.3 to 0.9% by weight
Si: 0.1 to 0.7% by weight
Mn: 0.5 to 1.5% by weight
Cr: 0.1 to 0.8% by weight
And the balance of carbon and nitrogen in the surface layer of the finished product.
C: 0.6 to 1.2% by weight
N: 0.2 to 0.9% by weight
Furthermore, the total content of Cr and nitrogen (total amount of Cr content in material and N content in surface layer: “Cr + N”) is 0.4 to 1.0% by weight.
It is characterized by being.

次に、この転がり軸受で用いられる合金成分の作用および数値限定の臨界的意義について説明する。
一般に、転がり軸受材料として使用されているSUJ2などの軸受鋼やSCR420相当の肌焼鋼を浸炭窒化処理した場合、窒素濃度が増加されると耐磨耗性は大きく向上するが、反面、研削性は著しく低下する傾向にあり、加工費の面で大きなコストアップとなる。
そこで、本発明者らは、材料成分と窒素濃度、研削性及び耐磨耗性等の相関について研究を重ねた結果、Cr含有量と窒素添加量を適正化することにより、異物混入下における長寿命と耐磨耗性に優れ、且つ研削性を含めた加工性も良好な軸受を低コストで提供できることを見い出した。
Next, the action of the alloy components used in this rolling bearing and the critical significance of numerical limitation will be described.
In general, when bearing steel such as SUJ2 used as a rolling bearing material or case-hardened steel equivalent to SCR420 is carbonitrided, the wear resistance is greatly improved when the nitrogen concentration is increased. Tends to decrease remarkably, resulting in a significant increase in processing cost.
Therefore, as a result of repeated research on the correlation between the material components and nitrogen concentration, grindability, wear resistance, etc., the present inventors have optimized the Cr content and the amount of nitrogen added to increase the It has been found that a bearing having excellent life and wear resistance and good workability including grindability can be provided at low cost.

[C含有量]
Cは、軸受として必要な心部強度を得るためには必要な元素である。しかし、素材の炭素量が0.9重量%を越えると、製鋼時に巨大炭化物や偏析をなくすためのソーキングが必要となり、材料費のコストアップとなる。また、炭素量が増すと変形抵抗が増加する傾向にあり、冷間加工性や切削性が悪くなるので、上限は好ましい値として0.9重量%とした。
一方、素材の炭素量が0.3重量%未満になると浸炭(又は浸炭窒化)処理が長くなり熱処理生産性が低下するため、下限を好ましい値として0.3重量%とした。ただし、内外輪に使用する場合、寸法安定性や心部靭性が問題となるときには素材の炭素量を0.6重量%以下とすることが望ましい。
[C content]
C is an element necessary for obtaining the core strength necessary for the bearing. However, if the carbon content of the material exceeds 0.9% by weight, soaking is necessary to eliminate giant carbides and segregation during steelmaking, which increases the material cost. Further, since the deformation resistance tends to increase as the amount of carbon increases and the cold workability and the machinability deteriorate, the upper limit is set to 0.9% by weight as a preferable value.
On the other hand, when the carbon content of the raw material is less than 0.3% by weight, the carburizing (or carbonitriding) treatment becomes longer and the heat treatment productivity is lowered. However, when used for inner and outer rings, it is desirable that the carbon content of the material be 0.6% by weight or less when dimensional stability and core toughness are problems.

[Si含有量]
Siは製鋼時に脱酸剤として必要な元素であり、焼入性を向上させるとともに基地マルテンサイトを強化し、さらに焼戻し軟化抵抗性を高めるのに有効な元素であるため0.1重量%以上の添加は必要である。しかし、その含有量が多すぎると冷間加工性や切削性を低下させ、さらに浸炭窒化の際の炭素及び窒素の浸透深さが減少し、熱処理費のコストアップにつながるので上限を好ましい値として0.7重量%とした。
[Si content]
Si is an element necessary as a deoxidizer during steelmaking, and is an element effective for improving hardenability, strengthening base martensite, and further improving resistance to temper softening. Addition is necessary. However, if the content is too large, the cold workability and machinability are reduced, and the carbon and nitrogen penetration depth during carbonitriding is reduced, leading to an increase in the cost of heat treatment. The content was 0.7% by weight.

[Mn含有量]
Mnは、焼入れ性を向上させるのに有効な元素である。さらに本発明では浸炭窒化処理を行うことで、軸受完成品表面に微細な窒化物を形成し耐磨耗性を向上させるが、Mnを添加すると浸炭窒化しても研削性が低下しにくくなることを発見した。この効果を発揮させるため好ましくは0.5重量%以上は必要である。しかし、多量に添加されると素材の冷間加工性や切削性が低下するので上限を1.5重量%とした。
[Mn content]
Mn is an element effective for improving hardenability. Furthermore, in the present invention, by performing carbonitriding, fine nitrides are formed on the surface of the finished bearing product and wear resistance is improved. However, if Mn is added, grindability is less likely to deteriorate even when carbonitriding. I found In order to exert this effect, 0.5% by weight or more is necessary. However, if added in a large amount, the cold workability and machinability of the material deteriorate, so the upper limit was made 1.5% by weight.

[Cr含有量]
Crは焼入れ性、焼戻し軟化抵抗性を向上させるのに有効な元素であるため、0.1重量%以上は必要であり、浸炭窒化処理を行うことで軸受完成品表面に窒化物を形成し耐磨耗性を向上させるが、Cr量と窒素含有量の関係が一定量を越えると研削性が悪くなる。また、過剰な添加は材料のコストアップとなるだけでなく、浸炭窒化時の炭素および窒素の浸透深さが減少し、熱処理費のコストアップにつながるので上限を好ましい値として0.8重量%とした。
[Cr content]
Since Cr is an element effective for improving the hardenability and temper softening resistance, 0.1% by weight or more is necessary. By performing carbonitriding, nitride is formed on the surface of the finished bearing product, resulting in resistance to resistance. Abrasion is improved, but if the relationship between the Cr content and the nitrogen content exceeds a certain amount, the grindability deteriorates. In addition, excessive addition not only increases the cost of the material, but also reduces the carbon and nitrogen penetration depth during carbonitriding, leading to an increase in the cost of heat treatment, so the upper limit is preferably 0.8% by weight. did.

[完成品表面のC含有量;0.6〜1.2重量%]
通常、浸炭窒化処理後の完成品表面の炭素濃度は軸受として必要な硬さを得るために0.8以上必要とされているが、本発明では長寿命と耐磨耗性とを同時に得るために窒素含有量の上限値を増やしているので、最低必要な表面炭素量は0.6重量%となる。しかしながら、その含有量が1.2重量%を越えると窒素含有量と合わせて固溶量が過剰となり、処理条件によっては必要以上のγR が発生して表面硬さが逆に低下したり、初析が生じたりして転動寿命を低下させる場合がある。そのため上限を好ましい値として1.2重量%とした。
[C content of finished product surface; 0.6 to 1.2% by weight]
Normally, the carbon concentration on the surface of the finished product after carbonitriding is required to be 0.8 or more in order to obtain the required hardness for the bearing, but in the present invention, it is possible to obtain both long life and wear resistance at the same time. Since the upper limit of the nitrogen content is increased, the minimum required surface carbon amount is 0.6% by weight. However, if its content exceeds 1.2% by weight, the amount of solid solution becomes excessive together with the nitrogen content, and depending on the processing conditions, more than necessary γ R is generated and the surface hardness is reduced, In some cases, precipitation may occur and the rolling life may be reduced. Therefore, the upper limit is set to a preferable value of 1.2% by weight.

[完成品表面のN含有量;0.2〜0.9重量%]
完成品表面の窒素量が0.2重量%未満の場合、窒素の固溶不足により寿命と耐磨耗性を同時に得ることが困難となってくる。従って、下限として好ましくは0.2重量%とする。一方、窒素量を増加していくと、窒化物が析出し耐磨耗性が向上する。しかし、Crの添加量によっては、耐磨耗性向上と共に研削加工性が悪化する傾向にあり、0.9重量%を越えるとCrの添加量を減らしても研削性が改善されない。
[N content of finished product surface; 0.2-0.9 wt%]
When the amount of nitrogen on the surface of the finished product is less than 0.2% by weight, it becomes difficult to simultaneously obtain life and wear resistance due to insufficient solid solution of nitrogen. Therefore, the lower limit is preferably 0.2% by weight. On the other hand, when the amount of nitrogen is increased, nitrides precipitate and wear resistance is improved. However, depending on the amount of Cr added, the wear resistance tends to be improved and the grindability tends to deteriorate. If the amount exceeds 0.9% by weight, the grindability is not improved even if the amount of Cr is reduced.

[Crと窒素の総含有量(Cr+N);0.4〜1.0重量%]
Crは窒素添加によって窒化物あるいは炭窒化物を形成して耐磨耗性を向上させる作用がある反面、研削性は低下する。本発明者らは、素材中のCrの含有率と表面層におけるN含有率の和が適正な範囲内であれば研削性及び耐磨耗性が共に良好となることを実験的に見いだした(実験内容については後述の実施例で詳しく述べる)。
結論として、表面層のN含有量が0.2重量%以上との条件で、上記Cr+N量が1.0重量%を越えると研削性が急激に悪化し、一方、0.4重量%未満になると耐磨耗性が著しく低下することが判明した。そこで、研削性と耐磨耗性とを同時に満足させ得るCr+N量の適正な範囲を0.4〜1.0重量%と規定した。Cr+N量がこの範囲内にあっても、表面層N含有量が0.2重量%以上で無い場合には十分な耐磨耗性が得られない。
[Total content of Cr and nitrogen (Cr + N); 0.4 to 1.0% by weight]
Cr has the effect of improving the wear resistance by forming a nitride or carbonitride by adding nitrogen, but the grindability is lowered. The inventors have experimentally found that if the sum of the Cr content in the material and the N content in the surface layer is within an appropriate range, both the grindability and wear resistance will be good ( The details of the experiment will be described in detail in Examples below).
In conclusion, if the Cr content in the surface layer is 0.2% by weight or more and the Cr + N amount exceeds 1.0% by weight, the grindability deteriorates rapidly, while the content becomes less than 0.4% by weight. As a result, it has been found that the wear resistance is significantly reduced. Therefore, an appropriate range of Cr + N amount that can satisfy the grindability and the wear resistance at the same time is defined as 0.4 to 1.0% by weight. Even if the amount of Cr + N is within this range, sufficient wear resistance cannot be obtained if the content of the surface layer N is not 0.2% by weight or more.

本願の請求項1に係る発明によれば、特に高速、低荷重の条件下で耐磨耗性に優れ、かつ低コストであるとともに長寿命の転がり軸受を提供することができるという効果が得られる。 According to the invention according to claim 1 of the present application, high-speed In particular, excellent wear resistance under conditions of low load, and the effect is obtained that with a low cost can be provided a rolling bearing of long lifetime It is done.

以下、本発明(すなわち、高速、低荷重の条件下で異物混入潤滑下での転がり寿命に加えて耐磨耗性と低コストとを両立させる場合)の実施例について説明する。
(1)軸受の合金鋼の材料成分と切削加工における工具寿命及び冷間型鍛造(据え込み加工)における型寿命との関係
実施例と比較例の各鋼種について、工具寿命と型寿命を比較した。
Hereinafter, an embodiment of the present invention (that is, in the case where both wear resistance and low cost in addition to the rolling life under lubrication mixed with foreign matters under high speed and low load conditions) will be described.
(1) Relationship between material composition of bearing alloy steel and tool life in cutting and die life in cold die forging (upsetting) Comparison of tool life and die life for each steel type in Examples and Comparative Examples .

工具寿命試験の条件:
切削機械:高速旋盤
工具:P10(JIS B 4053)
切り込み速度:180〜220m/sec
送り量:0.2〜0.3mm/rev
切り込み深さ:0.6〜1.0mm
「JIS B 4011」のバイト切削試験法に従って上記条件で各試料を切削し、バイトの逃げ面磨耗量が0.2mmに達するまでを工具寿命とした。
Tool life test conditions:
Cutting machine: High-speed lathe Tool: P10 (JIS B 4053)
Cutting speed: 180-220 m / sec
Feed amount: 0.2-0.3mm / rev
Cutting depth: 0.6 to 1.0 mm
Each sample was cut under the above conditions according to the tool cutting test method of “JIS B 4011”, and the tool life was defined as the tool flank wear amount reaching 0.2 mm.

型寿命試験の条件:
金型:V30(JIS B 4053)
据え込み率:15〜20%
加工性:毎分300〜400個
潤滑:燐酸亜鉛皮膜+潤滑油
各鋼種を上記条件で加工し、金型にクラックが発生したり破損したりして加工後のワークに傷や変形が出るまでを金型寿命とし、それ迄に加工されたワークの数で金型寿命を示した。
それぞれの結果を表に示す。
Mold life test conditions:
Mold: V30 (JIS B 4053)
Upsetting rate: 15-20%
Workability: 300 to 400 pieces per minute Lubrication: Zinc phosphate coating + lubricating oil Each steel type is processed under the above conditions until cracks or breakage occurs in the mold and the workpiece after processing becomes scratched or deformed The mold life is indicated by the number of workpieces processed so far.
The results are shown in Table 1 .

Figure 0003941782
Figure 0003941782

本発明の転がり軸受の合金鋼においては、全ての鋼種について工具寿命および型寿命が共に良好な結果が得られた。これに対して、比較例においては、N8及びN10はMn含有量あるいはC含有量が大きく、工具寿命および型寿命が共に低下し、しかもコストアップが生じた。したがって、N8、N10については以下の熱処理実験を行わない。   In the alloy steel of the rolling bearing of the present invention, good results were obtained in both tool life and die life for all steel types. On the other hand, in the comparative example, N8 and N10 had a large Mn content or C content, both the tool life and the mold life were reduced, and the cost was increased. Therefore, the following heat treatment experiment is not performed for N8 and N10.

(2)軸受合金鋼の熱処理品質
における実施例と比較例の各合金鋼(ただし、N8、N10は除外)について、次のF、G、Hの各熱処理を施し、熱処理品質を評価した。
〔熱処理F〕
温度840〜900℃で、1〜4時間、吸熱形ガス雰囲気中にエンリッチガス及びアンモニアガスを加えて、残留アンモニアが少なくとも0.1体積%以上含まれる条件で浸炭窒化を行い、そのままダイレクトに焼入れを行うか、または一旦ダイレクトに焼入れた後830〜860℃で30分間保持した後、二次焼入れを行い、引き続いて160〜180℃で2時間の焼戻しを行う。
(2) Heat treatment quality of bearing alloy steel The following F, G, and H heat treatments were performed on the alloy steels of the examples and comparative examples in Table 1 (excluding N8 and N10), and the heat treatment quality was evaluated. .
[Heat treatment F]
Enriched gas and ammonia gas are added to the endothermic gas atmosphere at a temperature of 840 to 900 ° C. for 1 to 4 hours, carbonitriding is performed under the condition that residual ammonia is contained at least 0.1% by volume or more, and directly quenched as it is. Or directly quenching and holding at 830 to 860 ° C. for 30 minutes, followed by secondary quenching and subsequent tempering at 160 to 180 ° C. for 2 hours.

〔熱処理G〕
温度870〜930℃で、1〜4時間、吸熱形ガス雰囲気中にエンリッチガス及びアンモニアガスを加えて、残留アンモニアが0.1体積%未満の条件で浸炭窒化を行い、そのままダイレクトに焼入れを行うか、または一旦ダイレクトに焼入れた後830〜860℃で30分間保持した後、二次焼入れを行い、引き続いて160〜180℃で2時間の焼戻しを行う。
[Heat treatment G]
Enriched gas and ammonia gas are added to the endothermic gas atmosphere at a temperature of 870 to 930 ° C. for 1 to 4 hours, and carbonitriding is performed under the condition that the residual ammonia is less than 0.1% by volume, and then directly quenched. Alternatively, after direct quenching and holding at 830 to 860 ° C. for 30 minutes, secondary quenching is performed, followed by tempering at 160 to 180 ° C. for 2 hours.

〔熱処理H〕
温度930〜960℃で、5〜7時間、通常の浸炭処理を行った後、室温まで放冷し、次いで830〜860℃で30分間保持した後、焼入れを行い、引き続いて160〜180℃で2時間の焼戻しを行う。
本実施例の合金鋼に行う熱処理は〔熱処理F〕であり、1〜4時間の短時間処理で十分な浸炭、浸窒深さが得られる。ほとんどの場合、ダイレクトに焼入れを行うのでコスト的に通常焼入れとほぼ同等となる。しかし、薄肉の軸受等においては焼入れ時の変形が非常に問題となるため、二次焼入れ又はプレスクエンチを施した方が変形が抑えられて不良率が減少し、研削コストも下がるのでコスト的にも有利になる場合もある。
[Heat treatment H]
After carrying out a normal carburizing treatment at a temperature of 930 to 960 ° C. for 5 to 7 hours, the mixture is allowed to cool to room temperature, and then kept at 830 to 860 ° C. for 30 minutes, followed by quenching, and subsequently at 160 to 180 ° C. Temper for 2 hours.
The heat treatment performed on the alloy steel of this example is [Heat Treatment F], and sufficient carburization and nitriding depth can be obtained in a short time treatment of 1 to 4 hours. In most cases, quenching is performed directly, so the cost is almost equivalent to that of normal quenching. However, since deformation at the time of quenching is a serious problem for thin-walled bearings, etc., secondary quenching or press quenching can suppress deformation, reduce the defective rate, and reduce the grinding cost. May also be advantageous.

また、アンモニア分析計により、残留アンモニア量を少なくとも0.1体積%以上となるように管理しないと、完成品表面に十分な窒素が与えられない。処理温度が900℃を越えるとアンモニアガスの分解速度が速くなり、十分な量のアンモニアを残留させることが難しく、浸窒性が低下するだけでなく、更に結晶粒度の粗大化などにより靭性が低下して軸受としての機能が低下する。また、処理温度が840℃以下になると十分な硬化層深さを得るための熱処理時間が長くなり、コストアップにつながることから、処理温度は840℃以上900℃以下とした。   Further, unless the residual ammonia amount is controlled to be at least 0.1% by volume or more with an ammonia analyzer, sufficient nitrogen cannot be given to the finished product surface. When the processing temperature exceeds 900 ° C, the decomposition rate of ammonia gas increases, making it difficult to leave a sufficient amount of ammonia, not only reducing nitrousability, but also lowering toughness due to coarsening of the crystal grain size. As a result, the function as a bearing is reduced. Moreover, since the heat processing time for obtaining sufficient hardened layer depth will become long when process temperature will be 840 degrees C or less, and it leads to a cost increase, process temperature was 840 degreeC or more and 900 degrees C or less.

に、熱処理品質と異物混入潤滑下におけるスラスト寿命試験の結果(前記スラスト型試験機を使用)及び研削性、耐磨耗性を示す。また、図3及び図4にCr+Nと研削性及び耐磨耗性との関係を示した。なお、寿命試験、研削試験、磨耗試験の条件は以下の通りである。
寿命試験の条件:
面圧:4900MPa
回転数:1000rpm
潤滑油:#68タービン油
混入異物:
組成;Fe3 C系粉
硬さ;HR C52
粒径;74〜147μm
混入量;潤滑油中に300ppm
Table 2 shows the results of the heat treatment quality, the result of the thrust life test under the contamination with foreign matters (using the thrust type tester), the grindability and the wear resistance. FIG. 3 and FIG. 4 show the relationship between Cr + N and grindability and wear resistance. The conditions for the life test, grinding test, and wear test are as follows.
Life test conditions:
Surface pressure: 4900 MPa
Rotation speed: 1000rpm
Lubricating oil: # 68 Turbine oil Contaminated foreign matter:
Composition: Fe 3 C powder Hardness: H R C52
Particle size: 74-147 μm
Inclusion amount: 300ppm in lubricating oil

研削試験の条件:
砥石:WA100
研削液:ソリュブルタイプ
研削周速:2800〜3000m/min
研削試験には呼び番号6206の内輪を用い、上記条件でその内輪軌道面を砥石で研削し、砥石のドレスを行うまでに研削した内輪個数を調査した。
Grinding test conditions:
Whetstone: WA100
Grinding fluid: Soluble type Grinding peripheral speed: 2800-3000m / min
In the grinding test, an inner ring having a nominal number 6206 was used. The inner ring raceway surface was ground with a grindstone under the above conditions, and the number of the inner rings ground before dressing the grindstone was investigated.

磨耗試験の条件:
試験機:二円筒式磨耗試験機(図2に示したもの)
荷重:50kgf
回転数:100rpm
滑り率:30%
潤滑油:S10
油温:60℃
磨耗試験には同一鋼種の二個の円筒試験片を用いて上記の条件で行い、それぞれの重量減小量(磨耗量)を測定し、その平均値を用いて磨耗率で示した。
磨耗試験は図2に示すような二円筒式磨耗試験機を用いて行い、上下に対向させた一対の円筒10にそれぞれ供試片Sを装着して、上から荷重Pを負荷しながら互いに接触状態で逆方向に低速で回転させて、両供試片Sの磨耗率(g/m)の平均値を求めるものである。特に、潤滑不良状態での磨耗特性を試験するべく、回転中は油膜が切れ易い低粘度の潤滑油を注ぐようにした。
Abrasion test conditions:
Tester: Two-cylinder wear tester (shown in Fig. 2)
Load: 50kgf
Rotation speed: 100rpm
Slip rate: 30%
Lubricating oil: S10
Oil temperature: 60 ° C
The wear test was carried out under the above conditions using two cylindrical test pieces of the same steel type, and the weight loss amount (wear amount) of each was measured, and the average value was used to indicate the wear rate.
The abrasion test is performed using a two-cylinder abrasion tester as shown in FIG. 2, and the specimens S are respectively attached to a pair of cylinders 10 which are vertically opposed to each other, and are in contact with each other while applying a load P from above. The average value of the wear rates (g / m) of both specimens S is obtained by rotating in the reverse direction at a low speed. In particular, in order to test the wear characteristics in a poorly lubricated state, a low-viscosity lubricating oil that easily breaks the oil film was poured during rotation.

Figure 0003941782
Figure 0003941782

において、No. 1A〜No. 8Aは実施例の合金鋼であるが、いずれも長寿命であり、耐磨耗性及び研削性も良好であるため、低コストな長寿命耐磨耗軸受を提供することができる。一方、比較例中のNo. 9A〜No. 15AはCr+Nが1.0重量%を越えた場合の例であり、研削性が非常に低下したために大きなコストアップを生じたものである。
また、No. 16AはMnやCrの含有量が最低必要とされる量に満たないために耐磨耗性及び寿命が改善されていない。No. 17Aは素材のC重量%が低いため短時間処理では十分な炭素が与えられず、γR が不足したために短寿命となった。No. 18A及びNo. 19Aは通常の浸炭例であるが、Nが含有されていないために耐磨耗性と寿命が改善されない。
In Table 2 , No. 1A to No. 8A are alloy steels of the examples, but all have a long life, and wear resistance and grindability are good, so a low-cost long-life wear-resistant bearing is provided. Can be provided. On the other hand, No. 9A to No. 15A in the comparative examples are examples in the case where Cr + N exceeds 1.0% by weight, and the grindability is greatly lowered, resulting in a large cost increase.
In addition, No. 16A is not improved in wear resistance and life because the content of Mn and Cr is less than the minimum required amount. No. 17A sufficient carbon is not given in the short-term treatment due to low C wt% of the material became short life for gamma R becomes insufficient. No. 18A and No. 19A are examples of normal carburizing, but since N is not contained, wear resistance and life are not improved.

No. 20A〜No. 22AはCr+Nが0.4重量%に満たない場合の比較例であり、十分な耐磨耗性が得られず、特にNo. 22Aにおいては表面近傍に必要以上のγR が生じたために寿命も短くなった。No. 23A及びNo. 24は低N浸炭窒化の例であるが、Crの含有量が高く、Nの固溶量も十分でないために研削性と耐磨耗性の関係が改善されていない。
No. 25Aは研削個数及び耐磨耗性に関しては比較例中では比較的良い結果が得られたものの、表面層の炭素量が多すぎることにより若干の初析(炭化物)が生じため転がり寿命が低下した。
No. 26Aは表面層の窒素量が多すぎるため研削加工性が低下した。
No. 27AはCr及び表面層の窒素量は個々には条件を満たしているものの、Cr+Nが下限値に満たないため耐磨耗性が改善されない。
No. 20A~No. 22A is a comparative example in which Cr + N is less than 0.4 wt%, sufficient wear resistance is obtained, of gamma R than necessary in the vicinity of the surface, especially in No. 22A As a result, the service life was shortened. No. 23A and No. 24 are examples of low N carbonitriding, but since the Cr content is high and the solid solution amount of N is not sufficient, the relationship between grindability and wear resistance is not improved.
With No. 25A, although comparatively good results were obtained in the comparative examples with respect to the number of grindings and wear resistance, the rolling life was increased due to the occurrence of some proeutectoids (carbides) due to the excessive amount of carbon in the surface layer. Declined.
In No. 26A, since the amount of nitrogen in the surface layer was too large, the grindability decreased.
In No. 27A, although Cr and the amount of nitrogen in the surface layer individually satisfy the conditions, the wear resistance is not improved because Cr + N is less than the lower limit.

(3)Cr+Nと研削性及び耐磨耗性
Cr+Nと研削性及び耐磨耗性との関係については、図3に示すように、Nを0.2重量%以上含有する場合、Crとの総含有量Cr+Nが1.0重量%を越えると研削性が急激に悪化する。一方、Cr+Nが0.4重量%未満になると、図4に示すように、耐磨耗性が著しく低下する。また、Cr+Nが0.4〜1.0重量%の範囲内であっても、Nが0.2重量%以上含有されていない場合には、十分な耐磨耗性が得られない。
(3) Cr + N and Grindability and Abrasion Resistance Regarding the relationship between Cr + N and grindability and wear resistance, as shown in FIG. When the content of Cr + N exceeds 1.0% by weight, the grindability deteriorates rapidly. On the other hand, when Cr + N is less than 0.4% by weight, the wear resistance is remarkably lowered as shown in FIG. Further, even if Cr + N is in the range of 0.4 to 1.0% by weight, sufficient wear resistance cannot be obtained if N is not contained in an amount of 0.2% by weight or more.

図5に、耐磨耗性と研削性との関係を示す。
Cr含有量、表面層のNの含有量、またはこれらの和Cr+Nの少なくともいずれかが本発明の範囲外である比較例では、耐磨耗性が向上することによって研削性が低下する傾向にあるが、本発明例では研削性、耐磨耗性共に良好な結果が得られた。比較例No. 17Aおよび25Aは、比較的本発明品に近い耐磨耗性及び研削性を示しているが、表面層の炭素量が本発明の範囲外のため前記のように転がり寿命が低下している。
FIG. 5 shows the relationship between wear resistance and grindability.
In a comparative example in which at least one of the Cr content, the N content in the surface layer, or the sum of these Cr + N is outside the scope of the present invention, the wear resistance is improved and the grindability tends to be lowered. However, in the example of the present invention, good results were obtained in both grindability and wear resistance. Comparative Examples No. 17A and 25A show wear resistance and grindability relatively similar to those of the present invention, but the rolling life is reduced as described above because the carbon content of the surface layer is outside the scope of the present invention. is doing.

よって、Nを0.2重量%以上含有し、さらにCr+Nを0.4〜1.0重量%の範囲にすることにより、研削性と耐磨耗性とが共にすぐれた低コストな転がり軸受を提供することが可能になる。
なお、上記の全ての本発明は、各種転がり軸受(玉軸受、円筒ころ軸受、円すいころ軸受、球面ころ軸受等。ラジアル型、スラスト型は問わない)に適用することができる。
Therefore, by including N in an amount of 0.2% by weight or more and further making Cr + N in the range of 0.4 to 1.0% by weight, a low-cost rolling bearing having both excellent grindability and wear resistance is obtained. It becomes possible to provide.
All the above-mentioned present inventions can be applied to various rolling bearings (ball bearings, cylindrical roller bearings, tapered roller bearings, spherical roller bearings, etc., regardless of radial type or thrust type).

転がり軸受部材の表面窒素濃度と磨耗率との関係を表したグラフである。It is a graph showing the relationship between the surface nitrogen concentration of a rolling bearing member and the wear rate. 二円筒式磨耗試験機の概念図である。It is a conceptual diagram of a two-cylinder abrasion tester. 実施例と比較例とにおけるCrとNの総含有量と研削性との関係を表したグラフである。It is a graph showing the relationship between the total content of Cr and N and grindability in Examples and Comparative Examples. 実施例と比較例とにおけるCrとNの総含有量と耐磨耗性との関係を表したグラフである。It is a graph showing the relationship between the total content of Cr and N and the wear resistance in Examples and Comparative Examples. 実施例と比較例とにおける耐磨耗性と研削性との関係を表したグラフである。It is a graph showing the relationship between abrasion resistance and grindability in the examples and comparative examples.

符号の説明Explanation of symbols

10 円筒   10 cylinder

Claims (1)

内輪、外輪、および転動体の少なくとも一つが、
C :0.3〜0.9重量%
Si:0.1〜0.7重量%
Mn:0.5〜1.5重量%
Cr:0.1〜0.8重量
含有し残部Feおよび不可避不純物元素からなる合金鋼で形成され、完成品表面層の炭素量および窒素量が
C :0.6〜1.2重量%
N :0.2〜0.9重量%
であり、更に、Crと窒素の総含有量(Cr+N)が0.4〜1.0重量%であることを特徴とする転がり軸受。
At least one of the inner ring, the outer ring, and the rolling element,
C: 0.3 to 0.9 % by weight
Si: 0.1 to 0.7 % by weight
Mn: 0.5 to 1.5% by weight
Cr: 0.1 to 0.8 % by weight
And the balance of carbon and nitrogen in the surface layer of the finished product.
C: 0.6 to 1.2 % by weight
N: 0.2 to 0.9 % by weight
Der is, furthermore, a rolling bearing total content of Cr and nitrogen (Cr + N) is characterized by 0.4 to 1.0 wt% der Rukoto.
JP2004026069A 1994-09-29 2004-02-02 Rolling bearing Expired - Lifetime JP3941782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026069A JP3941782B2 (en) 1994-09-29 2004-02-02 Rolling bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP23549394 1994-09-29
JP32637994 1994-12-27
JP5233895 1995-03-13
JP2004026069A JP3941782B2 (en) 1994-09-29 2004-02-02 Rolling bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24218195A Division JP3538995B2 (en) 1994-09-29 1995-09-20 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2004205047A JP2004205047A (en) 2004-07-22
JP3941782B2 true JP3941782B2 (en) 2007-07-04

Family

ID=32830953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026069A Expired - Lifetime JP3941782B2 (en) 1994-09-29 2004-02-02 Rolling bearing

Country Status (1)

Country Link
JP (1) JP3941782B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046286A (en) * 1996-07-26 1998-02-17 Nippon Seiko Kk Rolling bearing
JP2006132750A (en) * 2004-11-09 2006-05-25 Ntn Corp Hub bearing
JP4546844B2 (en) * 2005-01-24 2010-09-22 Ntn株式会社 Thrust bearing washer manufacturing method and thrust bearing manufacturing method
JP2007218322A (en) * 2006-02-15 2007-08-30 Ntn Corp Rolling bearing
JP4904106B2 (en) * 2006-07-25 2012-03-28 Ntn株式会社 Rolling parts
JP6788817B2 (en) * 2015-10-14 2020-11-25 大同特殊鋼株式会社 Manufacturing method of vacuum carburized nitrided parts
JP6600262B2 (en) * 2016-02-19 2019-10-30 株式会社ジェイテクト Rolling sliding member, rolling bearing using the same, and method for manufacturing rolling sliding member

Also Published As

Publication number Publication date
JP2004205047A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3538995B2 (en) Rolling bearing
US6325867B1 (en) Rolling bearing and heat treatment method therefor
US6342109B1 (en) Rolling bearing
US5338377A (en) Ball-and-roller bearing
JP3593668B2 (en) Rolling bearing
US5660647A (en) Rolling bearing with improved wear resistance
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
GB2293214A (en) Rolling bearing
GB2345296A (en) Rolling member and production
JP2002115030A (en) Rolling bearing for spindle of machine tool
JP2885829B2 (en) Rolling bearing
US20120222778A1 (en) Rolling/sliding part and production method thereof
EP0718513A1 (en) Mechanical part having rolling elements
JPH08303470A (en) Rolling bearing
JP3941782B2 (en) Rolling bearing
US5415705A (en) Rolling bearing
EP1099869B1 (en) Antifriction bearing
US6171411B1 (en) Rolling bearing
JPH03153842A (en) Rolling bearing
JPH04280941A (en) Steel for rolling parts
JP2004076823A (en) Rolling device
JP2006045591A (en) Tapered roller bearing
JPH11257357A (en) Race for rolling bearing
JP2003183771A (en) Rolling bearing
JPH11193823A (en) Rolling bearing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

EXPY Cancellation because of completion of term