JP2006118575A - Rolling bearing for windmill - Google Patents

Rolling bearing for windmill Download PDF

Info

Publication number
JP2006118575A
JP2006118575A JP2004306023A JP2004306023A JP2006118575A JP 2006118575 A JP2006118575 A JP 2006118575A JP 2004306023 A JP2004306023 A JP 2004306023A JP 2004306023 A JP2004306023 A JP 2004306023A JP 2006118575 A JP2006118575 A JP 2006118575A
Authority
JP
Japan
Prior art keywords
rolling
roller
windmill
life
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306023A
Other languages
Japanese (ja)
Inventor
Yutaka Kanda
裕 神田
Takashi Sakaguchi
尚 坂口
Kenji Yamamura
賢二 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004306023A priority Critical patent/JP2006118575A/en
Publication of JP2006118575A publication Critical patent/JP2006118575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing for a windmill for achieving a longer life by giving less damage to the surface of another member when used in the rotation supporting part of the windmill under the conditions of high load, vibration/impact load, non-load and acceleration/deceleration. <P>SOLUTION: The rolling bearing for the windmill to be used in the rotation supporting part of the windmill comprises a plurality of rolling elements 3 rollingly arranged between an inner ring 1 and an outer ring 2. Si content in the rolling element 3 is 0.5 wt% or more and the amount of austenite residing on the surface of the rolling element 3 is less than 20 vol%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば風車のロータや、風車の翼と発電機との間に配置される増速機等の回転支持部に好適に用いられる風車用転がり軸受に関する。   The present invention relates to a rolling bearing for a wind turbine that is suitably used for a rotation support portion of a rotor of a wind turbine or a speed increaser disposed between a wind turbine blade and a generator.

図2は風車の一例であるプロペラ型風車を示したものであり、この風車30は、風力エネルギを取り込む翼51とロータ52、ハウジング53、及びハウジング53を地上約50mの高さに設置するタワー54を備えており、ハウジング53の内部には、図3に示すように、増速機40及び発電機55が収納されている(例えば特許文献1参照)。
増速機40は、図4に示すように、遊星歯車軸42aを支持するキャリア(図示せず)が一体となった入力軸41、遊星歯車42、内歯車43及び太陽歯車44を備えた低速段歯車列、太陽歯車軸45にスプライン46で結合された円筒歯車47、及び中間軸49と一体に配置された円筒歯車48を備えた中速段歯車列、中間軸49の端部に配置された円筒歯車50、及び出力軸52に配置された円筒歯車51を備えた高速段歯車列、これらの歯車列を複数の転がり軸受を介して支持するケース53、及び中間軸49の先端に配置された油ポンプ54等を具備する。
FIG. 2 shows a propeller type windmill which is an example of a windmill. This windmill 30 is a tower in which a blade 51 for receiving wind energy, a rotor 52, a housing 53, and a housing 53 are installed at a height of about 50 m above the ground. As shown in FIG. 3, the speed increaser 40 and the generator 55 are accommodated in the housing 53 (see, for example, Patent Document 1).
As shown in FIG. 4, the speed increaser 40 includes an input shaft 41, a planetary gear 42, an internal gear 43, and a sun gear 44 in which a carrier (not shown) that supports the planetary gear shaft 42 a is integrated. An intermediate speed gear train including a stepped gear train, a cylindrical gear 47 coupled to the sun gear shaft 45 by a spline 46, and a cylindrical gear 48 disposed integrally with the intermediate shaft 49, is disposed at the end of the intermediate shaft 49. A high-speed gear train provided with the cylindrical gear 50 and the cylindrical gear 51 arranged on the output shaft 52, a case 53 for supporting these gear trains via a plurality of rolling bearings, and a tip of the intermediate shaft 49. Oil pump 54 and the like.

そして、風力エネルギを取り込んで翼51が回転すると、その回転はロータ52より増速機40の入力軸41に伝達され、入力軸41の回転は低速段歯車列、中速段歯車列及び高速段歯車列により増速され出力軸52に伝達される。出力軸52の回転により発電機55が回転し、電力を発生する。
なお、風車30は風向制御により風の吹いてくる方向に向きを変え、風速の変化は翼51を油圧制御することにより、定格回転数で安定した回転を得ることができるが、発電に必要な風速は5m/sから20m/sの間であり、風速の変化が定格出力を変化させる。また、風速が20m/s以上では風車30の運転は停止され、5m/s以下では発電を行わずに風まかせの不規則な回転(遊転)となる。
When wind energy is taken in and the blades 51 rotate, the rotation is transmitted from the rotor 52 to the input shaft 41 of the speed increaser 40, and the rotation of the input shaft 41 rotates at a low speed gear train, a medium speed gear train, and a high speed gear train. The speed is increased by the gear train and transmitted to the output shaft 52. The generator 55 is rotated by the rotation of the output shaft 52 to generate electric power.
The wind turbine 30 changes its direction in the direction in which the wind blows by controlling the wind direction, and the change in the wind speed can be stably controlled at the rated rotation speed by hydraulically controlling the blades 51, but is necessary for power generation. The wind speed is between 5 m / s and 20 m / s, and the change in the wind speed changes the rated output. When the wind speed is 20 m / s or more, the operation of the windmill 30 is stopped, and when the wind speed is 5 m / s or less, the wind turbine is irregularly rotated (swing) without generating power.

ところで、風車のロータや増速機の回転支持部に用いられる転がり軸受は、高面圧下で繰り返しせん断応力を受けるという厳しい条件で使用されるため、そのせん断応力に耐え得る転がり疲労寿命を確保する必要がある。
そのために、従来においては、転がり軸受の軌道輪(内外輪)及び転動体の素材に高炭素クロム鋼(SUJ2)を用い、これに焼入れ、焼戻し処理を施すか、又はSCR420,SCM420,SAE4320H等の肌焼鋼を用い、これに浸炭若しくは浸炭窒化処理、焼入れ、焼戻し処理を施すことにより、表面硬さをHv650〜800になるようにして必要とされる寿命を確保している。
By the way, since the rolling bearing used for the rotor of a windmill and the rotation support part of a gearbox is used on severe conditions of receiving repeated shear stress under high surface pressure, it ensures a rolling fatigue life that can withstand the shear stress. There is a need.
Therefore, conventionally, high-carbon chromium steel (SUJ2) is used for the raceway (inner and outer rings) and rolling elements of the rolling bearing, and this is subjected to quenching and tempering, or SCR420, SCM420, SAE4320H, etc. By using case-hardened steel and subjecting it to carburizing or carbonitriding, quenching, and tempering, the required life is ensured by setting the surface hardness to Hv650-800.

また、近年では、異物混入の潤滑環境における転がり軸受の寿命延長を図るため、素材にSiおよびMnの含有量を高くした鋼を用い、この素材に浸炭窒化処理、焼入れ、焼戻し処理を行うことによって表面部の残留オーステナイト量を20〜50体積%としたものを、寿命が問題となる転動部材(内輪、外輪または転動体)に用いて、転がり軸受としての寿命を確保する技術が開示されている(例えば特許文献2参照)。   Also, in recent years, in order to extend the life of rolling bearings in a lubrication environment contaminated with foreign matter, steel with a high Si and Mn content is used as the material, and carbonitriding, quenching, and tempering are performed on this material. A technique is disclosed in which the amount of retained austenite in the surface portion is 20 to 50% by volume is used for a rolling member (inner ring, outer ring or rolling element) whose life is a problem, and the life as a rolling bearing is ensured. (For example, refer to Patent Document 2).

また、表面損傷は転動体同士の金属接触によるすべり、転動体と内外輪間に生じるスキュー等によるすべりが原因となり、また、この表面損傷は所謂エッジロードや過大接触圧力によって更に促進されるが、これらのエッジロードや過大接触圧力に対しては転動体(例えば総ころ軸受のころ)の転動面及び端面をクラウニング形状にすることが有効であることが知られている。   In addition, surface damage is caused by slippage due to metal contact between the rolling elements, slip due to skew generated between the rolling elements and the inner and outer rings, and this surface damage is further promoted by so-called edge load and excessive contact pressure, It is known that it is effective to make the rolling surfaces and end surfaces of rolling elements (for example, rollers of full roller bearings) crowned against these edge loads and excessive contact pressures.

転動体にクラウニング形状を施す技術は公知の技術であり、クラウニングの形状はP.MJohnsやR.Goharの論文にも紹介されている所謂対数クラウニングが著名であるが、実際にこの対数クラウニングをころに施したとしても必ずしも長寿命となるとは限らないことがあるため、直線や円弧の組合せからなるクラウニング形状が提案され、該クラウニング形状を数式で規定することにより、軸受の長寿命化を図っている(例えば特許文献3参照)。
特開平10−96463号公報 特開平7−190072号公報 特開2001−65574号公報
The technique for applying the crowning shape to the rolling elements is a known technique. MJohns and R.M. The so-called logarithmic crowning introduced in Gohar's paper is famous, but even if this logarithmic crowning is actually applied to the roller, it may not always be a long life, so it consists of a combination of straight lines and arcs. A crowning shape has been proposed, and the life of the bearing is extended by defining the crowning shape with a mathematical expression (for example, see Patent Document 3).
Japanese Patent Laid-Open No. 10-96463 Japanese Patent Laid-Open No. 7-190072 JP 2001-65574 A

風力発電装置に適用される風車は、近年、発電量の増大化が進められるとともに、軽量化が進められている。これに伴い、風車のロータや増速機に用いられる転がり軸受は、ますます高荷重の条件下で使用され、更に、突風や台風時においては、大きな振動や衝撃荷重が転がり軸受に作用するため、軸受内外輪と転動体間との金属接触によるすべりや転動体同士の金属接触(例えば総ころ軸受の場合)によるすべりに起因する表面損傷が通常より発生しやすく、上記特許文献2及び特許文献3では、十分な表面損傷軽減効果を得ることが難しい。   In recent years, wind turbines applied to wind power generators have been increasing in power generation and weight reduction. As a result, rolling bearings used in wind turbine rotors and gearboxes are used under increasingly high load conditions, and in addition, large vibrations and impact loads act on rolling bearings during gusts and typhoons. Further, surface damage due to slippage due to metal contact between the inner and outer rings of the bearing and the rolling elements and slippage due to metal contact between the rolling elements (for example, in the case of a full roller bearing) is more likely to occur. 3, it is difficult to obtain a sufficient surface damage reduction effect.

一方で、風力が微弱で転がり軸受にほとんど負荷が作用しない場合や、風速が常に変化して軸受回転が加減速される場合においては、転動体は軌道面に対して滑りを伴いながら回転するか、若しくは完全に滑る状態となって表面損傷が発生し易くなり、軸受寿命を著しく低下させる原因になる。
風力発電に適用される風車のロータや増速機に用いられる転がり軸受は、通常、地上約50m以上の場所に設置されることから、転がり軸受に損傷が生じた場合には、多額の交換費用が発生するため、風車用転がり軸受の表面損傷軽減対策が求められている。
On the other hand, if the wind force is weak and there is almost no load acting on the rolling bearing, or if the wind speed is constantly changing and the rotation of the bearing is accelerated or decelerated, does the rolling element rotate while sliding against the raceway surface? Or, it becomes slippery and surface damage is likely to occur, causing a significant decrease in bearing life.
Rolling bearings used in wind turbine rotors and gearboxes that are applied to wind power generation are usually installed at a location about 50 m or more above the ground, so if the rolling bearings are damaged, a large replacement cost is required. Therefore, countermeasures to reduce the surface damage of the rolling bearing for wind turbines are required.

本発明はこのような技術的要請に応えてなされたものであり、内輪及び外輪と転動体との摩擦を低減して金属接触によるすべりを抑制することで、風車の回転支持部で高負荷、振動・衝撃荷重、無負荷、加減速の条件で使用される場合においても、相手部材の表面損傷を軽減することができ、これにより、相手部材の寿命、ひいては転がり軸受の寿命を延長することができる風車用転がり軸受を提供することを目的とする。   The present invention has been made in response to such technical demands, and by reducing the friction between the inner ring and outer ring and the rolling elements and suppressing slippage due to metal contact, a high load is applied at the rotation support portion of the windmill. Even when used under conditions of vibration / impact load, no load, and acceleration / deceleration, it is possible to reduce the surface damage of the mating member, thereby extending the life of the mating member and hence the life of the rolling bearing. An object of the present invention is to provide a rolling bearing for a wind turbine.

上記目的を達成するために、請求項1に係る発明は、内輪と外輪との間に複数の転動体が転動可能に配設され、風車の回転支持部に用いられる風車用転がり軸受であって、
前記転動体のSi含有量を0.5重量%以上とすると共に、該転動体の表面部の残留オーステナイト量を20体積%未満としたことを特徴とする。
請求項2に係る発明は、請求項1において、前記転動体は、浸炭窒化処理及び焼入れ処理が施された後、200〜300°Cの範囲で高温焼戻し処理が施されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a rolling bearing for a windmill in which a plurality of rolling elements are rotatably arranged between an inner ring and an outer ring, and used for a rotation support portion of the windmill. And
The Si content of the rolling element is 0.5% by weight or more, and the amount of retained austenite on the surface of the rolling element is less than 20% by volume.
The invention according to claim 2 is characterized in that, in claim 1, the rolling element is subjected to a high-temperature tempering process in a range of 200 to 300 ° C. after being subjected to a carbonitriding process and a quenching process. To do.

請求項3に係る発明は、請求項1又は2において、前記転動体の表面粗さを前記内輪及び前記外輪の内の少なくとも一方の軌道面の表面粗さより小さくしたことを特徴とする。 請求項4に係る発明は、請求項1〜3のいずれか一項において、前記転動体の表面部のN濃度を0.2〜2.0重量%としたことを特徴とする。
請求項5に係る発明は、請求項1又は2において、前記転動体としてころを用いて総ころ軸受としたことを特徴とする。
According to a third aspect of the present invention, in the first or second aspect, the surface roughness of the rolling element is smaller than the surface roughness of at least one of the inner ring and the outer ring. The invention according to a fourth aspect is characterized in that, in any one of the first to third aspects, the N concentration of the surface portion of the rolling element is 0.2 to 2.0% by weight.
The invention according to claim 5 is characterized in that, in claim 1 or 2, a roller is used as the rolling element to form a full roller bearing.

本発明によれば、転動体のSi含有量を0.5重量%以上とし、且つ転動体の表面部の残留オーステナイト量を20体積%未満とすることにより、内輪及び外輪と転動体との摩擦を低減して金属接触によるすべりを抑制することができ、これにより、風車の回転支持部で高負荷、振動・衝撃荷重、無負荷、加減速の条件で使用される場合においても、相手部材の表面損傷を軽減することができ、この結果、相手部材の寿命、ひいては転がり軸受の寿命を延長することができる。   According to the present invention, the friction between the inner ring and the outer ring and the rolling element is achieved by setting the Si content of the rolling element to 0.5% by weight or more and the amount of retained austenite on the surface of the rolling element to less than 20% by volume. Slip due to metal contact can be suppressed, and even when used at high load, vibration / impact load, no load, acceleration / deceleration at the rotation support part of the wind turbine, Surface damage can be reduced, and as a result, the life of the mating member, and thus the life of the rolling bearing can be extended.

また、表面N濃度が0.2〜2.0重量%となるように浸炭窒化処理、及び焼入れ処理を行った後、200〜300°Cで高温焼戻し処理を施すことにより、前記摩擦低減効果がより増大して、更なる寿命延長を図ることができる。
更に、転動体の表面粗さを内輪及び外輪の内の少なくとも一方の軌道面の表面粗さより小さくすることにより、更なる寿命延長効果を得ることができる。
Moreover, after performing carbonitriding and quenching so that the surface N concentration is 0.2 to 2.0% by weight, the friction reducing effect is obtained by performing high temperature tempering at 200 to 300 ° C. The life can be further increased and the life can be further extended.
Further, by making the surface roughness of the rolling element smaller than the surface roughness of at least one of the inner ring and the outer ring, a further life extension effect can be obtained.

更に、総ころ軸受のように保持器がないタイプの軸受においては、転動体同士の金属接触による表面損傷が顕著となるが、この場合においても、本発明によって摩擦特性を改善してすべりを抑制することで、表面損傷による軸受寿命の低下を防止することができる。 この場合、内輪及び外輪の内の少なくとも一方の軌道輪を転動体と異なる材料で形成することで、寿命延長の相乗効果が得られ、長寿命な総ころ軸受を提供することが可能となる。   Furthermore, in bearings that do not have a cage, such as full-roller bearings, surface damage due to metal contact between rolling elements becomes significant, but even in this case, the present invention improves friction characteristics and suppresses slippage. By doing so, it is possible to prevent a decrease in bearing life due to surface damage. In this case, by synthesizing at least one of the inner ring and the outer ring with a material different from that of the rolling elements, a synergistic effect of life extension can be obtained, and a long-life full complement roller bearing can be provided.

以下、本発明の実施形態の一例を図を参照して説明する。
本発明の実施の形態の一例である風車用総ころ軸受は、図1に示すように、内輪1の軌道面1Aと外輪2の軌道面2Aとの間に複数のころ(転動体)3が転動自在に配設され、内輪1の外径面の軸方向両端部及び外輪2の内径面の軸方向一端部にはそれぞれころ3を保持するつば部10,20が形成され、外輪2の内径面の軸方向の他端部には止め輪21が取り付けられている。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a full roller bearing for a wind turbine that is an example of an embodiment of the present invention includes a plurality of rollers (rolling elements) 3 between a raceway surface 1 </ b> A of an inner ring 1 and a raceway surface 2 </ b> A of an outer ring 2. Collar portions 10 and 20 for holding rollers 3 are formed at both ends in the axial direction of the outer diameter surface of the inner ring 1 and at one end portion in the axial direction of the inner diameter surface of the outer ring 2, respectively. A retaining ring 21 is attached to the other axial end of the inner diameter surface.

ここで、この実施の形態では、ころ3が、Si含有量:0.50〜2.00重量%、C含有量:0.30〜1.20重量%、Mn含有量:0.20〜2.00重量%、Cr含有量:0.50〜2.00重量%、O含有量:12ppm以下、残部がFeおよび不可避不純物である鋼からなる素材を所定形状に加工した後、浸炭窒化処理及び焼入れ処理を施し、更に、200〜300°Cでの焼戻し処理を施すことにより、表面部(転動面の最表面から例えば1μmまでの範囲)3Aにおいて、N濃度:0.2〜2.0重量%、C濃度:0.6〜2.5重量%、硬さ:Hv650以上、残留オーステナイト量:20体積%未満(0体積%を超える)とされている。   Here, in this embodiment, the roller 3 has an Si content of 0.50 to 2.00% by weight, a C content of 0.30 to 1.20% by weight, and an Mn content of 0.20 to 2. 0.001% by weight, Cr content: 0.50 to 2.00% by weight, O content: 12 ppm or less, and after the material made of steel with the balance being Fe and inevitable impurities is processed into a predetermined shape, carbonitriding and By performing quenching treatment and further tempering treatment at 200 to 300 ° C., N concentration: 0.2 to 2.0 at the surface portion (range from the outermost surface of the rolling surface to 1 μm, for example) 3A % By weight, C concentration: 0.6 to 2.5% by weight, hardness: Hv 650 or more, residual austenite amount: less than 20% by volume (greater than 0% by volume).

これにより、風力発電に適用される風車のロータや増速機の回転支持部で、高負荷、振動・衝撃荷重、無負荷、加減速の条件で使用され、内輪1及び外輪2ところ3との金属接触によるすべりやころ3同士の金属接触によるすべりに起因する表面損傷が生じやすい場合において、内輪1及び外輪2ところ3と間、及びころ3同士の摩擦特性が改善されてすべりを抑制することができる。
この結果、接線力による応力集中部からのクラックの発生、伝播を遅延させて相手部材である内外輪1,2の軌道面1A,2Aの表面損傷を軽減することができると共に、ころ3自身も強化され、軸受の長寿命化を低コストで実現することができる。
As a result, it is used under the conditions of high load, vibration / impact load, no load, acceleration / deceleration in the rotor support of windmills and gearboxes applied to wind power generation. In the case where surface damage due to slippage due to metal contact or slippage due to metal contact between rollers 3 is likely to occur, friction characteristics between inner ring 1 and outer ring 2 between 3 and roller 3 are improved to suppress slippage. Can do.
As a result, it is possible to reduce the surface damage of the raceway surfaces 1A and 2A of the inner and outer rings 1 and 2 which are the counterpart members by delaying the generation and propagation of cracks from the stress concentration portion due to the tangential force, and also the rollers 3 themselves. The bearing life can be extended at a low cost.

以下、本発明の数値限定の臨界的意義について説明する。
〔転動体素材のSi含有量:0.50〜2.00重量%〕
Si(ケイ素)は、製鋼時の脱酸剤として作用するとともに、焼戻し軟化抵抗性を向上させるために必要な元素である。また、鋼に浸炭窒化処理を施す場合に、転動体の表面部のN濃度を高くする作用もある。
本発明者らが実験を行った結果、転動体の素材としてSi含有量が0.50重量%以上の鋼を用いて、浸炭窒化処理、焼入れ処理および200〜300°Cの高温焼戻し処理を施すことにより、軌道輪の表面損傷を抑制する効果が得られることを確認した。
従って、転動体素材のSi含有量の下限は0.50重量%、好ましくは0.80重量%とする。
一方、Siを過剰に含有すると、素材の被削性を低下させてコストの増大を招く虞れがあるので、Si含有量の上限は好ましくは2.00重量%、より好ましくは1.50重量%とする。
Hereinafter, the critical significance of the numerical limitation of the present invention will be described.
[Si content of rolling element material: 0.50 to 2.00% by weight]
Si (silicon) is an element necessary for improving the resistance to temper softening while acting as a deoxidizer during steelmaking. In addition, when carbonitriding is performed on steel, there is also an effect of increasing the N concentration in the surface portion of the rolling element.
As a result of the experiments conducted by the present inventors, a carbonitriding treatment, a quenching treatment, and a high-temperature tempering treatment at 200 to 300 ° C. are performed using a steel having a Si content of 0.50% by weight or more as a rolling element material. As a result, it was confirmed that the effect of suppressing the surface damage of the raceway was obtained.
Therefore, the lower limit of the Si content of the rolling element material is 0.50% by weight, preferably 0.80% by weight.
On the other hand, if Si is contained excessively, the machinability of the material may be reduced and the cost may increase, so the upper limit of the Si content is preferably 2.00% by weight, more preferably 1.50% by weight. %.

〔転動体素材のC含有量:0.30〜1.20重量%〕
C(炭素)は、基地をマルテンサイト化することにより、強度を増加させるために必要な元素である。本発明では、転動体の表面部においては、浸炭窒化処理によってNと同時にCを添加することが可能であるため、素材のC含有量は、完成状態での転動体の心部が必要な強度を確保できる量であれば良いので、C含有量の下限は0.30重量%が好ましく、より好ましくは、転動体の心部硬さとしてはHv650以上とすることが望ましいため、C含有量の下限は0.80重量%とする。
但し、素材のC含有量が余りに多すぎると、製鋼の段階で粗大な炭化物が生成して転動疲労特性を低下させる虞れがあるため、C含有量の上限は1.20重量%とすることが好ましい。
[C content of rolling element material: 0.30 to 1.20% by weight]
C (carbon) is an element necessary for increasing the strength by converting the base into martensite. In the present invention, since it is possible to add C at the same time as N by carbonitriding in the surface portion of the rolling element, the C content of the material has the strength required for the core of the rolling element in the completed state. Therefore, the lower limit of the C content is preferably 0.30% by weight, and more preferably, the core hardness of the rolling element is preferably Hv650 or more. The lower limit is 0.80% by weight.
However, if the C content of the material is too large, coarse carbides may be generated at the steel making stage and the rolling fatigue characteristics may be reduced, so the upper limit of the C content is 1.20% by weight. It is preferable.

〔転動体素材のMn含有量:0.20〜2.00重量%〕
Mn(マンガン)は製鋼時の脱酸剤および脱硫剤として必要な元素であり、その効果を十分に得るためには0.20重量%以上含有することが好ましい。また、Mnは焼入れ性の向上に有効な元素でもあるため、0.25重量%以上含有することがより好ましい。
但し、Mnの含有量を余りに多くし過ぎると、非金属介在物が多くなり過ぎて転がり寿命特性が低下する虞れがあり、また、素材の鍛造性および被削性等の機械加工性が低下するため、Mn含有量の上限は2.00重量%とするのが好ましい。
[Mn content of rolling element material: 0.20 to 2.00% by weight]
Mn (manganese) is an element necessary as a deoxidizing agent and a desulfurizing agent at the time of steelmaking, and is preferably contained in an amount of 0.20% by weight or more in order to obtain sufficient effects. Moreover, since Mn is an element effective for improving hardenability, it is more preferable to contain 0.25% by weight or more.
However, if the Mn content is excessively large, non-metallic inclusions may increase so that the rolling life characteristics may be deteriorated, and the machinability such as the forgeability and machinability of the material is deteriorated. Therefore, the upper limit of the Mn content is preferably 2.00% by weight.

〔転動体素材のCr含有量:0.50〜2.00重量%〕
Cr(クロム)は焼入れ性及び焼戻し軟化抵抗性を向上させるのに有効な元素であり、基地を強化して転動疲労寿命特性を向上する作用がある。また、微細で高硬度な炭化物や炭窒化物を形成して、耐摩耗性を向上する働きもある。さらに、浸炭窒化層のC濃度を高める作用があり、浸炭窒化特性の向上にも有効な元素である。これらの作用、効果を十分に発揮させるためには、Cr含有量の下限を0.50重量%とするのが好ましい。
但し、Crを多量に添加してもその効果が飽和してしまうばかりか、表面部に不動態膜が形成されて、返って浸炭窒化特性を阻害する虞れがあるため、Cr含有量の上限は2.00重量%とすることが好ましい。
[Cr content of rolling element material: 0.50 to 2.00% by weight]
Cr (chromium) is an element effective for improving hardenability and temper softening resistance, and has the effect of strengthening the base and improving the rolling fatigue life characteristics. It also has the function of improving wear resistance by forming fine and high hardness carbides and carbonitrides. Furthermore, it has the effect of increasing the C concentration of the carbonitriding layer, and is an effective element for improving the carbonitriding characteristics. In order to fully exhibit these actions and effects, the lower limit of the Cr content is preferably 0.50% by weight.
However, even if a large amount of Cr is added, not only the effect is saturated, but also a passive film is formed on the surface portion, and there is a possibility that the carbonitriding property may be adversely affected, so the upper limit of Cr content Is preferably 2.00% by weight.

〔転動体素材のO含有量:12ppm以下〕
O(酸素)は、転がり疲れ寿命特性に有害な酸化物系の非金属介在物を形成するため、極力その含有量を低くする必要がある。従って、O含有量の上限は好ましくは12ppm、より好ましくは9ppmとする。
[O content of rolling element material: 12 ppm or less]
Since O (oxygen) forms oxide-based non-metallic inclusions that are harmful to rolling fatigue life characteristics, it is necessary to reduce the content thereof as much as possible. Therefore, the upper limit of the O content is preferably 12 ppm, more preferably 9 ppm.

〔不可避不純物について〕
上記合金元素以外にも、製鋼上不可避な量の不純物元素(例えばP,S,Ni,Cu,Mo,V,Al,Ti,Nb等)が含まれる。
また、MoやV等の炭化物形成元素は、浸炭窒化処理によって微細で高硬度な炭窒化物を形成して耐摩耗性の向上に有効であるため、コストが許す限り微量に添加しても良いが、添加量上限は合計で2.00重量%とすることが好ましい。
[About inevitable impurities]
In addition to the above alloy elements, impurity elements inevitable in steelmaking (for example, P, S, Ni, Cu, Mo, V, Al, Ti, Nb, etc.) are included.
Further, carbide forming elements such as Mo and V are effective for improving wear resistance by forming fine and high hardness carbonitride by carbonitriding, and may be added in a trace amount as long as the cost permits. However, the upper limit of the amount added is preferably 2.00% by weight in total.

〔熱処理について〕
まず、上述した鋼からなる素材を、鍛造又は切削によりころの形状に加工した後、雰囲気温度800〜860°Cで、RXガス+エンリッチガス+アンモニアガスを導入した炉内で数時間加熱保持することで、ころの表面部のN濃度が0.2〜2.0重量%となるような条件で浸炭窒化処理を行う。
ころの表面部のN濃度が0.2重量%未満となると、ころと接触する軌道輪の表面損傷を抑制する効果が十分に得られない場合がある。一方、ころの表面部のN濃度は高くなる程、軌道輪の表面損傷を抑制する効果が高くなるが、N濃度が2.0重量%を超えると、浸炭窒化層が脆弱となり、総ころ軸受として十分な転がり疲れ寿命が得られない場合がある。従って、ころの表面部のN濃度の好ましい範囲は0.5〜2.0重量%とする。
[About heat treatment]
First, after the raw material made of steel described above is processed into a roller shape by forging or cutting, it is heated and held for several hours in a furnace in which RX gas + enrich gas + ammonia gas is introduced at an ambient temperature of 800 to 860 ° C. Thus, the carbonitriding process is performed under such a condition that the N concentration of the surface portion of the roller is 0.2 to 2.0% by weight.
When the N concentration in the surface portion of the roller is less than 0.2% by weight, the effect of suppressing the surface damage of the bearing ring in contact with the roller may not be sufficiently obtained. On the other hand, the higher the N concentration in the roller surface portion, the higher the effect of suppressing the surface damage of the bearing ring. However, when the N concentration exceeds 2.0% by weight, the carbonitrided layer becomes brittle, and the full roller bearing As a result, sufficient rolling fatigue life may not be obtained. Therefore, the preferable range of the N concentration in the surface portion of the roller is 0.5 to 2.0% by weight.

また、浸炭窒化処理により、Nと同様に添加されるCの濃度については、ころの表面部に軸受部材として必要とされる表面硬さHv650が得られるようにN濃度とC濃度の合計が0.8重量%以上の範囲で調整することが好ましく、この場合のC濃度の下限は0.6重量%とする。
一方、ころの表面部のC濃度が高すぎると、粗大な炭化物が析出して、ころ自体の転がり疲れ寿命が十分に得られなくなるため、C濃度の上限は2.5重量%、好ましくは2.0重量%とする。
In addition, with respect to the concentration of C added in the same manner as N by carbonitriding, the total of the N concentration and the C concentration is 0 so that the surface hardness Hv650 required as a bearing member can be obtained on the roller surface portion. It is preferable to adjust in the range of 8% by weight or more, and the lower limit of the C concentration in this case is 0.6% by weight.
On the other hand, if the C concentration in the surface portion of the roller is too high, coarse carbides precipitate and the rolling fatigue life of the roller itself cannot be obtained sufficiently. Therefore, the upper limit of the C concentration is 2.5% by weight, preferably 2%. 0.0% by weight.

次に、800〜860°Cで焼入れ処理を行った後、200〜300°Cで高温焼戻し処理を行う。このとき、焼戻し温度が200°C未満であると、ころの表面部の残留オーステナイト量を20体積%未満にできなくなる虞れがあるため、ころと接触する内外軌道輪の表面損傷を軽減する効果を十分に得られない場合がある。
一方、焼戻し温度が300°Cを超えると、ころの表面部の硬さが低下すると共に、残留オーステナイト量が不足して、ころ自体の転がり疲れ寿命が低下する虞れがある。
Next, after quenching at 800 to 860 ° C., high temperature tempering at 200 to 300 ° C. is performed. At this time, if the tempering temperature is less than 200 ° C., there is a possibility that the amount of retained austenite at the surface portion of the roller cannot be less than 20% by volume. Therefore, the effect of reducing the surface damage of the inner and outer races in contact with the roller May not be sufficient.
On the other hand, when the tempering temperature exceeds 300 ° C., the hardness of the surface portion of the roller is lowered and the amount of retained austenite is insufficient, so that the rolling fatigue life of the roller itself may be lowered.

ここで、ころの表面部の残留オーステナイト量が7〜18体積%となるように焼戻し温度を選定すると、相手部材である内外輪の表面損傷と、ころ自体の寿命低下を効果的に抑制することができ、風車用総ころ軸受としての転がり疲れ寿命を効果的に向上させることができる。
また、風車用総ころ軸受としての転がり疲れ寿命を更に向上させるためには、ころの転動面にクラウニング加工を施したり、ころの転動面の表面粗さを内外輪の軌道面の表面粗さよりも小さくすることが好ましい。
Here, when the tempering temperature is selected so that the amount of retained austenite on the surface portion of the roller is 7 to 18% by volume, the surface damage of the inner and outer rings as the counterpart member and the life reduction of the roller itself are effectively suppressed. Thus, the rolling fatigue life as a windmill full roller bearing can be effectively improved.
In addition, in order to further improve the rolling fatigue life as a full-roller bearing for wind turbines, the roller rolling surface is subjected to crowning, or the surface roughness of the roller rolling surface is adjusted to the surface roughness of the inner and outer ring raceway surfaces. It is preferable to make it smaller.

更に、ころだけでなく、相手部材である内外輪についても、軌道面表面部の硬さをHv650以上、前記表面部の残留オーステナイト量を45体積%以下(0体積%超え)とすることが好ましい。
ここで、内外輪の軌道面表面部の硬さがHv650未満であると、内輪および外輪としての十分な転がり疲れ寿命が得られなくなる場合がある。
また、内輪輪の軌道面表面部の残留オーステナイト量が45体積%を超えると、素材の鋼が塑性変形を起こして寿命を低下させる場合がある。なお、内外輪の軌道面表面部の残留オーステナイト量の下限は、軌道面の表面損傷を効果的に抑制するために、5体積%とすることが好ましい。
Furthermore, it is preferable that not only the roller but also the inner and outer rings which are mating members have a hardness of the raceway surface portion of Hv650 or more and a residual austenite amount of the surface portion of 45 vol% or less (over 0 vol%). .
Here, if the hardness of the raceway surface portion of the inner and outer rings is less than Hv 650, sufficient rolling fatigue life as the inner and outer rings may not be obtained.
Further, if the amount of retained austenite at the raceway surface portion of the inner ring exceeds 45% by volume, the material steel may be plastically deformed to shorten its life. In addition, the lower limit of the retained austenite amount on the raceway surface portion of the inner and outer rings is preferably 5% by volume in order to effectively suppress the surface damage of the raceway surface.

なお、残留オーステナイトは圧痕縁での応力緩和に有効に働き、硬さの向上は耐摩耗性や耐圧痕性に効果的であるため、内外輪には浸炭処理や浸炭窒化処理を施すことが好ましいが、浸炭処理は浸炭窒化処理と異なり窒化物を形成しないため、浸炭窒化処理と比較して硬さが低くなることから、より好ましくは浸炭窒化処理を施すことが効果的である。
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施の形態では、転がり軸受として総ころ軸受を例示したが、保持器を有する転がり軸受に本発明を適用してもよく、また、転動体としてころ以外に玉を用いた転がり軸受に本発明を適用してもよい。
Residual austenite works effectively for stress relaxation at the indentation edge, and the improvement in hardness is effective for wear resistance and pressure indentation. Therefore, it is preferable to subject the inner and outer rings to carburizing or carbonitriding. However, unlike the carbonitriding process, the carburizing process does not form nitrides, and therefore the hardness is lower than that of the carbonitriding process. Therefore, it is more effective to perform the carbonitriding process.
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in the above-described embodiment, a full roller bearing is exemplified as the rolling bearing. However, the present invention may be applied to a rolling bearing having a cage, and a rolling bearing using balls other than rollers as rolling elements. The present invention may be applied.

本発明の効果を確認すべく、図1と略同一構造の風車用総ころ軸受(内径160mm,外径220mm,幅36mm)を作製し、寿命試験を行った。
ころについては、まず、表1に示す素材を鍛造して所定形状に加工した後、所定の熱処理を施した。次に、研削等の仕上げ加工を施して、ころ表面部の表面粗さ(Ra)を0.04〜0.06μmに調整した。また、ころ表面部には複数の円弧の組み合わせからなるクラウニング加工を施した。
In order to confirm the effect of the present invention, a windmill full roller bearing (inner diameter 160 mm, outer diameter 220 mm, width 36 mm) having substantially the same structure as in FIG. 1 was prepared and subjected to a life test.
Regarding the rollers, first, the materials shown in Table 1 were forged and processed into a predetermined shape, and then subjected to a predetermined heat treatment. Next, finishing such as grinding was performed to adjust the surface roughness (Ra) of the roller surface portion to 0.04 to 0.06 μm. The roller surface portion was crowned by a combination of a plurality of arcs.

表1に「浸炭窒化→焼入れ→焼戻し」で示す熱処理は次の通りである。
まず、Rxガス+プロパンガス+アンモニアガスの雰囲気中において、800〜860°Cで2〜6時間保持することにより浸炭窒化処理を施した後、油焼入れを行い、次いで、180〜350°Cの範囲の所定温度で2時間保持する焼戻し処理を施した。
The heat treatment shown in Table 1 as “carbonitriding → quenching → tempering” is as follows.
First, in the atmosphere of Rx gas + propane gas + ammonia gas, carbonitriding was performed by holding at 800-860 ° C. for 2-6 hours, followed by oil quenching, and then at 180-350 ° C. A tempering treatment was performed for 2 hours at a predetermined temperature in the range.

表1に「焼入れ→焼戻し」で示す熱処理は次の通りである。
まず、Rxガス雰囲気中において、800〜860°Cで0.5〜1時間保持した後、油焼入れを行い、次に、180°Cで2時間保持する焼戻し処理を施した。
このようにして得られたころの表面部(転動体の最表面から1μmの深さまでの部分)において、N濃度およびC濃度を電子線マイクロアナライザ (EPMA)により測定し、残留オーステナイト量γR をX線回折装置により測定し、硬さ(ビッカース硬さ)をJIS Z 2244に規定されたビッカース硬さ試験法により測定した。
The heat treatment shown in Table 1 as “quenching → tempering” is as follows.
First, in an Rx gas atmosphere, after holding at 800 to 860 ° C. for 0.5 to 1 hour, oil quenching was performed, and then tempering treatment was performed at 180 ° C. for 2 hours.
At the surface portion of the roller thus obtained (the portion from the outermost surface of the rolling element to a depth of 1 μm), the N concentration and C concentration are measured by an electron beam microanalyzer (EPMA), and the amount of retained austenite γ R is calculated. The hardness (Vickers hardness) was measured by an X-ray diffractometer, and the hardness (Vickers hardness) was measured by the Vickers hardness test method defined in JIS Z 2244.

一方、内輪および外輪については、まず、高炭素クロム軸受鋼二種(SUJ2)からなる素材を所定形状に加工した後、焼入れおよび焼戻しを施すことにより、軌道面の表面部(軌道面の最表面から1μmの深さまでの部分)において、硬さ:Hv680以上、残留オーステナイト量:7体積%以下とし、次いで、研削等の仕上げ加工を施して、内外輪軌道面の表面粗さ(Ra)を、ころ表面部の表面粗さ(Ra)よりも大きくなるように0.1〜0.5μmに調整した。   On the other hand, for the inner ring and outer ring, first, a material made of high-carbon chromium bearing steel type 2 (SUJ2) is processed into a predetermined shape, and then subjected to quenching and tempering to obtain a surface portion of the raceway surface (the outermost surface of the raceway surface). To a depth of 1 μm), hardness: Hv 680 or more, retained austenite amount: 7% by volume or less, and then finish processing such as grinding, the surface roughness (Ra) of the inner and outer ring raceway surface, It adjusted to 0.1-0.5 micrometer so that it might become larger than the surface roughness (Ra) of a roller surface part.

このようにして得られた内輪、外輪およびころを用いて総ころ軸受を組み立て、表面損傷が生じ易い風車のロータや増速機の回転支持部と同程度の使用環境を想定して寿命試験を行った。この寿命試験はころ表面部に剥離が生じるまで内輪を回転させることで行い、寿命試験開始から剥離が生じるまでの回転時間を寿命とした。なお、寿命は表1の比較例No.16のL10寿命を1としたときの相対比で示した。試験条件は次の通りである。 Assembled full roller bearings using the inner ring, outer ring, and rollers obtained in this way, and conducted a life test assuming a usage environment similar to that of a rotor of a wind turbine or a rotating support part of a gearbox that is likely to cause surface damage. went. This life test was performed by rotating the inner ring until peeling occurred on the roller surface, and the rotation time from the start of the life test until peeling occurred was defined as the life. The life is shown in Comparative Example No. 1 in Table 1. 16 of L 10 life was expressed as a relative ratio when a 1. The test conditions are as follows.

〔寿命試験条件〕
荷重比(P/Cr):0.45 P:等価荷重(N)、Cr:基本動定格荷重(N)
回転速度:1000min-1
潤滑油:♯68タービン油
異物:(組成)Fe3
(硬さ)HRC52
(粒径)74〜147μm
(混入量)潤滑油中に300ppmとなるように混入
試験結果を表1に併せて示す。
[Life test conditions]
Load ratio (P / Cr): 0.45 P: Equivalent load (N), Cr: Basic dynamic load rating (N)
Rotational speed: 1000min -1
Lubricating oil: ♯68 turbine oil foreign matter :( composition) Fe 3 C
(Hardness) HRC52
(Particle size) 74-147 μm
(Mixing amount) The mixing test results are shown in Table 1 so as to be 300 ppm in the lubricating oil.

Figure 2006118575
Figure 2006118575

表1から明らかなように、ころの鋼組成、熱処理方法、焼戻し温度、表面部のN濃度、表面部のC濃度、表面部の残留オーステナイト量、表面部の硬さが本発明範囲である発明例No.1〜No.13は、比較例No.14,15と比べて長寿命であり、比較例No.16の2.2〜3.7倍の寿命が得られた。
また、発明例のうち、「ころのSi含有量:0.75〜2.00重量%」及び「ころ表面部のN濃度:0.5〜0.8重量%」を満たすものは、特に長寿命であり、比較例No.16の3.0倍以上の寿命が得られた。これは、ころのSi含有量および表面部のN濃度の合計量が増加すると、ころと内外輪との間の摩擦抵抗が低減して、転がり疲れ寿命が向上したためであると考えられる。
As is apparent from Table 1, the invention is such that the steel composition of the roller, the heat treatment method, the tempering temperature, the N concentration of the surface portion, the C concentration of the surface portion, the amount of retained austenite on the surface portion, and the hardness of the surface portion are within the scope of the present invention. Example No. 1-No. 13 is Comparative Example No. Compared with Nos. 14 and 15, the service life is longer. A life of 2.2 to 3.7 times that of 16 was obtained.
Of the invention examples, those satisfying “Si content of roller: 0.75 to 2.00% by weight” and “N concentration of roller surface portion: 0.5 to 0.8% by weight” are particularly long. It is a life, and comparative example No. A life of 3.0 or more times 16 was obtained. This is considered to be because when the total amount of the Si content of the roller and the N concentration in the surface portion increases, the frictional resistance between the roller and the inner and outer rings is reduced, and the rolling fatigue life is improved.

一方、比較例No.14では、焼戻し温度が高過ぎたため、ころ表面部の残留オーステナイト量が不足して、ころに形成される圧痕縁での応力集中軽減効果が十分に得られず、ころにフレーキングが多発して短寿命であった。
また、比較例No.15では、焼戻し温度が低過ぎたため、ころ表面部の残留オーステナイト量を本発明の範囲内(0体積%超え20体積%未満)にできなかった。よって、ころと内外輪との摩擦低減による寿命延長効果が十分に得られなかったため、短寿命であった。
On the other hand, Comparative Example No. In No. 14, since the tempering temperature was too high, the amount of retained austenite on the roller surface portion was insufficient, and the effect of reducing the stress concentration at the indentation edge formed on the roller could not be obtained sufficiently, and flaking occurred frequently on the roller. The service life was short.
Comparative Example No. In No. 15, since the tempering temperature was too low, the amount of retained austenite on the roller surface portion could not be within the range of the present invention (over 0 volume% and less than 20 volume%). Therefore, the life extension effect due to the friction reduction between the rollers and the inner and outer rings could not be sufficiently obtained, and the life was short.

以上の結果から、ころの鋼組成と、ころ表面部のN濃度,C濃度,残留オーステナイト量,硬さを本発明の範囲とすることにより、風車のロータや増速機の回転支持部のように表面損傷の生じ易い環境下で使用しても、総ころ軸受の寿命を長くできることが確認できた。
次に、表2に示す素材を所定形状に加工した後、所定の熱処理を施すことにより、内輪および外輪を作製した。そして、これらに研削等の仕上げ加工を施して、軌道面の表面粗さ(Ra)を、0.1〜0.5μmに調整した。なお、表2には、上述と同様の方法で測定した軌道面表面部のN濃度、C濃度、残留オーステナイト量(γR 及び硬さを併せて示した。
From the above results, by setting the steel composition of the roller, the N concentration of the roller surface portion, the C concentration, the amount of retained austenite, and the hardness within the scope of the present invention, the rotor support of the wind turbine and the rotation support portion of the speed increaser Even when used in an environment where surface damage is likely to occur, it has been confirmed that the life of the full complement roller bearing can be extended.
Next, after processing the raw material shown in Table 2 into a predetermined shape, the inner ring and the outer ring were manufactured by performing predetermined heat treatment. And finishing processing, such as grinding, was given to these, and the surface roughness (Ra) of the raceway surface was adjusted to 0.1-0.5 micrometer. Table 2 also shows the N concentration, C concentration, and retained austenite amount (γR and hardness) of the raceway surface portion measured by the same method as described above.

このようにして得られた内輪および外輪と、上述した表1の発明例No.1(ころ表面部のN濃度:0.6重量%,残留オーステナイト量:10体積%,硬さ:Hv802,表面粗さ(Ra):0.05μm)のころを用いて、総ころ軸受を組み立て、上述と同様の条件で寿命試験を行った。なお、寿命は表1の比較例No.16のL10寿命を1とした相対比として示す。試験結果を表2に併せて示す。 The inner ring and outer ring thus obtained, and the invention example No. 1 in Table 1 described above. Assembling a full roller bearing using 1 roller (N concentration on roller surface: 0.6% by weight, residual austenite amount: 10% by volume, hardness: Hv802, surface roughness (Ra): 0.05 μm) The life test was performed under the same conditions as described above. The life is shown in Comparative Example No. 1 in Table 1. 16 of L 10 life indicated as 1 and the relative ratio. The test results are also shown in Table 2.

Figure 2006118575
Figure 2006118575

表2にから明らかなように、内外輪の軌道面表面部の残留オーステナイト量を45体積%以下(0体積%超え)及び硬さをHv650以上とした発明例No.21〜30では、比較例No.31,32と比べて長寿命であり、表1の比較例No.16の3.4〜7.2倍の寿命が得られた。
また、同じ組成の鋼を用いて異なる熱処理を行った発明例No.21と発明例No.22の結果から、浸炭窒化を含む熱処理を施した発明例No.22のほうが、浸炭を含む熱処理を施した発明例No.21よりも長寿命となっていることが分かる。これは、浸炭処理では、軌道面表面部に窒化物が形成されず、摩擦低減効果が得られなかったためである。
As is apparent from Table 2, the amount of retained austenite on the raceway surface portions of the inner and outer rings is 45 volume% or less (over 0 volume%) and the hardness is Hv 650 or more. In Comparative Examples Nos. 21-30. Compared with Nos. 31 and 32, it has a longer life, and in Comparative Example No. A lifetime of 3.4 to 7.2 times that of 16 was obtained.
Inventive Example No. 1 in which different heat treatments were performed using steels having the same composition. 21 and Invention Example No. From the result of No. 22, invention example No. which performed the heat processing containing carbonitriding was carried out. No. 22 was Invention Example No. No. 22 which was subjected to heat treatment including carburization. It can be seen that the lifetime is longer than 21. This is because in the carburizing treatment, nitrides are not formed on the surface of the raceway surface, and a friction reducing effect cannot be obtained.

一方、比較例No.31では、軌道面表部の残留オーステナイト量が45体積%を超えているため、材料に塑性変形が起こり、短寿命であった。また、比較例No.32では、軌道面表面部に残留オーステナイト量を存在させることができず、且つ硬さがHv650未満と低いため、耐久性が得られず、短寿命であった。
以上の結果から、ころだけでなく、相手部材である内外輪についても、軌道面表面部の硬さをHv650以上、前記表面部の残留オーステナイト量を45体積%以下(0体積%超え)としてころと異なる材料で形成することにより、風車のローラや増速機の回転支持部のように表面損傷が生じ易い環境下で使用しても、総ころ軸受の寿命をさらに長くできることが確認できた。
On the other hand, Comparative Example No. In No. 31, the amount of retained austenite at the surface of the raceway surface exceeded 45% by volume, so plastic deformation occurred in the material and the life was short. Comparative Example No. In No. 32, the amount of retained austenite could not be present on the surface of the raceway surface and the hardness was as low as less than Hv650, so durability could not be obtained and the life was short.
From the above results, not only for the rollers but also for the inner and outer rings as the counterpart members, the hardness of the raceway surface portion is Hv650 or more, and the retained austenite amount of the surface portion is 45 vol% or less (over 0 vol%). It was confirmed that the life of the full complement roller bearing can be further extended even when used in an environment where surface damage is likely to occur, such as a windmill roller or a rotation support portion of a speed increaser.

また、ころ表面部の表面粗さを、内外輪の軌道面表面部の表面粗さよりも小さくすることで、総ころ軸受の寿命をさらに長くできることも確認できた。
次いで、上述した表1の発明例No.1のころで表面部の表面粗さ(Ra)を0.02μmに調整したものを作製し、表2の発明例No.30の内外輪と組み合わせて総ころ軸受を組み立て、上述と同様の条件で寿命試験を行った。
It was also confirmed that the life of the full roller bearing could be further increased by making the surface roughness of the roller surface portion smaller than the surface roughness of the raceway surface portion of the inner and outer rings.
Subsequently, invention example No. of Table 1 mentioned above. 1 having a surface roughness (Ra) adjusted to 0.02 μm was prepared. A full complement roller bearing was assembled in combination with 30 inner and outer rings, and a life test was conducted under the same conditions as described above.

この総ころ軸受は、表2の発明例No.30(表面部の表面粗さ(Ra):0.05μmのころと軌道面表面部の残留オーステナイト量:45体積%以下(0体積%超え)及び硬さ:Hv650以上の内外輪との組合せ)よりも長寿命であり、表1の比較例No.16の8.3倍の寿命が得られた。これにより、ころ表面部の表面粗さをできるだけ小さくすることで、総ころ軸受の寿命を更に長くできることが判った。   This full complement roller bearing is an invention example No. in Table 2. 30 (Surface roughness (Ra) of surface portion: combination of 0.05 μm roller and retained austenite amount of raceway surface portion: 45% by volume or less (over 0% by volume) and hardness: inner and outer rings of Hv650 or more)) The life is longer than that of Comparative Example No. 1 in Table 1. A lifetime of 8.3 times that of 16 was obtained. Thus, it has been found that the life of the full roller bearing can be further extended by making the surface roughness of the roller surface portion as small as possible.

本発明の実施の形態の一例である風車用総ころ軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the full roller bearing for windmills which is an example of embodiment of this invention. プロペラ型風車の一例を示す概略図である。It is the schematic which shows an example of a propeller type windmill. プロペラ型風車のハウジング内を示す図であるIt is a figure which shows the inside of the housing of a propeller type | mold windmill. ハウジングに収容された増速機の断面図である。It is sectional drawing of the gearbox accommodated in the housing.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 ころ(転動体)
30 風車
40 増速機
51 翼
52 ロータ
55 発電機
1 Inner ring 2 Outer ring 3 Roller (rolling element)
30 Windmill 40 Gearbox 51 Blade 52 Rotor 55 Generator

Claims (5)

内輪と外輪との間に複数の転動体が転動可能に配設され、風車の回転支持部に用いられる風車用転がり軸受であって、
前記転動体のSi含有量を0.5重量%以上とすると共に、該転動体の表面部の残留オーステナイト量を20体積%未満としたことを特徴とする風車用転がり軸受。
A plurality of rolling elements are disposed between an inner ring and an outer ring so as to be able to roll, and are rolling bearings for a windmill used for a rotation support portion of a windmill,
A rolling bearing for a windmill, wherein the rolling element has a Si content of 0.5% by weight or more and a residual austenite amount of a surface portion of the rolling element is less than 20% by volume.
前記転動体は、浸炭窒化処理及び焼入れ処理が施された後、200〜300°Cの範囲で高温焼戻し処理が施されていることを特徴とする請求項1に記載した風車用転がり軸受。   2. The rolling bearing for a wind turbine according to claim 1, wherein the rolling element is subjected to a high temperature tempering process in a range of 200 to 300 ° C. after being subjected to a carbonitriding process and a quenching process. 前記転動体の表面粗さを前記内輪及び前記外輪の内の少なくとも一方の軌道面の表面粗さより小さくしたことを特徴とする請求項1又は2に記載した風車用転がり軸受。   The rolling bearing for a wind turbine according to claim 1 or 2, wherein a surface roughness of the rolling element is smaller than a surface roughness of at least one of the inner ring and the outer ring. 前記転動体の表面部のN濃度を0.2〜2.0重量%としたことを特徴とする請求項1〜3のいずれか一項に記載した風車用転がり軸受。   The rolling bearing for windmill according to any one of claims 1 to 3, wherein the N concentration in the surface portion of the rolling element is 0.2 to 2.0 wt%. 前記転動体としてころを用いて総ころ軸受としたことを特徴とする請求項1〜4のいずれか一項に記載した風車用転がり軸受。   The rolling bearing for a wind turbine according to any one of claims 1 to 4, wherein a roller is used as the rolling element to form a full roller bearing.
JP2004306023A 2004-10-20 2004-10-20 Rolling bearing for windmill Pending JP2006118575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306023A JP2006118575A (en) 2004-10-20 2004-10-20 Rolling bearing for windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306023A JP2006118575A (en) 2004-10-20 2004-10-20 Rolling bearing for windmill

Publications (1)

Publication Number Publication Date
JP2006118575A true JP2006118575A (en) 2006-05-11

Family

ID=36536652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306023A Pending JP2006118575A (en) 2004-10-20 2004-10-20 Rolling bearing for windmill

Country Status (1)

Country Link
JP (1) JP2006118575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096448A (en) * 2011-10-28 2013-05-20 Nsk Ltd Rolling bearing for wind power generation facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153842A (en) * 1989-11-13 1991-07-01 Nippon Seiko Kk Rolling bearing
JPH0579450A (en) * 1991-09-20 1993-03-30 Mitsubishi Heavy Ind Ltd Wind mill
JP2001152252A (en) * 1999-11-22 2001-06-05 Nsk Ltd Roll bearing
JP2004011737A (en) * 2002-06-06 2004-01-15 Nsk Ltd Self-aligning roller bearing
JP2004052997A (en) * 2002-05-30 2004-02-19 Nsk Ltd Rolling device and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153842A (en) * 1989-11-13 1991-07-01 Nippon Seiko Kk Rolling bearing
JPH0579450A (en) * 1991-09-20 1993-03-30 Mitsubishi Heavy Ind Ltd Wind mill
JP2001152252A (en) * 1999-11-22 2001-06-05 Nsk Ltd Roll bearing
JP2004052997A (en) * 2002-05-30 2004-02-19 Nsk Ltd Rolling device and manufacturing method
JP2004011737A (en) * 2002-06-06 2004-01-15 Nsk Ltd Self-aligning roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096448A (en) * 2011-10-28 2013-05-20 Nsk Ltd Rolling bearing for wind power generation facility

Similar Documents

Publication Publication Date Title
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
JP4423754B2 (en) Manufacturing method of rolling shaft
JP2006322017A (en) Rolling bearing
JP5982782B2 (en) Rolling bearings for wind power generation facilities
JP2006348342A (en) Rolling supporter
JP2009192071A (en) Roller bearing
JP5728844B2 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP6410613B2 (en) Carburized material with excellent seizure resistance
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP2004052997A (en) Rolling device and manufacturing method
EP2123779A1 (en) Method for increasing the fatigue strength of a predominantly steel mechnical part of a wind turbine and/or for reducing the tendancy to form &#34;White etching cracks&#34; or &#34;brittle flakes&#34; in such steel mechanical parts
JP2012031456A (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP2006038167A (en) Roller bearing
JP2010031307A (en) Roller bearing
JP2015206066A (en) rolling bearing
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2006118575A (en) Rolling bearing for windmill
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2005337362A (en) Full type roller bearing
JP2005140275A (en) Planetary gear device
JP2005337361A (en) Roller bearing
JP2006045591A (en) Tapered roller bearing
JP3982368B2 (en) Rolling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202