JP3982368B2 - Rolling device - Google Patents

Rolling device Download PDF

Info

Publication number
JP3982368B2
JP3982368B2 JP2002261275A JP2002261275A JP3982368B2 JP 3982368 B2 JP3982368 B2 JP 3982368B2 JP 2002261275 A JP2002261275 A JP 2002261275A JP 2002261275 A JP2002261275 A JP 2002261275A JP 3982368 B2 JP3982368 B2 JP 3982368B2
Authority
JP
Japan
Prior art keywords
rolling
weight
tempering
steel
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002261275A
Other languages
Japanese (ja)
Other versions
JP2004099954A (en
Inventor
宏泰 吉岡
賢二 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002261275A priority Critical patent/JP3982368B2/en
Publication of JP2004099954A publication Critical patent/JP2004099954A/en
Application granted granted Critical
Publication of JP3982368B2 publication Critical patent/JP3982368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Description

【0001】
【発明の属する技術分野】
本発明は、高温、高速及び高荷重の条件下で使用される転動装置に関するものであり、さらに詳しくは、例えば自動車用変速機や工作機械用変速機に使用されるプラネタリギヤ装置のピニオンシャフトを支持する転がり軸受等の転動装置に関する。
【0002】
【従来の技術】
転がり軸受等の転動装置は、外方部材と、この外方部材の内方に配置された内方部材と、この内方部材と外方部材との間に配設された複数の転動体とを備えており、外方部材または内方部材の一方が回転もしくは直線運動をすると外方部材および内方部材に相対向して形成された転動面を転動体が転動するようになっている。ここで、転動装置が玉軸受等の転がり軸受である場合には、外方部材を外側軌道輪、内方部材を内側軌道輪または軸体と言うことがあるが、ボールねじの場合には外方部材をナット、内方部材をねじ軸と言い、リニアガイドの場合には外方部材をスライダ、内方部材を案内レールと言うこともある。
【0003】
一般に、玉軸受等の転がり軸受では、外側軌道輪と内側軌道輪との間に配設された複数個の転動体が外側軌道輪の内周面および内側軌道輪の外周面に形成された転動体軌道面に表面を接触させて転がり運動をするため、転動体軌道面と転動体表面との間に接触圧力が生じる。このため、軌道輪や転動体の素材としては、硬くて負荷に耐えられ、転がり疲労寿命が長く、かつ滑りに対する耐摩耗性の良好なものが要求され、このような要求を満たすため、従来においては、例えばJIS鋼種であるSUJ2やSUJ3等の軸受鋼が軌道輪や転動体の素材として使用されている。
【0004】
また、転がり軸受の軌道輪や転動体は、高面圧下で繰り返し剪断応力を受けて用いられる。このため、その剪断応力に耐えて転がり疲労寿命を確保するべく、前述したSUJ2やSUJ3等の軸受鋼には熱処理が施され、表面硬度をHRC58〜64としたものが使用されている。
このような軌道輪素材や転動体素材の熱処理には、素材の芯部までを焼入れ温度まで加熱して急冷する、いわゆるズブ焼入れが用いられる。しかし、近年、転動装置の使用条件に対する要求が厳しくなってきており、ズブ焼入れのみの熱処理では長寿命化に限界がある。
【0005】
例えば、自動車の自動変速機に用いられるプラネタリギヤ装置においては、ピニオンギヤが自転しながら公転するという複雑な構造が採用されているため、ピニオンギヤを支持するピニオンシャフトへの潤滑が十分に行われ難いという問題がある。また、ピニオンギヤに作用する遠心力を支えるために、ピニオンシャフトには大きな荷重が負荷される傾向がある。したがって、このようなプラネタリギヤ装置のピニオンシャフトには、上述した材料や熱処理だけでなく、JIS鋼種であるSUJ2に浸炭窒化を行って長寿命化を行うなどの対策が採られている。
【0006】
【発明が解決しようとする課題】
しかしながら、近年、自動車の低燃費化の要求が高まっており、低燃費化を目的としたトランスミッションの小型化や高効率化が進められている。例えば、トランスミッションを潤滑しているATF(Automatic Transmission Flude)においては、高効率化のために低粘度化される傾向があり、潤滑油の油膜形成がより一層困難となっている。さらに、ピニオンギヤの使用回転速度が高まるにつれてピニオンシャフトの負荷荷重が増大するといった傾向がある。これらのことは、ピニオンシャフトの寿命低下の一因となるため、さらなる寿命向上の手段が求められていた。
【0007】
また、例えば工作機械主軸用スピンドルに使用される玉軸受等の転動装置においては、高温高速の環境下で使用されるため、JIS鋼種であるSUJ2に寸法安定化処理を施し、高温使用における寸法安定性が確保されているが、生産性向上の要求などにより従来よりもさらに高速回転に耐えられる転動装置が求められており、さらなる使用温度の高温化や潤滑不良等が予想される。
そこで、本発明は上記のような問題点を解決し、高温、高速、高荷重の使用条件であっても長寿命の転動装置を提供することを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、外方部材と、この外方部材の内方に配置された内方部材と、この内方部材と前記外方部材との間に配設された複数の転動体とを備えてなり、前記外方部材、内方部材および転動体のうち少なくとも一つが、3.0〜7.5重量%のCr、0.3〜1.1重量%のC、0.1〜1.5重量%のSiおよび0.1〜1.0重量%のMnが添加されているとともに、0〜3.0重量%のMo、0〜2.0重量%のW、0〜2.0重量%のVが選択的に添加され、残り鉄と不可避不純物からなる鋼からなり、該鋼は、完成品表面層のC及びNがC+N≧0.5重量%、0.86N+C≦1.7−0.057×(Cr+2Mn+0.5(Mo+0.5W)+1.75V)の関係を満たすように、高周波焼入れ及び焼戻しの前に窒化処理がAc1変態点未満の温度で施され、かつ完成品表面層の残留オーステナイト量が体積比で3%以下であることを特徴とする。
【0009】
上記に述べたような、高温及び高速化に伴う転動装置の潤滑不良に対しては、外方部材、内方部材及び転動体を構成する素材の耐摩耗性を向上させることが有効である。また、外方部材、内方部材及び転動体の摩耗を抑制するためには、素材表面の窒素濃度を高くして耐摩耗性の向上に有効な微細窒化物を析出させることが効果的であり、本発明では焼入れ前に窒化処理を行い、表面の窒素濃度を向上させておく手段を採用した。
【0010】
窒素(N)はオーステナイト安定化元素であるため、焼入れ後の残留オーステナイト量は自ずと高くなる。しかし、残留オーステナイトを一定量含ませると異物混入寿命は向上するものの高温下で使用される場合においては残留オーステナイト分解に伴う経時変形が発生し、寿命低下を引き起こす可能性がある。このような経時変形を抑制するためには、高温焼戻しなどを行い、残留オーステナイト量を体積比で3%以下とすればよい。しかし、焼戻し温度を高くすると硬度が低下して十分な転がり疲労寿命が得られない場合があり、焼戻しによる軟化を抑制するためには、焼戻し軟化抵抗性の高い元素(例えばCr、Mo、W、V、Si等)を添加すればよく、特に、CrとSiは添加コストが低いので好ましい。
【0011】
本発明における各数値限定の臨界的意義を以下に説明する。
[母材について]
Cr;3.0重量%〜7.5重量%
Cr(クロム)は、母材中にCr炭化物や窒化物を生成して硬度を確保し、耐摩耗性を向上させる効果がある。さらにCrは焼戻し軟化抵抗性を有するため、高温焼戻しを行う場合の硬度確保に効果的な元素である。十分な耐摩耗性を確保するためには、Crを重量比で3%以上含ませることが必要である。また、Crを多量に添加しても添加効果が飽和するだけでなく、窒化処理によって得られる窒素富化層厚さが減少するなど熱処理生産性が低下する。従って、Cr含有量の上限は重量比で7.5%とすることが望ましい。なお、例えば高振動や高荷重等の諸条件により油膜形成が困難となる場合には、白色組織(White Structure)に伴う早期剥離が軌道面直下などに発生することがあるが、このような組織変化をCrは抑制し、安定で緻密な不動態膜を生成することができるという効果を有する。
【0012】
C;0.3重量%〜1.1重量%
C(炭素)は基地をマルテンサイト化することにより強度を増加させる元素であり、素材の芯部靭性を低下させるが、フェライトの析出を抑制する作用がある。従って、Cの含有量は0.3重量%以上とすることが好ましいが、Cを過剰に添加すると製鋼時に粗大な共晶炭化物が生成されやすくなり、転がり寿命や靭性を低下させる原因となる。また、粗大な共晶炭化物は固溶し難いため、素材の加熱及び保持が短時間で行われる高周波焼入れなどでは、素材の焼入れ硬さが不十分になったり、素材のオーバーヒート(過度焼入れ)の原因になったりする。この傾向は素材に添加される炭素量が1.1重量%を超えると顕著になることから、炭素含有量の上限は1.1重量%とし、より好ましくは0.9重量%以下とすることが望ましい。
【0013】
必要に応じて添加される元素
Mo(モリブデン)は炭化物や窒化物を生成し、耐摩耗性や強度を向上させる元素である。また、焼入れ性及び焼戻し軟化抵抗性を著しく増大させる元素であり、耐孔食性を著しく改善する元素である。従って、必要に応じて添加してよいが、過剰に添加するとコストアップとなるだけでなく加工性や靭性も低下するため、Moの添加量は2.0重量%程度とすることが望ましい。
【0014】
V(バナジウム)は強力な炭化物や窒化物の生成元素であり、耐摩耗性や強度を向上させるのに有用な元素である。しかし、多量に添加するとコストアップとなるだけでなく加工性や靭性が低下するため、添加量は2.0重量%以下とすることが望ましい。なお、上記のMo、W、VはCrと同様に組織変化を抑制することができるため、白色組織等の組織変化が原因となる剥離が発生する転動部材では添加されることが好ましい。
【0015】
製鋼上不可欠な元素について
Si(ケイ素)は、製鋼時の脱酸剤として必要な元素であり、0.1重量%以上添加されることが好ましい。また、焼戻し軟化抵抗性を高めるため、より好ましくは0.45重量%以上添加するが、多量に添加すると靭性を低下させるため、上限を1.5重量%とすることが望ましい。
【0016】
Mn(マンガン)は脱酸剤として0.1重量%以上必要であるが、多量に添加すると鍛造性や被削性が低下するだけでなく、SやPなどの不純物と共存して耐食性を低下させる。従って、Mnを添加する場合には、その上限を1.0重量%程度とすることが望ましい。
不可避不純物について
鋼中に含まれる不純物について重要なものに酸化物系介在物がある。鋼中の酸素含有量が多くなると疲労破壊の起点になる粗大な酸化物系介在物の存在量が多くなり、転がり寿命が低下する。また、窒化層に粗大な酸化物系介在物が存在すると窒化層の早期剥離が発生する恐れがあることから、酸素含有量はできるだけ低く抑えられることが望ましい。鋼中の酸素含有量は15ppm以下、さらに好ましくは12ppm以下とする。
【0017】
なお、本発明における合金鋼には、これらの添加元素以外にも不可避の不純物として、P(リン)、S(イオウ)、Ni(ニッケル)、Cu(銅)、Al(アルミニウム)、Ti(チタン)、Nb(ニオブ)、Pb(鉛)、Ca(カルシウム)、Zr(ジルコニア)、Te(テルル)、Sb(アンチモン)等が含有される。
[完成品品質について]
本発明でいう完成品表面層とは、完成品表面から転動体直径Daの2%までの深さ全域を指し、完成品最表面とは完成品表面から10μmまでの全域を指す。
【0018】
完成品表面層の残留オーステナイト量;3体積%以下
残留オーステナイト(γR)は、異物混入潤滑下において転動面に形成される圧痕による応力集中を緩和するという効果をもたらすが、高温中で使用すると残留オーステナイトが分解するため、形状変化を起こす。形状変化を起こすと転動装置の各部材間の隙間が減少もしくは増大し、場合によっては潤滑不良や回転トルクの上昇、さらには回転精度の低下等を引き起こし、転がり寿命や機能寿命の低下を招く。従って、完成品表面においては残留オーステナイト量を体積比で3%以下とすることが好ましく、より好ましくは0体積%とすることが望ましい。なお、残留オーステナイト量の調整は、主として焼戻し温度及び合金成分により調整可能である。また、完成品表面層の残留オーステナイト量を3体積%以下にしておけば、芯部でのC+N濃度は表面部より減少するため、芯部での残留オーステナイト量はほぼ0体積%となる。
【0019】
完成品表面層の表面のC+N濃度
N(窒素)は、Cと同様に基地をマルテンサイト化する効果を有し、さらに焼戻し軟化抵抗性にも優れるため、高温使用での硬度向上に重要な元素である。しかし、過剰に添加するとMs点(マルテンサイト変態開始温度)が低下し、十分な焼入れ硬度を得られない恐れがあるため、その上限を制限する必要がある。Ms点はNだけでなくCやCrなどの添加元素によっても変化する。本発明者らは、表面部における炭素濃度と窒素濃度とCr当量の関係が、以下の式(1)を満たせば、焼戻しによって完成品表面層の残留オーステナイトを3体積%以下に抑えることが可能であるという知見を得た。
【0020】
(0.86N+C)≦1.7−0.057×[Cr当量] ‥‥(1)
ただし、[Cr当量]=Cr+2Mn+0.5(Mo+0.5W)+1.75V
上式(1)は、完成品表面層のγR(残留オーステナイト量)≦3.0体積%とすることに影響する焼入硬化時のMs点を適正にするNとC及びCr当量の関係を表している。Ms点はCr当量が多くなるほど低くなる。一方、Ms点を低くすると上記γRが多くなる。本発明では、γR≦3体積%と少なくしたいのでMs点を高くしたいが、そのためにはCr当量を少なくしたい。しかし、本発明では高温、高速、高荷重に耐え、長寿命の転動装置を提供することを課題とし、3.0重量%から7.5重量%のCrとMo、W、Vを選択的に含むことから、γRを低くすることを遂行する。従って、単にCrやMo、W、V、Mnの量的範囲のみではなく、γR≦3.0体積%を可能にする。これら元素の組合せを式(1)の右辺の条件により規制したもので、本発明は式(1)の関係をγR量との関係において鋭意実験により確認したものである。そして、これら元素の適正な組合せにより単に高合金化し、高温、高速、高荷重要求に対応するのではなく、より少ない低コストの合金元素を添加した合金鋼を採用することにより、自動車等に有益な低コストの転がり軸受を提供するものである。
【0021】
また、表面層のC+N濃度が0.5%に満たない場合は、完成品表面層の最低硬さがHv650以上にならず、十分な転がり寿命が得られない。本発明では、十分な転がり寿命を確保するために、C+N濃度を0.5%以上とする。また、表面部のビッカース硬さはHv650以上、好ましくはHv700以上とする。
完成品最表面のN濃度
最表面に形成されている窒素富化層はFeやCrなどの合金元素の窒化物(γ':Fe4NやCrNなど)を主体として形成されており、優れた耐摩耗性を発揮する。優れた耐摩耗性を得るためには、少なくとも表面から10μmまでの窒素濃度を0.05%以上とする必要があり、好ましくは0.1%以上、より好ましくは0.2%以上とする。
【0022】
芯部硬さについて
芯部硬さは、高荷重の影響による変形を抑制するためにHv300以上とすることが好ましく、より好ましくはHv400以上とする。なお、高温高荷重下で使用されない場合においては、この限りではない。
[本発明による転動装置の熱処理方法について]
高温高荷重の条件で使用される転動装置においては、残留オーステナイトの分解による変形以外にも、芯部硬さが余りにも低いと外部応力や熱などによって変形や曲がりが生じる場合がある。そのため、完成品の芯部硬さはHv300以上とすることが好ましく、より好ましくはHv400以上とする。
【0023】
本発明の焼入れ方法には高周波焼入れを採用することが好ましいが、高周波焼入れでは芯部さが十分に得られない場合がある。従って、高周波焼入れを採用する場合には窒化処理に先立って焼入れ焼戻しを行って全体の硬さをHv300以上に調質しておくことが好ましい。また、焼入れ直後に窒化処理を行い、焼戻しを省略してもよい。
【0024】
窒化処理について
窒化処理については、ガス窒化、塩浴窒化、イオン窒化、軟窒化等のいずれの方法を選択してもよい。窒化後に行う高周波焼入れは、加熱及び保持時間が短いため、窒素の拡散はほとんど起こらないものと考えてよく、そのため高周波焼入れ前には適当な窒化層パターンを得ておくことが必要となる。
【0025】
高周波焼入れ後に仕上げ加工を行うために、高周波焼入れ前の窒化層深さは少なくとも仕上げ加工の取り代以上としておく。なお、加工の取り代は部材や焼入れ方法によって異なるため、必要とされる窒化層のパターンはそれぞれの部材ごとに定める。
窒化の処理温度や時間は上記の窒化層のパターンを満たすのであれば、どのようであってもよいが、窒化処理で生じる歪みを極力抑えるために、Ac1変態点未満の温度で窒化処理を行うことが好ましく、より好ましくは500℃以下で処理を行う。
【0026】
低温窒化処理の好ましい形態の一例としては、比較的低温で処理が可能なNv窒化プロセス(エア・ウオーター株式会社の商品名)がある。Nv窒化プロセスは窒化処理前に、例えばNF3(三フッ化窒素)等のフッ素系ガスを用いて2500℃〜400℃でフッ化処理を行うプロセスとNH3ガスによる窒化処理を行うプロセスとからなる。フッ化処理は窒化反応を阻害するCr酸化物を除去し、表面を活性化するフッ化層を形成するため、処理時間が短く、低温でも非常に均一な窒化層を形成することが可能となる。
【0027】
焼入れ焼戻しについて
焼入れは、高周波焼入れで行うことが好ましい。高周波焼入れは、加熱から冷却までの熱処理時間が短い。このため、窒化処理によって生成された窒素濃度分布が殆ど変化することがないため、高い窒素濃度を得ることが可能となる。さらに、高周波焼入れはワークの表面のみを焼入れする方法であるため、ズブ焼入れよりもワーク全体としての熱処理変形が減少し、後加工の取り代を少なくできるという利点もある。冷却は油冷や水冷など、どのような方法を用いても構わない。
【0028】
また、母相中にCやN、さらにはCrなどの合金元素が多いほどMs点が低下するが、Ms点が室温以下まで低下するような合金成分の場合などではサブゼロを行う。通常のサブゼロは−60℃近辺で処理されることが多いが、−60℃の処理で十分に焼入れされない場合は、−190℃(冷媒は水素やヘリウムガス)程度で処理する超サブゼロを行ってもよい。
【0029】
焼戻しは、表面のオーステナイト量を極力低減させるために、240℃以上、より好ましくは280℃以上で行うことが好ましい。焼戻し温度の選択については、表面の残留オーステナイト量だけでなく、表面硬度も考慮すべきである。十分な転動寿命を得るためには、表面硬度をHv650以上とすることが好ましく、より好ましくはHv700以上とする。また、芯部硬さも上記したようにHv300以上となるように焼戻し温度の条件を決める。
【0030】
仕上加工について
熱処理を施した転動体は、研削や研磨及び超仕上などを行って目的の形状寸法にする。仕上げ加工後の窒化層厚さをより深く得るためには、仕上げ加工取り代は極力少なくすることが望ましい。例えば、熱処理変形が少ない小型の部材などでは、要求される寸法精度を満たすことができるのであれば研削工程を省いてもよい。また、リニアガイドなど棒状の製品では、必要に応じて曲げ加工を行ってもよい。また、前述したように完成品表面のC、N及びCr含有量の関係が重量比で0.86N+C≦1.7−0.057×[Cr当量]及び0.45≦C+Nを満たすように取り代を設定する。
【0031】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は本発明をプラネタリギヤ装置に適用した一実施形態を示す図であり、同図に示されるように、プラネタリギヤ装置は、図示しない軸が挿通されるサンギヤ1と、このサンギヤ1と同芯に配されたリングギヤ2と、サンギヤ1及びリングギヤ2に噛み合う複数(本実施例では3個)のピニオンギヤ3と、ピニオンギヤ3を回転自在に支持するキャリア4とを備えている。
【0032】
ピニオンギヤ3はキャリア4に固定されたピニオンシャフト5を介してキャリア4に支持されており、ピニオンシャフト5の外周面とピニオンギヤ3の内周面との間に配設された図示しない複数の針状ころによって、ピニオンシャフト5を軸として回転自在とされている。
ピニオンシャフト5は、Cr(クロム)を3.0〜7.5重量%を含む鋼で構成されており、窒化処理に引き続いて高周波焼入れ及び焼戻しを施し、完成品表面のC、N及びCr当量が0.86N+C≦1.7−0.057×[Cr当量]の関係を満たし、かつ表面の残留オーステナイト量が体積比で3%以下とされている。また、ピニオンシャフト5は本発明に係る転動装置の内方部材に相当するものである。
【0033】
図2はピニオンシャフト5の硬さを模式的に示す図であり、同図に示されるように、ピニオンシャフト5はN濃度が0.05%以上の最表面層5aと、C+N濃度が0.5%以上の表面層5bと、硬さがHv650以上の芯部5cとを有している。ピニオンシャフト5の表面層5bは、C、N及びCr当量がC+0.86N≦1.7−0,057×[Cr当量]の関係を満たしている。
次に、表1に示すような組成を有する種々の鋼で構成されたピニオンシャフト5を用意して、プラネタリギヤ装置の寿命試験を行った。なお、鋼種Pは、JIS鋼種SUJ2である。
【0034】
【表1】

Figure 0003982368
【0035】
ピニオンシャフト5の製造方法は、鋼材を所定の寸法に旋削加工した後に熱処理を施し、さらに仕上げ研削を行うことにより製造した。熱処理の詳細な方法に関しては、上記した通りである。
本発明の実施例では、以下に示すA〜Fまでの熱処理のうちいずれかを選択した。
1.熱処理A ガス窒化(Nv窒化プロセス)⇒高周波焼入れ⇒高温焼戻し
高周波焼入れ;900℃〜1000℃(表面温度)
焼戻し;240℃〜340℃×2時間
2.熱処理B ガス窒化(Nv窒化プロセス)⇒高周波焼入れ⇒サブゼロ⇒焼戻し
高周波焼入れ;900℃〜1000℃(表面温度)
サブゼロ;−60℃〜−190℃×20分
焼戻し;240℃〜340℃×2時間
3.熱処理C ガス窒化(Nv窒化プロセス)⇒高周波焼入れ⇒高温焼戻し
高周波焼入れ;900℃〜1000℃(表面温度)
焼戻し;340℃〜500℃×2時間
4.熱処理D ガス窒化⇒高周波焼入れ⇒サブゼロ⇒焼戻し
高周波焼入れ;900℃〜1000℃(表面温度)
サブゼロ;−60℃〜−190℃×20分
焼戻し;340℃〜500℃×2時間
5.熱処理E 高周波焼入れ⇒焼戻し
高周波焼入れ;900℃〜1000℃(表面温度)
焼戻し;160℃×2時間
6.熱処理F 高周波焼入れ⇒焼戻し
高周波焼入れ;840℃(表面温度)
焼戻し;160℃×2時間
次に、寿命試験の具体的方法について図3を参照しながら説明する。
【0036】
図3に示すように、外輪(外方部材)11にはピニオンシャフト(内方部材)10が挿通されており、両者10,11の間に転動自在に介装された複数のニードルローラ(転動体)12によって、ピニオンシャフト10が回転可能となっている。このピニオンシャフト10の一端面には、潤滑油注入孔10bがピニオンシャフト10の軸方向に沿って形成されている。この潤滑油注入孔10bはピニオンシャフト10の周面中央部に設けられた給油孔10aに連通しており、潤滑油注入孔10bに注入された潤滑油は給油孔10aから転送面に供給されるようになっている。なお、外輪11及びニードルローラ12はJIS鋼種のSUJ2で作成され、ズブ焼入れ焼戻しにて硬さをHv650以上とした。
【0037】
ラジアル荷重:4200N、回転速度:6000min-1、潤滑油温度:150℃、試験回数:5回の試験条件でピニオンシャフト10を回転させ、ピニオンシャフト10の寿命試験を行った。試験は5回行い、計15個のサンプルについて剥離が生ずるまでの時間を寿命として評価した。その試験結果を表2及び表3に示す。
【0038】
【表2】
Figure 0003982368
【0039】
【表3】
Figure 0003982368
【0040】
表2及び表3中の窒素濃度及び炭素濃度は、試験片断面についてEPMA(電子プローブ微量分析装置)で測定した結果を示しており、最表面層においては表面から10μm、表面層については転動体径Daの2%深さの値を示している。また、残留オーステナイトは表面から10μm位置及び転動体径Daの2%深さまで電解研磨を行い、X線回折装置で測定した値である。寿命試験の結果は試験後、剥離が観察されたもの及びシャフトの破損や剥離等で途中中断したものの個数が、0個のものを◎、1個以上5個以下のものを○、6個以上10個以下のものを△、11個以上のものを×として示した。
【0041】
試験を行った結果、試験片1〜12で示される本発明の実施例では、SUJ2高周波焼入れ品の従来例22と比較して、良好な転がり寿命が得られることがわかる。
比較例13は母材のC量及び表面層のC+N量がそれぞれ規定の値に達しなかったものであり、表面層の硬度が十分でないため、転がり寿命は十分に得られていない。比較例14は母材のC量が1.1を超えて添加されたものであるが、粗大な共晶炭化物が多く見られ、高周波焼入れ時のオーバーヒートを起こしたため、試験を行わなかった例である。
【0042】
比較例15はCr含有量が規定量に達していないものであるが、寿命は従来例22と比較して向上しているものの、十分な耐摩耗性が得られず、本実施例ほどの寿命延長効果は得られなかった。比較例16は高温焼戻しを行わず、残留オーステナイトが3%を超えたものであり、試験中に軸の曲がり等を発生したため、短寿命となったものと考えられる。比較例17〜20は表面層及び最表面層のC+N濃度が式(1)を満たさなかったため、オーステナイトが多量に残留した例である。残留オーステナイトを多量に生成したため、表面層の硬さが十分に得られず、非常に短寿命となった。比較例21は最表面の窒素濃度が0.05を下回ったものであり、最表面部の耐摩耗性が十分に得られなかったため、本実施例ほどの寿命延長効果が得られないことがわかる。
【0043】
以上の試験結果を、横軸にCr当量、縦軸にC+0.86Nとして整理したグラフを図4に示す。同図から明らかなように、数式(1)を満たさない場合は十分な寿命が得られないことがわかる。また、式(1)を満たしていても本発明の数値限定を満たさないものについても、十分な寿命を得られないことがわかる。したがって、上述した実施例のように、プラネタリギヤ装置のピニオンシャフトを3.0重量%以上7.5重量%以下のクロムを含む鋼であって、窒化処理に引き続いて高周波焼入れ及び焼戻しが施され、かつ完成品表面層の炭素濃度、窒素濃度及びクロム当量が0.86N+C≦1.7−0.057×[Cr当量]の関係を満たすと共に体積比で3%以下の残留オーステナイトを有する鋼から形成すると、ピニオンシャフトの耐摩耗性が向上するので、高温、高速、高荷重の条件下であっても長期にわたって好適に使用することできる。
【0044】
なお、本発明は上述した実施形態に限定されるものでない。たとえば、上述した実施形態では内方部材であるピニオンシャフト5を3.0重量%以上7.5重量%以下のクロムを含む鋼であって、窒化処理に引き続いて高周波焼入れ及び焼戻しが施され、かつ完成品表面層の炭素濃度、窒素濃度及びクロム当量が0.86N+C≦1.7−0.057×[Cr当量]の関係を満たすと共に体積比で3%以下の残留オーステナイトを有する鋼で形成したが、外輪11及び/又はニードルローラ12をピニオンシャフトと同様の鉄鋼材料で構成してもよい。また、上述した実施形態では本発明をプラネタリギヤ装置のころ軸受に適用した場合を例示したが、例えば玉軸受やボールねじ、リニアガイド等にも本発明を適用できることは勿論である。
【0045】
【発明の効果】
以上説明したように、本発明によれば、外方部材、内方部材および転動体のうち少なくとも一つを、3.0重量%以上7.5重量%以下のクロムを含む鋼であって、窒化処理に引き続いて高周波焼入れ及び焼戻しが施され、かつ完成品表面層の炭素濃度、窒素濃度及びクロム当量が0.86N+C≦1.7−0.057×[Cr当量]の関係を満たすと共に体積比で3%以下の残留オーステナイトを有する鋼で形成したことにより、耐摩耗性を向上させることが可能となるので、高温、高速、高荷重の条件下であっても長寿命の転動装置を提供できる。
【図面の簡単な説明】
【図1】本発明をプラネタリギヤ装置に適用した一実施形態を示す図である。
【図2】図1のピニオンシャフトの硬さを模式的に示す図である。
【図3】ピニオンシャフトの耐久性試験を説明するための図である。
【図4】ピニオンシャフトの耐久性試験の試験結果を示す図である。
【符号の説明】
1 サンギヤ
2 リングギヤ
3 ピニオンギヤ
4 キャリヤ
5,10 ピニオンシャフト(内方部材)
11 外輪(外方部材)
12 ニードルローラ(転動体)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling device used under conditions of high temperature, high speed and high load. More specifically, for example, a pinion shaft of a planetary gear device used for a transmission for an automobile or a transmission for a machine tool is provided. The present invention relates to a rolling device such as a supporting rolling bearing.
[0002]
[Prior art]
A rolling device such as a rolling bearing includes an outer member, an inner member disposed inside the outer member, and a plurality of rolling elements disposed between the inner member and the outer member. When one of the outer member and the inner member rotates or linearly moves, the rolling element rolls on a rolling surface formed opposite to the outer member and the inner member. ing. Here, when the rolling device is a rolling bearing such as a ball bearing, the outer member may be referred to as an outer race, and the inner member may be referred to as an inner race or shaft. The outer member is called a nut, the inner member is called a screw shaft, and in the case of a linear guide, the outer member is called a slider and the inner member is called a guide rail.
[0003]
Generally, in a rolling bearing such as a ball bearing, a plurality of rolling elements disposed between an outer race and an inner race are formed on the inner circumference of the outer race and the outer circumference of the inner race. Since the rolling motion is caused by bringing the surface into contact with the moving body raceway surface, a contact pressure is generated between the rolling body raceway surface and the rolling body surface. For this reason, materials for races and rolling elements are required to be hard and able to withstand loads, have a long rolling fatigue life, and have good wear resistance against slipping. For example, bearing steels such as SUJ2 and SUJ3, which are JIS steel types, are used as materials for race rings and rolling elements.
[0004]
Further, the bearing rings and rolling elements of the rolling bearing are used under repeated shear stress under high surface pressure. For this reason, in order to withstand the shear stress and to secure a rolling fatigue life, the bearing steels such as SUJ2 and SUJ3 described above are subjected to heat treatment, and those having a surface hardness of HRC58 to 64 are used.
For such heat treatment of the raceway material and the rolling element material, so-called quenching, in which the core of the material is heated to the quenching temperature and rapidly cooled, is used. However, in recent years, the requirements for the use conditions of the rolling device have become stricter, and there is a limit in extending the life of heat treatment using only quench hardening.
[0005]
For example, in a planetary gear device used for an automatic transmission of an automobile, a complicated structure in which a pinion gear rotates and revolves is adopted, so that it is difficult to sufficiently lubricate a pinion shaft that supports the pinion gear. There is. Moreover, in order to support the centrifugal force acting on the pinion gear, a large load tends to be applied to the pinion shaft. Therefore, not only the materials and heat treatments described above, but also a countermeasure such as carbonitriding of SUJ2, which is a JIS steel type, is used to extend the life of the pinion shaft of such a planetary gear device.
[0006]
[Problems to be solved by the invention]
However, in recent years, demands for reducing fuel consumption of automobiles are increasing, and transmissions are being made smaller and more efficient in order to reduce fuel consumption. For example, in an ATF (Automatic Transmission Flude) that lubricates a transmission, there is a tendency to lower the viscosity for higher efficiency, and the formation of an oil film of the lubricating oil is more difficult. Furthermore, the load on the pinion shaft tends to increase as the rotational speed of the pinion gear increases. Since these things contribute to a decrease in the life of the pinion shaft, means for further improving the life has been demanded.
[0007]
In addition, rolling devices such as ball bearings used for spindles for machine tool spindles are used in a high-temperature and high-speed environment. Although stability is ensured, a rolling device that can withstand higher speed rotation than ever is required due to demands for improving productivity, and further increase in use temperature and poor lubrication are expected.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems and to provide a rolling device having a long life even under use conditions of high temperature, high speed, and high load.
[0008]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the present invention is arranged between an outer member, an inner member disposed inside the outer member, and the inner member and the outer member. A plurality of rolling elements, and at least one of the outer member, the inner member, and the rolling elements,3.0 to 7.5 wt% Cr, 0.3 to 1.1 wt% C, 0.1 to 1.5 wt% Si and 0.1 to 1.0 wt% Mn are added. In addition, 0 to 3.0% by weight of Mo, 0 to 2.0% by weight of W, and 0 to 2.0% by weight of V are selectively added, and the steel consists of the remaining iron and inevitable impurities. In this steel, C and N of the surface layer of the finished product have a relationship of C + N ≧ 0.5 wt%, 0.86N + C ≦ 1.7−0.057 × (Cr + 2Mn + 0.5 (Mo + 0.5W) + 1.75V) In order to satisfy, nitriding treatment is performed at a temperature lower than the Ac1 transformation point before induction quenching and tempering, and the amount of retained austenite of the finished product surface layer is 3% or less by volume.It is characterized by that.
[0009]
As described above, it is effective to improve the wear resistance of the material constituting the outer member, the inner member, and the rolling element against poor lubrication of the rolling device accompanying high temperature and high speed. . In order to suppress wear of the outer member, the inner member and the rolling element, it is effective to increase the nitrogen concentration on the surface of the material to precipitate fine nitride effective for improving the wear resistance. In the present invention, a means for nitriding before quenching to improve the surface nitrogen concentration is employed.
[0010]
Since nitrogen (N) is an austenite stabilizing element, the amount of retained austenite after quenching is naturally high. However, when a certain amount of retained austenite is included, the life of contamination is improved, but when used at a high temperature, deformation with time accompanying the decomposition of retained austenite occurs, which may cause a decrease in life. In order to suppress such deformation with time, high temperature tempering or the like is performed, and the amount of retained austenite may be 3% or less by volume ratio. However, when the tempering temperature is increased, the hardness may decrease and a sufficient rolling fatigue life may not be obtained. In order to suppress softening due to tempering, an element having high resistance to tempering softening (for example, Cr, Mo, W, V, Si, etc.) may be added. In particular, Cr and Si are preferable because of low addition costs.
[0011]
The critical significance of each numerical limitation in the present invention will be described below.
[About the base material]
Cr: 3.0% to 7.5% by weight
Cr (chromium) is effective in generating Cr carbide and nitride in the base material to ensure hardness and improving wear resistance. Furthermore, since Cr has resistance to temper softening, it is an effective element for securing hardness when performing high temperature tempering. In order to ensure sufficient wear resistance, it is necessary to contain 3% or more of Cr by weight. Further, even if Cr is added in a large amount, not only the effect of addition is saturated, but also the heat treatment productivity is lowered, for example, the thickness of the nitrogen-enriched layer obtained by nitriding is reduced. Therefore, the upper limit of the Cr content is desirably 7.5% by weight. For example, when oil film formation becomes difficult due to various conditions such as high vibration and high load, early peeling along with the white structure may occur immediately below the raceway surface. The change is suppressed by Cr, and a stable and dense passive film can be produced.
[0012]
C: 0.3% by weight to 1.1% by weight
C (carbon) is an element that increases the strength by converting the base into martensite, and lowers the core toughness of the material, but has the effect of suppressing the precipitation of ferrite. Accordingly, the C content is preferably 0.3% by weight or more. However, when C is added excessively, coarse eutectic carbides are easily generated during steelmaking, which causes a reduction in rolling life and toughness. In addition, since coarse eutectic carbides are difficult to dissolve, induction hardening, etc., in which the material is heated and held in a short time, results in insufficient material quenching hardness or material overheating (excessive quenching). It can be a cause. This tendency becomes prominent when the amount of carbon added to the material exceeds 1.1% by weight. Therefore, the upper limit of the carbon content is 1.1% by weight, more preferably 0.9% by weight or less. Is desirable.
[0013]
Elements added as necessary
Mo (molybdenum) is an element that generates carbides and nitrides and improves wear resistance and strength. Moreover, it is an element which remarkably increases hardenability and temper softening resistance, and is an element which remarkably improves pitting corrosion resistance. Therefore, it may be added as necessary, but if added excessively, not only will the cost be increased, but also workability and toughness will be reduced, so it is desirable to add Mo in an amount of about 2.0% by weight.
[0014]
V (vanadium) is a strong carbide and nitride-forming element, and is an element useful for improving wear resistance and strength. However, addition of a large amount not only increases costs, but also decreases workability and toughness, so the addition amount is desirably 2.0% by weight or less. In addition, since said Mo, W, and V can suppress a structure | tissue change similarly to Cr, it is preferable to add in the rolling member in which peeling resulting from structure | tissue changes, such as a white structure | tissue, generate | occur | produces.
[0015]
Elements essential for steelmaking
Si (silicon) is an element necessary as a deoxidizer during steelmaking, and is preferably added in an amount of 0.1% by weight or more. Further, in order to increase the temper softening resistance, more preferably 0.45% by weight or more is added. However, if added in a large amount, the toughness is lowered, so that the upper limit is desirably 1.5% by weight.
[0016]
Mn (manganese) is required to be 0.1% by weight or more as a deoxidizer, but if added in a large amount, not only the forgeability and machinability will deteriorate, but also the coexistence with impurities such as S and P will reduce the corrosion resistance. Let Therefore, when Mn is added, the upper limit is preferably about 1.0% by weight.
About inevitable impurities
Oxide inclusions are important for impurities contained in steel. When the oxygen content in the steel increases, the amount of coarse oxide inclusions that become the starting point of fatigue failure increases, and the rolling life decreases. In addition, if there are coarse oxide inclusions in the nitride layer, there is a risk of early peeling of the nitride layer, so it is desirable to keep the oxygen content as low as possible. The oxygen content in the steel is 15 ppm or less, more preferably 12 ppm or less.
[0017]
In addition to these additive elements, the alloy steel in the present invention includes P (phosphorus), S (sulfur), Ni (nickel), Cu (copper), Al (aluminum), Ti (titanium) as inevitable impurities. ), Nb (niobium), Pb (lead), Ca (calcium), Zr (zirconia), Te (tellurium), Sb (antimony) and the like.
[About finished product quality]
The finished product surface layer in the present invention refers to the entire depth from the finished product surface to 2% of the rolling element diameter Da, and the finished product outermost surface refers to the entire region from the finished product surface to 10 μm.
[0018]
Residual austenite content of finished product surface layer: 3 vol% or less
Residual austenite (γR) Has the effect of alleviating stress concentration due to the indentation formed on the rolling surface under the contamination with foreign matter, but when used at high temperatures, the retained austenite decomposes, resulting in a shape change. When the shape changes, the gaps between the members of the rolling device decrease or increase, which may cause poor lubrication, increased rotational torque, and decreased rotational accuracy, leading to decreased rolling life and functional life. . Therefore, on the finished product surface, the amount of retained austenite is preferably 3% or less by volume, more preferably 0% by volume. The amount of retained austenite can be adjusted mainly by the tempering temperature and the alloy components. Further, if the amount of retained austenite in the finished product surface layer is set to 3% by volume or less, the C + N concentration in the core portion is reduced from the surface portion, so the amount of retained austenite in the core portion is almost 0% by volume.
[0019]
C + N concentration on the surface of the finished product surface layer
N (nitrogen) is an element important for improving the hardness at high temperature use because it has the effect of converting the base into martensite like C and is excellent in resistance to temper softening. However, if added excessively, the Ms point (martensitic transformation start temperature) is lowered and there is a possibility that sufficient quenching hardness cannot be obtained, so the upper limit must be limited. The Ms point varies depending not only on N but also on additional elements such as C and Cr. The present inventors can suppress the retained austenite of the finished product surface layer to 3 volume% or less by tempering if the relationship between the carbon concentration, nitrogen concentration, and Cr equivalent in the surface portion satisfies the following formula (1). The knowledge that it is.
[0020]
(0.86N + C) ≦ 1.7−0.057 × [Cr equivalent] (1)
However, [Cr equivalent] = Cr + 2Mn + 0.5 (Mo + 0.5W) + 1.75V
The above formula (1) is the γ of the finished product surface layer.R(Residual austenite amount) ≦ 3.0% by volume represents the relationship between N, C, and Cr equivalents that make the Ms point during quench hardening appropriate. The Ms point becomes lower as the Cr equivalent increases. On the other hand, if the Ms point is lowered, the above γRWill increase. In the present invention, γRSince it is desired to reduce the volume to ≦ 3% by volume, it is desirable to increase the Ms point. However, an object of the present invention is to provide a rolling device that can withstand high temperatures, high speeds, and high loads and has a long life, and selectively uses 3.0 to 7.5 wt% Cr, Mo, W, and V. ΓRCarry out lowering. Therefore, not only the quantitative range of Cr, Mo, W, V, Mn, but also γRAllows ≦ 3.0% by volume. The combination of these elements is regulated by the conditions on the right side of the formula (1), and the present invention relates the relationship of the formula (1) to γRIt was confirmed by earnest experiment in relation to the amount. And it is beneficial for automobiles and the like by adopting alloy steel to which alloy elements with less low cost are added, instead of simply alloying with the appropriate combination of these elements and responding to high temperature, high speed, and high load requirements. A low-cost rolling bearing is provided.
[0021]
When the C + N concentration of the surface layer is less than 0.5%, the minimum hardness of the finished product surface layer does not exceed Hv650, and a sufficient rolling life cannot be obtained. In the present invention, in order to ensure a sufficient rolling life, the C + N concentration is set to 0.5% or more. The surface portion has a Vickers hardness of Hv 650 or more, preferably Hv 700 or more.
N concentration on the top surface of the finished product
The nitrogen-enriched layer formed on the outermost surface is a nitride of an alloy element such as Fe or Cr (γ ′: FeFourN, CrN, and the like) and exhibit excellent wear resistance. In order to obtain excellent wear resistance, the nitrogen concentration from at least the surface to 10 μm needs to be 0.05% or more, preferably 0.1% or more, more preferably 0.2% or more.
[0022]
About core hardness
The core hardness is preferably set to Hv300 or more, more preferably set to Hv400 or more in order to suppress deformation due to the influence of a high load. However, this does not apply when not used under high temperature and high load.
[About the heat treatment method of the rolling device according to the present invention]
In a rolling device used under the condition of high temperature and high load, in addition to deformation due to decomposition of retained austenite, if the core hardness is too low, deformation or bending may occur due to external stress or heat. Therefore, the core hardness of the finished product is preferably Hv300 or more, more preferably Hv400 or more.
[0023]
In the quenching method of the present invention, it is preferable to employ induction hardening, but the core portion may not be sufficiently obtained by induction hardening. Therefore, when induction hardening is adopted, it is preferable to perform tempering and tempering prior to the nitriding treatment so that the overall hardness is tempered to Hv300 or higher. Further, nitriding may be performed immediately after quenching and tempering may be omitted.
[0024]
About nitriding
For the nitriding treatment, any method such as gas nitriding, salt bath nitriding, ion nitriding, soft nitriding or the like may be selected. In the induction hardening performed after nitriding, since the heating and holding time is short, it may be considered that the diffusion of nitrogen hardly occurs. Therefore, it is necessary to obtain a suitable nitride layer pattern before the induction hardening.
[0025]
In order to perform finishing after induction hardening, the depth of the nitrided layer before induction hardening is at least equal to the allowance for finishing. Since the machining allowance varies depending on the member and the quenching method, the required nitride layer pattern is determined for each member.
The nitriding treatment temperature and time may be any as long as the above nitriding layer pattern is satisfied, but in order to suppress the distortion caused by the nitriding treatment as much as possible, the nitriding treatment is performed at a temperature below the Ac1 transformation point. The treatment is preferably performed at 500 ° C. or lower.
[0026]
As an example of a preferable form of the low temperature nitriding treatment, there is an Nv nitriding process (trade name of Air Water Co., Ltd.) which can be treated at a relatively low temperature. The Nv nitridation process is performed before nitriding, for example, NFThreeA process of performing fluorination treatment at 2500 ° C. to 400 ° C. using a fluorine-based gas such as (nitrogen trifluoride) and NHThreeAnd a process of performing nitriding with a gas. Since the fluorination treatment removes Cr oxide that inhibits the nitriding reaction and forms a fluorinated layer that activates the surface, the treatment time is short, and a very uniform nitride layer can be formed even at low temperatures. .
[0027]
About quenching and tempering
The quenching is preferably performed by induction quenching. In the induction hardening, the heat treatment time from heating to cooling is short. For this reason, since the nitrogen concentration distribution generated by the nitriding treatment hardly changes, a high nitrogen concentration can be obtained. Furthermore, since induction hardening is a method of hardening only the surface of the workpiece, there is an advantage that the heat treatment deformation of the entire workpiece is reduced and post-processing allowance can be reduced as compared with the sub-quenching. Any method such as oil cooling or water cooling may be used for cooling.
[0028]
In addition, the Ms point decreases as the amount of alloy elements such as C, N, and Cr increases in the parent phase, but subzero is performed in the case of an alloy component in which the Ms point decreases to room temperature or lower. Normal subzero is often processed at around -60 ° C, but if it is not sufficiently quenched at -60 ° C, super subzero is processed at about -190 ° C (refrigerant is hydrogen or helium gas). Also good.
[0029]
Tempering is preferably performed at 240 ° C. or higher, more preferably 280 ° C. or higher in order to reduce the amount of austenite on the surface as much as possible. In selecting the tempering temperature, not only the amount of retained austenite on the surface but also the surface hardness should be considered. In order to obtain a sufficient rolling life, the surface hardness is preferably Hv 650 or more, more preferably Hv 700 or more. Further, the tempering temperature condition is determined so that the core hardness is Hv300 or more as described above.
[0030]
About finishing
The rolling element subjected to the heat treatment is ground, polished, and superfinished to obtain the desired shape. In order to obtain a deeper nitrided layer thickness after finishing, it is desirable to reduce the machining allowance as much as possible. For example, for a small member with little heat treatment deformation, the grinding step may be omitted if the required dimensional accuracy can be satisfied. Further, in a rod-shaped product such as a linear guide, bending may be performed as necessary. Further, as described above, the relationship between the C, N and Cr contents on the finished product surface is 0.86N + C ≦ 1.7−0.057 × [Cr equivalent] and 0.45 ≦ C + N in terms of weight ratio. Set the bill.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing an embodiment in which the present invention is applied to a planetary gear device. As shown in FIG. 1, the planetary gear device includes a sun gear 1 through which a shaft (not shown) is inserted, and the sun gear 1 is concentric with the sun gear 1. There are provided a ring gear 2, a plurality of (three in this embodiment) pinion gears 3 that mesh with the sun gear 1 and the ring gear 2, and a carrier 4 that rotatably supports the pinion gear 3.
[0032]
The pinion gear 3 is supported by the carrier 4 via a pinion shaft 5 fixed to the carrier 4, and has a plurality of needles (not shown) disposed between the outer peripheral surface of the pinion shaft 5 and the inner peripheral surface of the pinion gear 3. The roller is rotatable about the pinion shaft 5 as an axis.
The pinion shaft 5 is made of steel containing 3.0 to 7.5% by weight of Cr (chromium), and is subjected to induction quenching and tempering subsequent to nitriding, and C, N and Cr equivalents on the surface of the finished product. Satisfies the relationship of 0.86N + C ≦ 1.7−0.057 × [Cr equivalent], and the amount of retained austenite on the surface is 3% or less by volume ratio. The pinion shaft 5 corresponds to an inner member of the rolling device according to the present invention.
[0033]
FIG. 2 is a diagram schematically showing the hardness of the pinion shaft 5. As shown in the figure, the pinion shaft 5 has an outermost surface layer 5a having an N concentration of 0.05% or more and a C + N concentration of 0.1. It has a surface layer 5b of 5% or more and a core part 5c having a hardness of Hv650 or more. In the surface layer 5b of the pinion shaft 5, the C, N, and Cr equivalents satisfy the relationship of C + 0.86N ≦ 1.7-0,057 × [Cr equivalent].
Next, a pinion shaft 5 made of various steels having the compositions shown in Table 1 was prepared, and a life test of the planetary gear device was performed. Steel type P is JIS steel type SUJ2.
[0034]
[Table 1]
Figure 0003982368
[0035]
The method of manufacturing the pinion shaft 5 was manufactured by turning a steel material to a predetermined size, performing heat treatment, and further performing finish grinding. The detailed method of the heat treatment is as described above.
In the examples of the present invention, any one of the following heat treatments A to F was selected.
1. Heat treatment A Gas nitriding (Nv nitriding process) ⇒ Induction hardening ⇒ High temperature tempering
Induction hardening; 900 ° C to 1000 ° C (surface temperature)
Tempering: 240 ° C. to 340 ° C. × 2 hours
2. Heat treatment B Gas nitriding (Nv nitriding process) ⇒ induction hardening ⇒ sub-zero ⇒ tempering
Induction hardening; 900 ° C to 1000 ° C (surface temperature)
Subzero; -60 ° C to -190 ° C x 20 minutes
Tempering: 240 ° C. to 340 ° C. × 2 hours
3. Heat treatment C Gas nitriding (Nv nitriding process) ⇒ induction hardening ⇒ high temperature tempering
Induction hardening; 900 ° C to 1000 ° C (surface temperature)
Tempering: 340 ° C. to 500 ° C. × 2 hours
4). Heat treatment D Gas nitriding ⇒ induction hardening ⇒ sub-zero ⇒ tempering
Induction hardening; 900 ° C to 1000 ° C (surface temperature)
Subzero; -60 ° C to -190 ° C x 20 minutes
Tempering: 340 ° C. to 500 ° C. × 2 hours
5. Heat treatment E Induction quenching ⇒ Tempering
Induction hardening; 900 ° C to 1000 ° C (surface temperature)
Tempering; 160 ° C x 2 hours
6). Heat treatment F Induction hardening ⇒ Tempering
Induction hardening; 840 ° C (surface temperature)
Tempering; 160 ° C x 2 hours
Next, a specific method of the life test will be described with reference to FIG.
[0036]
As shown in FIG. 3, a pinion shaft (inner member) 10 is inserted into the outer ring (outer member) 11, and a plurality of needle rollers (not shown) that are interposed between both the rollers 10 and 11 so as to roll freely. The pinion shaft 10 can be rotated by the rolling elements 12. On one end face of the pinion shaft 10, a lubricating oil injection hole 10 b is formed along the axial direction of the pinion shaft 10. The lubricating oil injection hole 10b communicates with an oil supply hole 10a provided in the center of the peripheral surface of the pinion shaft 10, and the lubricating oil injected into the lubricating oil injection hole 10b is supplied from the oil supply hole 10a to the transfer surface. It is like that. The outer ring 11 and the needle roller 12 were made of JIS steel type SUJ2, and the hardness was set to Hv650 or higher by submerged quenching and tempering.
[0037]
Radial load: 4200N, rotation speed: 6000min-1The lubricating oil temperature: 150 ° C., the number of tests: The pinion shaft 10 was rotated under the test conditions of 5 times, and the life test of the pinion shaft 10 was performed. The test was performed 5 times, and the time until peeling occurred for a total of 15 samples was evaluated as the lifetime. The test results are shown in Tables 2 and 3.
[0038]
[Table 2]
Figure 0003982368
[0039]
[Table 3]
Figure 0003982368
[0040]
The nitrogen concentration and carbon concentration in Table 2 and Table 3 show the results of measuring the cross-section of the test piece with EPMA (Electron Probe Microanalyzer). The outermost surface layer is 10 μm from the surface, and the surface layer is a rolling element. A value of 2% depth of the diameter Da is shown. Residual austenite is a value measured with an X-ray diffractometer after electrolytic polishing from the surface to a position of 10 μm and a depth of 2% of the rolling element diameter Da. The results of the life test show that after the test, peeling was observed and the number of shafts interrupted due to breakage or peeling of the shaft was 0, ◎, 1 or more, 5 or less, ○, 6 or more 10 or less were shown as Δ, and 11 or more were shown as x.
[0041]
As a result of the test, it can be seen that in the examples of the present invention indicated by the test pieces 1 to 12, a good rolling life can be obtained as compared with the conventional example 22 of the SUJ2 induction-hardened product.
In Comparative Example 13, the C amount of the base material and the C + N amount of the surface layer did not reach the specified values, respectively, and the surface layer had insufficient hardness, so that the rolling life was not sufficiently obtained. In Comparative Example 14, the amount of C in the base material was added in excess of 1.1, but a large amount of coarse eutectic carbide was seen and overheating occurred during induction hardening. is there.
[0042]
In Comparative Example 15, the Cr content did not reach the specified amount. However, although the life was improved as compared with Conventional Example 22, sufficient wear resistance was not obtained, and the life as in this example was reached. No prolongation effect was obtained. In Comparative Example 16, high temperature tempering was not performed, the retained austenite exceeded 3%, and the shaft was bent during the test. Therefore, it is considered that the life was shortened. Comparative Examples 17 to 20 are examples in which a large amount of austenite remained because the C + N concentrations of the surface layer and the outermost surface layer did not satisfy the formula (1). Since a large amount of retained austenite was generated, the hardness of the surface layer was not sufficiently obtained, and the life was very short. In Comparative Example 21, the nitrogen concentration on the outermost surface was less than 0.05, and the wear resistance of the outermost surface portion was not sufficiently obtained, so that it was found that the life extension effect as in this example could not be obtained. .
[0043]
FIG. 4 shows a graph in which the above test results are arranged with the Cr equivalent on the horizontal axis and C + 0.86N on the vertical axis. As can be seen from the figure, a sufficient lifetime cannot be obtained if Expression (1) is not satisfied. Further, it can be seen that even if the formula (1) is satisfied, a sufficient lifetime cannot be obtained even if the numerical limitation of the present invention is not satisfied. Accordingly, as in the above-described embodiment, the pinion shaft of the planetary gear device is a steel containing chromium of 3.0 wt% or more and 7.5 wt% or less, which is subjected to induction hardening and tempering following the nitriding treatment, In addition, the carbon concentration, nitrogen concentration, and chromium equivalent of the finished product surface layer satisfy the relationship of 0.86N + C ≦ 1.7−0.057 × [Cr equivalent] and are formed from steel having 3% or less residual austenite by volume ratio. Then, since the wear resistance of the pinion shaft is improved, it can be suitably used over a long period of time even under conditions of high temperature, high speed and high load.
[0044]
In addition, this invention is not limited to embodiment mentioned above. For example, in the above-described embodiment, the pinion shaft 5 that is an inner member is steel containing 3.0 wt% or more and 7.5 wt% or less of chromium, and induction hardening and tempering are performed following the nitriding treatment, And the carbon concentration, nitrogen concentration and chromium equivalent of the finished product surface layer satisfy the relationship of 0.86N + C ≦ 1.7−0.057 × [Cr equivalent] and are formed of steel having 3% or less residual austenite by volume ratio. However, you may comprise the outer ring | wheel 11 and / or the needle roller 12 with the steel materials similar to a pinion shaft. Moreover, although the case where the present invention is applied to the roller bearing of the planetary gear device is illustrated in the above-described embodiment, it is needless to say that the present invention can be applied to, for example, a ball bearing, a ball screw, a linear guide, and the like.
[0045]
【The invention's effect】
As described above, according to the present invention, at least one of the outer member, the inner member, and the rolling element is steel containing 3.0 wt% or more and 7.5 wt% or less of chromium, Subsequent to nitriding, induction quenching and tempering are performed, and the carbon concentration, nitrogen concentration and chromium equivalent of the finished product surface layer satisfy the relationship of 0.86N + C ≦ 1.7−0.057 × [Cr equivalent] and volume. Since it is made of steel having a retained austenite ratio of 3% or less, it becomes possible to improve the wear resistance, so a rolling device with a long life can be obtained even under high temperature, high speed and high load conditions. Can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment in which the present invention is applied to a planetary gear device.
FIG. 2 is a diagram schematically showing the hardness of the pinion shaft of FIG. 1;
FIG. 3 is a view for explaining a durability test of a pinion shaft.
FIG. 4 is a diagram showing test results of a durability test of a pinion shaft.
[Explanation of symbols]
1 Sun gear
2 Ring gear
3 Pinion gear
4 Carrier
5,10 Pinion shaft (inner member)
11 Outer ring (outer member)
12 Needle roller (rolling element)

Claims (3)

外方部材と、この外方部材の内方に配置された内方部材と、この内方部材と前記外方部材との間に配設された複数の転動体とを備えてなり、前記外方部材、内方部材および転動体のうち少なくとも一つが、3.0〜7.5重量%のCr、0.3〜1.1重量%のC、0.1〜1.5重量%のSiおよび0.1〜1.0重量%のMnが添加されているとともに、0〜3.0重量%のMo、0〜2.0重量%のW、0〜2.0重量%のVが選択的に添加され、残り鉄と不可避不純物からなる鋼からなり、該鋼は、完成品表面層のC及びNがC+N≧0.5重量%、0.86N+C≦1.7−0.057×(Cr+2Mn+0.5(Mo+0.5W)+1.75V)の関係を満たすように、高周波焼入れ及び焼戻しの前に窒化処理がAc1変態点未満の温度で施され、かつ完成品表面層の残留オーステナイト量が体積比で3%以下であることを特徴とする転動装置。An outer member, an inner member disposed inside the outer member, and a plurality of rolling elements disposed between the inner member and the outer member. At least one of the side member, the inner member and the rolling element is 3.0 to 7.5% by weight of Cr, 0.3 to 1.1% by weight of C, and 0.1 to 1.5% by weight of Si. And 0.1 to 1.0% by weight of Mn is added, and 0 to 3.0% by weight of Mo, 0 to 2.0% by weight of W, and 0 to 2.0% by weight of V are selected. The steel is composed of the remaining iron and inevitable impurities, and the steel has C and N in the finished surface layer of C + N ≧ 0.5 wt%, 0.86N + C ≦ 1.7−0.057 × ( In order to satisfy the relationship of Cr + 2Mn + 0.5 (Mo + 0.5W) + 1.75V), the nitriding treatment is not performed before the induction hardening and tempering before the Ac1 transformation point. Decorated with the temperature, and the rolling device, wherein the amount of retained austenite of the finished surface layer is 3% or less by volume. 前記鋼の酸素濃度が15ppm以下であることを特徴とする請求項1記載の転動装置。 The rolling device according to claim 1, wherein the steel has an oxygen concentration of 15 ppm or less . 前記鋼は、窒化処理に先立って焼入れが施され、窒化処理を施す前の全体の硬さがHv300以上となるように調質されていることを特徴とする請求項1または2記載の転動装置。The rolling according to claim 1, wherein the steel is tempered so that the entire hardness before the nitriding treatment is Hv300 or more after being quenched before the nitriding treatment. apparatus.
JP2002261275A 2002-09-06 2002-09-06 Rolling device Expired - Lifetime JP3982368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261275A JP3982368B2 (en) 2002-09-06 2002-09-06 Rolling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261275A JP3982368B2 (en) 2002-09-06 2002-09-06 Rolling device

Publications (2)

Publication Number Publication Date
JP2004099954A JP2004099954A (en) 2004-04-02
JP3982368B2 true JP3982368B2 (en) 2007-09-26

Family

ID=32261701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261275A Expired - Lifetime JP3982368B2 (en) 2002-09-06 2002-09-06 Rolling device

Country Status (1)

Country Link
JP (1) JP3982368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695875B2 (en) 2013-07-17 2017-07-04 Roller Bearing Company Of America, Inc. Top drive bearing for use in a top drive system, and made of non-vacuum arc remelted steel configured to achieve an extended life cycle at least equivalent to a life factor of three for a vacuum arc remelted steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292025A (en) * 2005-04-08 2006-10-26 Nsk Ltd Supporting shaft for planetary gear
JP4872371B2 (en) * 2006-02-14 2012-02-08 日本精工株式会社 Pinion shaft for planetary gear mechanism
WO2008108248A1 (en) * 2007-03-02 2008-09-12 Ntn Corporation Thrust bearing
JP6520347B2 (en) * 2015-04-20 2019-05-29 日本製鉄株式会社 Forming material of induction hardened parts, induction hardened parts, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695875B2 (en) 2013-07-17 2017-07-04 Roller Bearing Company Of America, Inc. Top drive bearing for use in a top drive system, and made of non-vacuum arc remelted steel configured to achieve an extended life cycle at least equivalent to a life factor of three for a vacuum arc remelted steel

Also Published As

Publication number Publication date
JP2004099954A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
JP4560141B2 (en) Surface hardening machine structural steel and machine structural steel parts
JP4423754B2 (en) Manufacturing method of rolling shaft
JP4380217B2 (en) Manufacturing method of pinion shaft
US9816557B2 (en) Tapered roller bearing
CN102245793B (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP5168958B2 (en) Rolling shaft
JP2006348342A (en) Rolling supporter
JP4998054B2 (en) Rolling bearing
JP5168898B2 (en) Rolling shaft
JP5163183B2 (en) Rolling bearing
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP3982368B2 (en) Rolling device
JP2005076679A (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP2005273759A (en) Rolling supporting device, manufacturing method for its component parts, and heat treatment process for steel
JP2015007265A (en) Rolling shaft
JP2003301933A (en) Pinion shaft and planetary gear device
JP2005140275A (en) Planetary gear device
JP2009204076A (en) Rolling bearing
JP2004169848A (en) Rolling device
JP2004076823A (en) Rolling device
JP2022148544A (en) bearing ring and shaft
JP2022170860A (en) rolling bearing
JP2010001521A (en) Shaft and pinion shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350