JPH01280767A - Semiconductor and its production - Google Patents

Semiconductor and its production

Info

Publication number
JPH01280767A
JPH01280767A JP62279069A JP27906987A JPH01280767A JP H01280767 A JPH01280767 A JP H01280767A JP 62279069 A JP62279069 A JP 62279069A JP 27906987 A JP27906987 A JP 27906987A JP H01280767 A JPH01280767 A JP H01280767A
Authority
JP
Japan
Prior art keywords
photoreceptor
layer
polishing
amorphous material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62279069A
Other languages
Japanese (ja)
Inventor
Tatsuya Ikesue
龍哉 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Original Assignee
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Intelligent Technology Co Ltd filed Critical Toshiba Corp
Priority to JP62279069A priority Critical patent/JPH01280767A/en
Publication of JPH01280767A publication Critical patent/JPH01280767A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Abstract

PURPOSE:To decrease the deposition of the resultant products of corona discharge on the surface of a photosensitive body consisting of plural amorphous material layers and to facilitate the removal thereof by packing fine particles into the recesses of the surface layer of the photosensitive body, then polishing the surface layer, thereby smoothing the surface. CONSTITUTION:The fine particles 39 are packed into the recesses of the surface protective layer 38 of the photosensitive body 34 constituted by laminating the plural amorphous material layers 36, 37, 38 contg. silicon on a conductive base 26 and thereafter, the surface layer is polished. The surface of the photosensitive body 34 is thereby smoothed and the substantial surface area is reduced. The absolute deposition of the resultant products of the corona discharge is thus decreased and the removal of the resultant products of the corona discharge is facilitated.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、複写機、レーザビームプリンタ、 LEDプ
リンタ等画像形成装置において、静電潜像の形成を行な
う非晶質材料層からなる光導電体及びその製造方法に関
する。 (従来の技術) 近年光導電体である画像形成装置の感光体材料にあって
は、従来のセレン[Se] 、セレン−テルル(Se−
Te3.硫化カドミウム〔cds〕等の無機感光体材料
やポリ−N−ビニルカルバゾール(以下pcv、と称す
。)トリニトロフルオレン(以下TNFと称す。)等の
有機感光体材料(以下opcと称す。)に比し表面硬度
が高く、優れた耐摩耗性、耐熱性を有し、又、無公害で
ある事から回収処理が不要であり、更には可視光全域か
ら近赤外線領域までの広い領域で分光感度を有する、ア
モルファスシリコン(以下(a−3j、)と称す。)及
びマイクロクリスタルシリコン(以下(μC−5j)と
称す。)等のシリコン[Si]を含む非晶質材料が注目
されている。そして具体的には、感光体はその特性とし
て十分な帯電能を得るため、高抵抗を有し、かつ分光感
度が高く、繰り返し特性の安定性を要求される事から、
これ等の特性を満たすため、単層では無く、第5図に示
すように導電性の支持体上に電荷注入阻止層や光導電層
2表面保護層を積層した電子写真感光体が開発されてい
る。即ち第5図(イ)の第1の従来例にあっては、導電
性の支持体(10)上に厚さ0.0l−10(μm+)
の電荷注入阻止層(11)、厚さ1O−100C11f
fl〕の光導電層(王2)、厚さ0 、01−10 C
ttm 〕の表面保護層(13)が積層されている。 ここで電荷注入阻止層(11)は、第1の材料としてP
型あるいはN型の(”−”’l) +アモルファスシリ
コンゲルマニウム(以下(a−3iGe)と称す。)、
アモルファス炭化シリコンゲルマニウム(以下(a−3
j、GeC)と称す。)、アモルファス窒化シリコン(
以下(a−3iN)と称す。)、アモルファス酸化シリ
コン(以下(a−3iO)と称す。)等の非晶質材料層
により支持体(10)からの(負)あるいは(正)の電
荷の注入を阻止する事により、感光体(14)に電荷保
持能を持たせるものである。そしていずれも水素あるい
はハロゲン元素が含まれている方が望ましく、価電子制
御用の不純物としては、P型にはホウ素〔B〕、ガリウ
ム〔G8〕8〕期律表第〔■a〕族元素が、N型にはリ
ンCP〕、ヒ素(As〕等同期律表第〔va〕族の元素
が使用されている。尚電荷注入阻止層(11)の第2の
材料としては、(a−3iC) 、 (a−5iN) 
、 (a−5iO) 、アモルファス窒化ホウ素(以下
(a−BN)と称す。)等の高抵抗の非晶質材料あるい
は、アルミニウムCA1’J、チタンi:Tj、、]、
亜鉛(zn〕等の酸化物。 窒化物、炭化物更には、ポリイミド、フッ素樹脂等の耐
熱性高分子等の高抵抗の絶縁性材料があり、支持体(1
0)からの(正)および/あるいは(負)の電荷の注入
を阻止する事により感光体(14)に電荷保持能を持た
せるものである。次に光導電層(12)を光に吸収し、
電子及び正孔対を効率良く発生させ、同時に発生された
電子及び正孔を電界により支持体(10)方向あるいは
表面方向に迅速に輸送し得るものである。このため、極
端なP型あるいはN型では一方のキャリアが再結合を生
じ電荷の輸送を行なえない事から、フェルミレベルが禁
制帯のほぼ中央に位置する材料である事が望ましく、(
a−5j、) 、 (a−5iGe) r (a−5i
、C) 、 (a−5iGeC) 、 (a−3iN)
 。 (a−5j、C) 、アモルファス窒化炭化シリコン(
以下(a−5j、CN)と称す。)等の非晶質材料があ
げられ、いずれも水素あるいはハロゲン元素が含まれて
いる方が望ましい。尚、価電子制御用の不純物である同
期律表第[ma:l族元素や、同期律表第〔■a〕族元
素もフェルミレベルを禁制帯の中央付近に位置させるも
のであれば含有可能であり、例えば(a−5i) (7
)場合、同期律表第〔■a〕族元素を0.001−10
(PPM)添加する事により、 フェルミレベルが禁制
帯中央に、より近づけられる。次に表面保護層(13)
は、その目的から機械的強度が高く、化学的安定性が強
いと共に、光導電層(12)で吸収すべき光を効率良く
透過出来、更には高抵抗であり、光導電層(12)から
注入されたキャリアを効率良く表面まで輸送する能力を
有する事が望ましく、(a−3iC) + (a−5i
N) + (a−5iO) 、 (a−3iCN) +
 (a−BN)等のシリコン[Sj)、炭素〔C〕、窒
素〔N〕、酸素
[Objective of the Invention] (Industrial Application Field) The present invention relates to a photoconductor comprising an amorphous material layer that forms an electrostatic latent image in an image forming apparatus such as a copying machine, a laser beam printer, or an LED printer. It relates to its manufacturing method. (Prior Art) In recent years, photoconductor materials for image forming apparatuses, which are photoconductors, have conventionally been made of selenium [Se], selenium-tellurium (Se-
Te3. Inorganic photoreceptor materials such as cadmium sulfide (CDS) and organic photoreceptor materials (hereinafter referred to as OPC) such as poly-N-vinylcarbazole (hereinafter referred to as PCV) and trinitrofluorene (hereinafter referred to as TNF). It has a high surface hardness, excellent abrasion resistance and heat resistance, and is non-polluting, so there is no need for recovery treatment, and it also has spectral sensitivity in a wide range from visible light to near-infrared light. Amorphous materials containing silicon [Si], such as amorphous silicon (hereinafter referred to as (a-3j)) and microcrystalline silicon (hereinafter referred to as (μC-5j)), have attracted attention. Specifically, in order to obtain sufficient charging ability, photoreceptors are required to have high resistance, high spectral sensitivity, and stability in repeat characteristics.
In order to satisfy these characteristics, an electrophotographic photoreceptor was developed in which a charge injection blocking layer and a photoconductive layer 2 surface protection layer were laminated on a conductive support, as shown in Figure 5, instead of a single layer. There is. That is, in the first conventional example shown in FIG.
charge injection blocking layer (11), thickness 1O-100C11f
fl] photoconductive layer (King 2), thickness 0, 01-10C
ttm] surface protective layer (13) is laminated thereon. Here, the charge injection blocking layer (11) is made of P as the first material.
type or N type ("-"'l) + amorphous silicon germanium (hereinafter referred to as (a-3iGe)),
Amorphous silicon germanium carbide (hereinafter (a-3)
j, GeC). ), amorphous silicon nitride (
Hereinafter, it will be referred to as (a-3iN). ), amorphous silicon oxide (hereinafter referred to as (a-3iO)), etc., prevents the injection of (negative) or (positive) charges from the support (10), so that the photoconductor (14) has a charge retention ability. It is preferable for both to contain hydrogen or a halogen element, and as impurities for controlling valence electrons, boron [B] for P-type, gallium [G8] group [■a] element of the periodic table, etc. However, for the N-type, phosphorus CP] and arsenic (As) are elements of group [VA] of the isochronous table.As the second material of the charge injection blocking layer (11), (a- 3iC), (a-5iN)
, (a-5iO), a high-resistance amorphous material such as amorphous boron nitride (hereinafter referred to as (a-BN)), or aluminum CA1'J, titanium i:Tj, ],
There are oxides such as zinc (zn), nitrides, carbides, and high-resistance insulating materials such as heat-resistant polymers such as polyimide and fluororesin.
By blocking the injection of (positive) and/or (negative) charges from 0), the photoreceptor (14) is given a charge retention ability. The photoconductive layer (12) then absorbs light;
It is capable of efficiently generating pairs of electrons and holes, and rapidly transporting the simultaneously generated electrons and holes toward the support (10) or the surface using an electric field. For this reason, in extreme P-type or N-type, one of the carriers recombines and cannot transport charges, so it is desirable to use a material whose Fermi level is located approximately in the center of the forbidden band.
a-5j, ) , (a-5iGe) r (a-5i
,C), (a-5iGeC), (a-3iN)
. (a-5j, C), amorphous silicon nitride carbide (
Hereinafter referred to as (a-5j, CN). ), and it is preferable that any of them contain hydrogen or a halogen element. In addition, synchronous law group [ma:l] elements and synchronous law group [■a] elements, which are impurities for controlling valence electrons, can also be included as long as they position the Fermi level near the center of the forbidden band. For example, (a-5i) (7
), the element in group [■a] of the synchronous table is 0.001-10
By adding (PPM), the Fermi level can be brought closer to the center of the forbidden band. Next, the surface protective layer (13)
Because of its purpose, it has high mechanical strength, strong chemical stability, and can efficiently transmit the light that should be absorbed by the photoconductive layer (12). It is desirable to have the ability to efficiently transport the injected carriers to the surface, and (a-3iC) + (a-5i
N) + (a-5iO), (a-3iCN) +
Silicon [Sj), carbon [C], nitrogen [N], oxygen such as (a-BN)

〔0〕、ホウ素〔B〕等で構成され、比
抵抗値が1.011[Ω(1)〕以]二であり、より望
ましく比抵抗値が1.0””(Ω■〕以上の高抵抗の非
晶質材料があげられ、水素あるいはハロゲン元素は含ま
れていてもいなくても良い。 更にはアルミニウム[A幻、チタン[Tj、]、亜鉛[
Zn:l 。 シリコン[Si3等の酸化物、窒化物、炭化物、あるい
は高抵抗高分子も適用可能とされている。 又、第5図(ロ)は、第2の従来例であり、第1の従来
例の光導電層(12)に相当する部分を、キャリア発生
層(16)とキャリア輸送層(17)とに分離したもの
であり、キャリア発生層(16)では光の吸収と電子及
び正孔対の発生に重点がおかれる反面、キャリア輸送層
(17)では発生キャリアの輸送と、電荷保持能に重点
がおかれるが、キャリア発生層(16)においても、キ
ャリアの輸送能力が高い方がより望ましい。 一方、一般には、キャリア発生層(16)の光学的禁止
帯幅は、キャリア輸送層(17)の光学的禁止帯幅に比
べて狭くされ、キャリア発生層(16)は、より長波長
の光を吸収可能とされており、例えばキャリア発生層(
16)としては、(a−3j、) 、 (a−3iGe
) 。 (a−3iGeC)等の非晶質材料が適し、キャリア輸
送層(17)としては(a−5,+、) + (a−3
xC) + (a−3j、N)等の非晶質材料が適して
いる。更に第5図(ハ)の第3の従来例は、第2の従来
例のキャリア発生層(16)と、キャリア輸送層(17
)が置き換わったものであり、第5図(ニ)の第4の従
来例は、第2の従来例のキャリア輸送層(17)に相当
する部分を、キャリア発生層(16)を挟んで第1のキ
ャリア輸送層(18a)及び第2のキャリア輸送層(1
,8b)とに分離したものである。又第5図(ホ)の第
5の従来例は、第2の従来例のキャリア輸送層(17)
に相当するキャリア輸送機能を有する最上層(20)に
表面保護機能を兼ねさせたものであり、第5図(へ)の
第6の従来例は第4の従来例の第2のキャリア輸送層(
18b)に相当するキャリア輸送機能を有する最上層(
21)に表面保護機能を兼ねさせたものである。 しかしながら、これら種々の従来の感光体にあっては、
いづれも長期間の使用により、感光体表面の表面抵抗が
低下し、帯電々荷量が劣下されてしまう事から、画像か
にじんだりぼけたりする画像流れを生し、ついには画像
形成不能に至るという現象を呈し、この現象は、特に多
湿下において顕著とされる。この画像流れは、感光体の
主帯電工程時、転写工程時、剥離工程時、除電工程時等
のコロナ放電時に生成される電解質を含むオゾン〔03
〕や各種窒素化合物、金属酸化物その他酸素化合物等が
、感光体表面に除々に付着し、更に水分が吸着すること
により生じるものである。しかも前述のシリコン[Si
3を含む非晶質材料を積層する従来の感光体にあっては
、いかに支持体表面の平滑化を図っても、各層の成膜プ
ロセスに起因し、例えば第1の従来例にあっては第6図
(イ)に示すように表面保護層(13)表面に凹凸を生
じ、実際の表面積が大きくさお、コロナ放電生成物の付
着量が増加されると共に、凹部に付着したコロナ放電生
成物が除去されにくく、これ等付着物が画像流れを生じ
る要因とされている。尚、この表面保護層(13)表面
の凹凸のうち0.5〜10〔μm〕の大きな波形(13
a)は、光導電層(12)と表面保護層(13)の界面
の凹凸を反映する一方、0 、5 (tnn )以下の
小さな凹凸のピッチ(13b)は、主として表面保護層
(13)成膜時に生じる凹凸である。そして、このよう
な画像流れを防止するため、感光体が水分を吸着しない
よう表面を加熱し除湿をしたり、あるいは感光体・表面
を除去液でふき取ったり、プレー1〜等機械的手段によ
り付着物を除去する等試みられているが、あまり効果を
奏していない。一方成膜時の凹凸を防止するため、膜の
成長速度2反応条件。 使用原料2層厚等の成膜条件の考慮等も成されているが
、本質的な解決には至っておらず、画像流れの防止を図
れるものでは無い。このため第6図(ロ)に示すように
表面保護層(13)凹部に微粒子や樹脂等の充填材(1
5)を充填する事によりコロナ放電生成物の凹部への付
着防止を図るものも開発されているが、このようなもの
にあっては、感光体表面に対して充填部の占める表面積
が大きくなり、しかも感光体の帯電特性を保持するため
充填材として抵抗の大きいものが使用される事から、充
填部における画像形成が不能となり、形成されたコピー
像」−に黒点状の画像欠陥を生じる一方、使用を繰り返
す間に、クリーニングプレー1・等仁の摺接により充填
部が摩耗あるいは剥離され、そこに付着物を生し、特性
の劣下を来たし−でいる。 (発明が解決しようとする問題点) 従来は成膜時の成膜プロセスに起因して感光体表面に形
成される凹凸により、コロナ放電生成物の付着量が増大
しかつ、凹部に付着したコロナ放電生成物の除去が困雛
である事から、長期間の使用により、感光体の表面抵抗
の低下を来たし、帯電能力が劣下され、画像流れを生じ
、画質が著しく劣下されるという問題を有している。 そこで本発明は上記欠点を除去するもので、感光体表面
へのコロナ放電生成物の付着量の減少を図り、更にはコ
ロナ放電生成物の除去を容易とする事により感光体の表
面抵抗の低下を防止し、画像流れの発生を防止する事に
より良好な画像を得る事が出来る電子写真感光体及びそ
の製造方法を提供する事を目的とする。 〔発明の構成〕 (問題点を解決するための手段) 本発明は上記問題点を解決するために複数の非晶質材料
層からなる感光体の表面層の凹部に微粒子を充填した後
、表面層を研磨し、その平滑化を図るものである。 (作 用) 本発明は上記手段により、感光体表面の平滑化を図る事
により、コロナ放電生成物の付着量を減少させ、更にク
リーニング等によるその除去を容易にし、ひいては画像
流れを防止し、画質の向上を図り、更には黒点等の画像
欠陥を防止し、又感光体特性の安定化を図るものである
。 (実施例) 以下本発明の第」−の実施例を第1−図ないし第3図を
参照しながら説明する。プラズマCVD (Chemi
−cal Vapor Depositionの略)を
行なう反応容器(24)内には、導電性の支持体であり
、表面粗度0.1[4ml以下でφ78(nwulの円
筒状のアルミニウムの支持体(26)を支持するため、
ヒータ(図示せず)を内蔵し、モータ (27b)によ
り回転される支持体(27)が設けられ、この支持体(
27)周囲には、13.56[MHz〕の高周波電源(
29)に接続される円筒状の電極(28)が設けられ、
更に支持体(27)J一方には、シランガス(S」−1
14) +ジボランガスl:B、H,)等を必要に応じ
て供給するガス導入管(30)が設けられている。一方
、(31)は研磨室であり、支持体(26)を支持する
ようモータ(32a)により回転されるシャン1−(3
2)が設けられ、 更には抑圧装置(35)により、 
シャン1〜(32)にセラ1〜される支持体(26)に
押圧可能となる、スポンジ状の第1及び第2の2つの研
磨布(33a) 。 (:33b)が設(プられている。又、(34)は光導
電体で一]1− ある感光体であり、支持体(26)上に順次P型の水素
化アモルファスシリコン(以下(a−3i : H)と
称す。)からなる第1層の電荷注入阻止層(36) 、
 (a−5i:H)からなる第2層の光導電層(37)
、凹部にアルミナ微粒子(39)が充填される水素化ア
モルファス炭化シリコン(以下(a−3jC: H)と
称す。)からなる第3層の表面保護層(38)が積層さ
れている。 しかして反応容器(24)内で感光体(34)を形成す
る場合、支持棒(27)に支持体(26)をセラ1〜し
た後、排気装置(図示せず)により反応容器(24)内
を排気すると共に、ヒータ(図示せず)により支持体(
26)を300[”C]に加熱する。次いでガス導入管
(30)よりシランガス〔Sj、H4)を10001:
SCCM) 、ジボランガスl:B2H,lを[:B2
ll6/ 5j144:lが2X10−’となるよう反
応容器(24)内に導入し、排気装置(図示せず)によ
り反応容器(24)内の圧力を0.5[Torr]に維
持しつつ、モータ(27b)により支持体(26)を回
転させながら高周波電源(29)により0.5(KW)
の電力を支持体(26)及び電極(28)間に1〔分間
〕印加し、P型の(a−3j : H)からなる膜厚0
 、5 (/[)の電荷注入阻止層(36)の成膜を行
なう。この後反応容器(24)内にシランガスC511
14:lを2000 [SCCM:l、ジボランガスC
B21L;] を(B2Hb/ Sll+4 ]がlX
l0−7となるよう導入し、反応圧力を0.5[Tor
r)に維持しつつ1.01:K11l)の高周波電力を
1時間印加し、(a−5j : H)からなる膜厚48
〔μm〕の光導電層(37)を成膜する。次いで今度は
反応容器(24)内にシランガス(SiH3Fを100
0[SCCM] 、メタンガス[CH,)を(CIf 
4 / S I H4)が4となるよう導入し、反応圧
力を0 、5 [Torr)に維持しつつ0.5(KW
:lの高周波電力を2〔分間〕印加し、(a−3j、C
: If)からなる膜厚1(μm:lの表面保護層(3
8)を成膜し、全ての成膜工程を終了し、ヒータ(図示
せず)を停止させ、支持体(26)の温度が1.00[
℃]迄低下したところで、反応容器(24)内より支持
体(26)を取り出す。 次いで図示しない充填装置において、支持体(26)を
回転させつつ、ブレート(図示せず)により圧力をかけ
ながら、四フッ化エチレン樹脂(テフロン)ディスバー
ジョンで表面処理したアルミナ微粒子(39)を、表面
保護層(38)の凹部に充填する。次いで充填装置(図
示せず)より支持体(26)を取り出し、研磨室(31
)のシャツh(32)にセラ1〜する。一方、第1の研
磨布(33a)には、粒径2〔μtll)のシリカ(S
jO□〕を分散したノルマンへブタン液を浸透させてお
き、排気装置(図示せず)により研磨室(31)内の圧
力を0 、01 [Torr]のほぼ真空状態に維持し
つつシャフト(32)を1.OOO[r、p、n+1で
回転させつつ第1の研磨布(33a)を10〔分間〕感
光体(34)の表面保護層(38)に押圧し研磨する。 この後、粒径0.3[μm〕のシリカ(SiO□〕を分
散したノルマンへブタン液を浸透させた第2の研磨布(
33b)を約10〔分間〕表面保護層(38)に押圧し
研磨し、感光体(34)を完成させる。尚この感光体(
34)の表面粗さを、触針先端径2〔庫〕の表面粗さ計
で測定したところ、表面粗さは、0.2〔μmRmax
) (L =0.081:mm〕)であった。 更にこのようにして形成された感光体(34)を複写機
(図示せず)に実際に装着し、温度30[’C)。 相対湿度80〔%〕の環境下で5万枚のコピーを行なっ
たところ、アルミナ微粒子(39)の充填及び表面の研
磨を行なわず表面粗さが0.5〔μmRmax) (L
 =0.08[nwnl)の従来の感光体にあっては、
5000枚以後、除々に画像流れを生しるようになった
のに対し、最初から最後迄、画質が劣下する事無く高解
像力の画像を得る事が出来た。尚、〔表・1〕に第1の
実施例の成膜条件を示す。 〔表・1〕 このように構成すれば、表面保護層(38)凹部にアル
ミナ微粒子(39)が充填され、従来に比し感光体(3
4)の表面粗さが著しく改善される事から、感光体(3
4)の実質的な表面積の縮小を図れ、コロナ放電生成物
の絶対的な付着量の減少を図れると共に付着したコロナ
放電生成物の除去も容易となり、長時間の使用によって
も表面抵抗が劣下される事が無く、画像流れによる画質
の低下を防止し、感光体の長寿命化が可能となる。 又、研磨により、アルミナ微粒子(39)部分の表面積
も減少され、画像形成不能により画像上に黒点を生じる
事が無く、画質劣下を防止出来ると共に、クリーニング
ブレード等との摺接による表面保護層(38)上の衝撃
が緩和され、長時間の使用によっても、充填されたアル
ミナ微粒子(39)が、著しく摩耗されたり、あるいは
離脱される事が無く、長時間にわたる感光体特性の安定
化が可能となる。 次に本発明の第2の実施例を第4図を参照しながら説明
する。この実施例は光導電体である感光体(41)の表
面保護層(44)凹部にシリカ微粒子を充填するもので
あり、第1の実施例と同一部分にっいては同一符号を付
し、その説明を省略する。尚、感光体(41)は第4図
に示すように、支持体(26)上に順次P型の(a−3
i : H)からなる第1層の電荷注入阻止層(42)
 、 (a−3i : H)からなる第2層の光導電層
(43)、凹部にジメチル系シリコーンレジンで表面処
理した電気抵抗値1o1.2〔Ω(7)〕以上のシリカ
微粒子(46)が充填される水素化アモルファス窒化シ
リコン(以下(a−5jN : II)と称す。)から
なる第3層の表面保護層(44)が積層され形成されて
いる。 しかして、成膜条件は〔表・2〕に示すように設定され
るものの、成膜工程は第1の実施例と同様であり、反応
容器(24)内において先ず支持体(26)上に電荷性
入団止層(42)及び光導電層(43)、表面保護層(
44)を形成し全ての成膜工程を終了する。 以下余白 〔表、2〕 次に反応容器(24)より支持体(26)を取り出し、
充填装置(図示せず)内で支持体(26)を回転させつ
つブレード(図示せず)により圧力をかけながら、シリ
カ微粒子(46)を表面保護層(44)凹部に充填する
。この後、この支持体(26)を研磨室(31)のシャ
ツ1−(32)にセラ1〜し、第1の実施例と同様にし
て、第1の研磨布(33a)及び第2の研磨布(33b
)により感光体(34)表面を研磨し、感光体(34)
を完成させる。尚この感光体(34)の表面粗さは、0
.16〔μmRmax) (L=0.081:nu:l
)であった。そしてこの感光体(51)を実際に装着し
、温度30(’C)、相対湿度80〔%〕の環境下で5
万枚のコピーを行なったところ、シリカ微粒子(46)
の充填及び表面の研磨を行なわず表面粗さが0.4[μ
mRmax〕(L =0.08[nwn])の従来の感
光体にあっては、9000枚以降除々に画像流れを生じ
、画質の劣下を来たしたのに対し、最初から最後迄、画
質がかわる事無く高解像力の画像が得られた。 この様に構成すれば、第1の実施例と同様1、従来に比
しコロナ放電生成物の付着量が減少されると共に付着さ
れたコロナ放電生成物の除去も容易となり、長時間の使
用による画像流れ現象を防止し、感光体(41)の長寿
命化が可能となる。又、その表面研磨によりシリカ微粒
子の表面積が、画像に黒点を生じない程度に減少され画
質の劣下が防止されると共に、クリーニングブレード等
との摺接によるシリカ微粒子(46)の摩耗あるいは脱
落が一ゴ9− 防止され、長時間にわたる感光体特性の安定化が図られ
る。 尚、本発明は上記実施例に限定されず種々設計変更可能
であり、感光体の表面粗さも任意であるが、少なくとも
0.2〔ImRmax) (L=0.08(nn+))
以下で、より小さい方が望ましい。又、研磨の方法、及
び時間等も任意であり、磁気研磨、気相あるいは液相の
エツチングといわれる化学的研磨、更には磁性流体利用
FFF (Field−assisted Fine 
Fi−nj、shingの略)、プラズマ利用FFF 
、ラッピング等更に高精度の研磨を行なうものでも良い
。尚、研磨材としてもシリカ〔S10□〕以外にアルミ
ナ[AQ203〕、酸化鉄〔Fe2O3〕、炭化窒素(
C3N4]その他の微粉末であっても良い。更には感光
体の感光層の構造厚さ等も任意であるし、各層もその境
界を明確にする事無く、例えば成膜時各原料ガスの濃度
を連続的に変える事により、各層の境界における成分を
除々に換えるようにし、感光体全体としては、複数の機
能の異る層領域が存在するという状態であっても良く、
この様にすれば、各層間の境界における欠陥を防止出来
、各層間の接着性向上が可能となる。又、プラズマCV
D法による各層の原料もシリコン(Si:lを含有する
原料としてはシランガスl:siH,3の他、ジシラン
ガス(Sx2 Hs ) r トリシランガス[SF、
3 H4F + 4フツ化ケイ素ガス] SiF、]等
でも良く、その地価電子制御元素の原料としては、ジボ
ラン〔B21(G〕、ホスフィンf:P)131.3フ
ツ化ホウ素[BF3]、アルシン(AsH3)等があり
、又、安定化原料としては、ゲルマン[GeH,] 、
メタン[:CH4:l。 エチレン〔C2H4〕、チッ素(N2 ] 、アンモニ
ア[NH3] 。 酸素〔0□〕、酸化窒素[NzO]等のガスがある。又
、成膜方法も、プラズマCVD法の他、反応性スパッタ
リング法、イオンブレーティング、法、真空蒸着法等可
能である。 更に微粒子及びその表面処理を行なう樹脂の材料あるい
は粒径等限定されず、微粒子の材料としてはシリカ、ア
ルミナ、チタニウムオキサイド。 ガラスピーズ、タルク、金属酸化物等の無機微粉末、あ
るいはテフロン、シリコーン樹脂、スチレン樹脂、アク
リル樹脂等の有機微粉末があり、その粒径は表面層凹部
に充填出来るよう少なくとも3〔μm〕以下とされ、望
ましくはミリ〔μm〕オーダとされ、更にその特性とし
て、光導電体の帯電特性を低下させないよう電気抵抗値
は1012〔Ω■〕以上であることが望ましい。又、微
粒子の表面処理を行なうものとしては、アクリル樹脂、
酢酸ビニル樹脂、塩化ビニル樹脂、ポリエステル、ポリ
ウレタン等、更には前記各樹脂を組合せたもの等を用い
ても良い。 〔発明の効果〕 以上説明したように本発明によれば、複数の層を有する
感光体においても表面層凹部に微粒子を充填する事によ
りその表面粗さを従来に比し縮小出来る事から、コロナ
放電生成物の付着量が減少され、更にはコロナ放電生成
物の除去も容易となり、長時間の使用による表面抵抗の
劣下を防止出来、画像流れによる画質の低下を来たす事
も無く、感光体の長寿命化が図られる。更に表面層の研
磨により、感光体と共に画像形成不能部である微粒子を
充填した部分も実質的な表面積を縮小される事から従来
のように画像−1−に黒点を生じる事も無く、画質の劣
下防止を図れると共にクリーニングブレード等による摺
接もスムースとなり、微粒子の磨耗あるいは脱落が防止
され、長時間にわたる感光体特性の安定化が可能となる
[0], boron [B], etc., and has a specific resistance value of 1.011 [Ω(1)] or more, more preferably a high specific resistance value of 1.0'' (Ω■) or more. Examples include amorphous resistive materials, which may or may not contain hydrogen or halogen elements.Furthermore, aluminum [A-gen, titanium [Tj], zinc [
Zn:l. Oxides, nitrides, carbides such as silicon [Si3, etc., or high-resistance polymers are also applicable. FIG. 5(B) shows a second conventional example in which the portion corresponding to the photoconductive layer (12) of the first conventional example is replaced with a carrier generation layer (16) and a carrier transport layer (17). The carrier generation layer (16) focuses on light absorption and the generation of electron and hole pairs, while the carrier transport layer (17) focuses on transport of generated carriers and charge retention ability. However, it is more desirable that the carrier generation layer (16) also has a high carrier transport ability. On the other hand, generally, the optical band gap of the carrier generation layer (16) is narrower than the optical band gap of the carrier transport layer (17), and the carrier generation layer (16) For example, a carrier generation layer (
16), (a-3j, ), (a-3iGe
). An amorphous material such as (a-3iGeC) is suitable, and as the carrier transport layer (17), (a-5, +, ) + (a-3
Amorphous materials such as xC) + (a-3j, N) are suitable. Furthermore, the third conventional example shown in FIG.
), and in the fourth conventional example shown in FIG. The first carrier transport layer (18a) and the second carrier transport layer (1
, 8b). Further, the fifth conventional example shown in FIG. 5(e) is the carrier transport layer (17) of the second conventional example.
The top layer (20), which has a carrier transport function corresponding to , also has a surface protection function, and the sixth conventional example shown in FIG. (
18b) having a carrier transport function corresponding to
21) also has a surface protection function. However, in these various conventional photoreceptors,
After long-term use, the surface resistance of the photoreceptor surface decreases and the amount of electrical charge decreases, resulting in blurred or blurred images and eventually the inability to form images. This phenomenon is particularly noticeable under humid conditions. This image deletion is caused by ozone containing electrolyte generated during corona discharge during the photoreceptor's main charging process, transfer process, peeling process, static elimination process, etc.
], various nitrogen compounds, metal oxides, and other oxygen compounds gradually adhere to the surface of the photoreceptor, and water is further adsorbed. Furthermore, the aforementioned silicon [Si
In a conventional photoreceptor in which amorphous materials including 3 are laminated, no matter how smooth the surface of the support is, problems arise due to the film formation process of each layer. For example, in the first conventional example, As shown in FIG. 6 (a), the surface of the surface protective layer (13) is uneven, and the actual surface area is large, and the amount of corona discharge products attached is increased, and the corona discharge products attached to the recesses are generated. Objects are difficult to remove, and these deposits are considered to be a cause of image deletion. Incidentally, among the irregularities on the surface of this surface protective layer (13), large corrugations (13
While a) reflects the unevenness at the interface between the photoconductive layer (12) and the surface protective layer (13), the pitch (13b) of small unevenness of 0.5 (tnn) or less mainly reflects the unevenness of the surface protective layer (13). This is the unevenness that occurs during film formation. In order to prevent such image blurring, the surface of the photoreceptor may be dehumidified by heating so that the photoreceptor does not absorb moisture, or the surface of the photoreceptor may be wiped with a removal liquid, or it may be removed by mechanical means such as Plate 1. Attempts have been made to remove the kimono, but this has not been very effective. On the other hand, in order to prevent unevenness during film formation, the film growth rate was set to 2 reaction conditions. Although consideration has been given to film forming conditions such as the thickness of the two layers of raw materials used, no fundamental solution has been reached and image blurring cannot be prevented. For this reason, as shown in Figure 6 (b), filler (1
5) has been developed to prevent corona discharge products from adhering to the recessed portions, but in such devices, the surface area occupied by the filled portions is large relative to the surface of the photoreceptor. Moreover, since a material with a high resistance is used as a filler to maintain the charging characteristics of the photoreceptor, image formation in the filled portion becomes impossible, and image defects in the form of black dots occur on the formed copy image. During repeated use, the filling portion is worn or peeled off due to sliding contact with the cleaning plate 1, etc., and deposits are formed there, resulting in deterioration of characteristics. (Problems to be Solved by the Invention) Conventionally, the amount of corona discharge products attached increases due to the unevenness formed on the surface of the photoreceptor due to the film forming process during film formation, and the amount of corona attached to the recesses increases. Since it is difficult to remove the discharge products, the surface resistance of the photoreceptor decreases after long-term use, and the charging ability deteriorates, causing image blurring and significantly deteriorating the image quality. have. Therefore, the present invention aims to eliminate the above-mentioned drawbacks by reducing the amount of corona discharge products adhering to the surface of the photoreceptor, and furthermore, by making it easier to remove the corona discharge products, the surface resistance of the photoreceptor is reduced. An object of the present invention is to provide an electrophotographic photoreceptor that can obtain good images by preventing the occurrence of image deletion, and a method for manufacturing the same. [Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides that after filling the recesses of the surface layer of a photoreceptor made of a plurality of amorphous material layers, The layer is polished to make it smooth. (Function) The present invention uses the above-mentioned means to smooth the surface of the photoreceptor, thereby reducing the amount of corona discharge products attached, making it easier to remove them by cleaning, etc., and preventing image deletion. The purpose is to improve image quality, prevent image defects such as black spots, and stabilize photoreceptor characteristics. (Embodiment) Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 1 to 3. Plasma CVD (Chemi
-Cal Vapor Deposition) was carried out in a reaction vessel (24) containing a cylindrical aluminum support (26) with a surface roughness of 0.1 [4 ml or less and a diameter of 78 nwul]. In order to support
A support (27) is provided which includes a heater (not shown) and is rotated by a motor (27b).
27) There is a 13.56 [MHz] high frequency power source (
A cylindrical electrode (28) connected to 29) is provided,
Furthermore, one side of the support (27) J is filled with silane gas (S'-1).
14) A gas introduction pipe (30) is provided for supplying +diborane gas 1:B, H, ), etc. as necessary. On the other hand, (31) is a polishing chamber, which is rotated by a motor (32a) to support the support (26).
2) is provided, and furthermore, by the suppression device (35),
Two sponge-like polishing cloths (33a), a first and a second polishing cloth, which can be pressed against a support (26) which is applied to the polishers (32). (33b) is provided. Also, (34) is a photoconductor, which is a photoreceptor, and P-type hydrogenated amorphous silicon (hereinafter referred to as ( a-3i: a first charge injection blocking layer (36) consisting of H);
(a-5i:H) second photoconductive layer (37)
A third surface protection layer (38) made of hydrogenated amorphous silicon carbide (hereinafter referred to as (a-3jC: H)) whose recesses are filled with alumina fine particles (39) is laminated. When forming the photoreceptor (34) in the reaction container (24), after placing the support (26) on the support rod (27), the reaction container (24) is removed by an exhaust device (not shown). While evacuating the inside of the support body (
26) is heated to 300 [''C]. Next, silane gas [Sj, H4] is heated at 10001:
SCCM), diborane gas l:B2H,l [:B2
ll6/5j144:L is introduced into the reaction vessel (24) so that 1 is 2X10-', and while maintaining the pressure inside the reaction vessel (24) at 0.5 [Torr] with an exhaust device (not shown), While the support body (26) is rotated by the motor (27b), the high frequency power source (29) is used to power the support body (26) at 0.5 (KW).
A power of
, 5 (/[) of the charge injection blocking layer (36). After this, silane gas C511 is added to the reaction vessel (24).
14:l to 2000 [SCCM:l, diborane gas C
B21L; ] is (B2Hb/ Sll+4 ] is lX
10-7, and the reaction pressure was set to 0.5 [Tor].
r), a high frequency power of 1.01:K11l) was applied for 1 hour, and a film thickness of 48 cm (a-5j: H) was obtained.
A photoconductive layer (37) of [μm] is formed. Next, 100% of silane gas (SiH3F) was added to the reaction vessel (24).
0 [SCCM], methane gas [CH,) (CIf
4/S I H4) was 4, and while maintaining the reaction pressure at 0.5 [Torr], the reaction pressure was 0.5 (KW
:1 high frequency power was applied for 2 minutes, and (a-3j, C
: If) with a film thickness of 1 (μm:l).
8), all film forming steps are completed, the heater (not shown) is stopped, and the temperature of the support (26) is 1.00 [
℃], the support (26) is taken out from the reaction vessel (24). Next, in a filling device (not shown), while rotating the support (26) and applying pressure with a plate (not shown), fine alumina particles (39) surface-treated with tetrafluoroethylene resin (Teflon) dispersion are loaded. The recesses of the surface protection layer (38) are filled. Next, the support (26) is taken out from the filling device (not shown) and placed in the polishing chamber (31).
)'s shirt h (32) is 1~. On the other hand, the first polishing cloth (33a) contains silica (S) with a particle size of 2 [μtll].
A butane solution is permeated into the Norman in which the polishing chamber (31) is dispersed, and the shaft (32 ) to 1. While rotating at OOO [r, p, n+1], the first polishing cloth (33a) is pressed against the surface protective layer (38) of the photoreceptor (34) for 10 [minutes] and polished. After this, a second polishing cloth (in which Normann hebutane solution in which silica (SiO□) with a particle size of 0.3 [μm] was dispersed was impregnated (
33b) is pressed onto the surface protective layer (38) for about 10 minutes and polished to complete the photoreceptor (34). Furthermore, this photoreceptor (
When the surface roughness of 34) was measured using a surface roughness meter with a stylus tip diameter of 2 [μm], the surface roughness was 0.2 [μmRmax
) (L = 0.081:mm). Further, the photoreceptor (34) thus formed was actually installed in a copying machine (not shown) and heated to a temperature of 30['C]. When 50,000 copies were made in an environment with relative humidity of 80%, the surface roughness was 0.5[μmRmax] (L) without filling with alumina particles (39) and polishing the surface.
= 0.08 [nwnl) in the conventional photoreceptor,
After 5,000 sheets, image blurring gradually started to occur, but from the beginning to the end, high-resolution images could be obtained without any deterioration in image quality. Incidentally, [Table 1] shows the film forming conditions of the first example. [Table 1] With this configuration, the alumina fine particles (39) are filled in the recesses of the surface protective layer (38), and the photoconductor (3)
The surface roughness of photoconductor (3) is significantly improved.
4) Substantial surface area can be reduced, the absolute amount of corona discharge products attached can be reduced, and the attached corona discharge products can be easily removed, resulting in lower surface resistance even after long-term use. This prevents deterioration in image quality due to image deletion, and makes it possible to extend the life of the photoreceptor. In addition, the surface area of the alumina fine particles (39) is also reduced by polishing, which prevents the formation of black spots on the image due to the inability to form an image, which prevents deterioration in image quality, and also protects the surface of the surface protection layer by sliding contact with a cleaning blade, etc. (38) The above impact is alleviated, and the filled alumina particles (39) will not be significantly worn or detached even after long-term use, and the photoreceptor characteristics will be stabilized over a long period of time. It becomes possible. Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, silica fine particles are filled into the recesses of a surface protective layer (44) of a photoreceptor (41), which is a photoconductor, and the same parts as in the first embodiment are given the same reference numerals. The explanation will be omitted. Incidentally, as shown in FIG.
i:H) first charge injection blocking layer (42)
, a second photoconductive layer (43) consisting of (a-3i: H), silica fine particles (46) having an electrical resistance value of 1o1.2 [Ω(7)] or more and surface-treated with dimethyl-based silicone resin in the concave portions. A third surface protective layer (44) made of hydrogenated amorphous silicon nitride (hereinafter referred to as (a-5jN: II)) filled with is laminated. Although the film-forming conditions are set as shown in Table 2, the film-forming process is the same as in the first example, in which the film is first deposited on the support (26) in the reaction vessel (24). Chargeable adhesion stop layer (42), photoconductive layer (43), surface protective layer (
44) to complete all film forming steps. Below is the margin [Table, 2] Next, take out the support (26) from the reaction container (24),
While rotating the support (26) in a filling device (not shown) and applying pressure with a blade (not shown), fine silica particles (46) are filled into the recesses of the surface protection layer (44). Thereafter, this support (26) is placed on the shirt 1-(32) of the polishing chamber (31), and the first polishing cloth (33a) and the second polishing cloth are placed in the same manner as in the first embodiment. Polishing cloth (33b
) to polish the surface of the photoreceptor (34).
complete. The surface roughness of this photoreceptor (34) is 0.
.. 16 [μmRmax) (L=0.081:nu:l
)Met. Then, this photoreceptor (51) was actually mounted and exposed to 50% of
After making 10,000 copies, silica particles (46) were found.
The surface roughness was 0.4 μ without filling and surface polishing.
mRmax] (L = 0.08 [nwn]), image blurring gradually occurred after 9,000 sheets and the image quality deteriorated, whereas the image quality remained constant from the beginning to the end. High-resolution images were obtained without any change in image quality. With this configuration, as in the first embodiment, the amount of attached corona discharge products is reduced compared to the conventional method, and the attached corona discharge products can be easily removed, so that it can be used for a long time. Image deletion phenomenon can be prevented and the life of the photoreceptor (41) can be extended. In addition, the surface polishing reduces the surface area of the silica particles to an extent that does not cause black spots on the image, thereby preventing deterioration in image quality and preventing the silica particles (46) from being worn out or falling off due to sliding contact with a cleaning blade, etc. Igo 9- This is prevented, and the characteristics of the photoreceptor are stabilized over a long period of time. Note that the present invention is not limited to the above-mentioned embodiments, and various design changes are possible, and the surface roughness of the photoreceptor is also arbitrary, but it should be at least 0.2 [ImRmax) (L = 0.08 (nn+)).
Below, smaller is preferable. In addition, the polishing method and time are arbitrary, and magnetic polishing, chemical polishing called gas phase or liquid phase etching, and field-assisted fine polishing (FFF) using magnetic fluid are also available.
Fi-nj (abbreviation for shing), plasma-based FFF
, lapping, or other polishing with higher precision may be used. In addition to silica [S10□], alumina [AQ203], iron oxide [Fe2O3], and nitrogen carbide (
C3N4] Other fine powders may also be used. Furthermore, the structural thickness of the photosensitive layer of the photoreceptor is arbitrary, and the boundaries between each layer are not clearly defined; for example, by continuously changing the concentration of each raw material gas during film formation, it is possible to The components may be changed gradually, and the photoreceptor as a whole may have a plurality of layer regions with different functions.
In this way, defects at the boundaries between the layers can be prevented, and the adhesion between the layers can be improved. Also, plasma CV
The raw materials for each layer by method D include silicon (Si:l), as well as silane gas (l:siH,3), disilane gas (Sx2 Hs), trisilane gas [SF,
3 H4F + silicon tetrafluoride gas] SiF, ], etc. may be used, and raw materials for the electronic control element include diborane [B21 (G), phosphine f:P), 131.3 boron fluoride [BF3], arsine ( AsH3), etc., and stabilizing raw materials include germane [GeH, ],
Methane [:CH4:l. There are gases such as ethylene [C2H4], nitrogen (N2), ammonia [NH3], oxygen [0□], nitrogen oxide [NzO], etc.Film forming methods include plasma CVD and reactive sputtering. , ion blasting, vacuum evaporation, etc. Furthermore, there are no limitations on the material or particle size of the fine particles and the resin that performs their surface treatment, and materials for the fine particles include silica, alumina, titanium oxide, glass beads, and talc. , inorganic fine powder such as metal oxide, or organic fine powder such as Teflon, silicone resin, styrene resin, acrylic resin, etc., and the particle size is preferably at least 3 [μm] or less so that it can be filled into the recesses of the surface layer. is on the order of millimeters (μm), and furthermore, as a characteristic, it is desirable that the electrical resistance value is 1012 [Ω■] or more so as not to deteriorate the charging characteristics of the photoconductor.Also, when performing surface treatment of fine particles, is acrylic resin,
Vinyl acetate resin, vinyl chloride resin, polyester, polyurethane, and combinations of the above resins may also be used. [Effects of the Invention] As explained above, according to the present invention, even in a photoreceptor having multiple layers, the surface roughness can be reduced compared to the conventional method by filling the concave portions of the surface layer with fine particles. The amount of discharge products adhered to the photoreceptor is reduced, corona discharge products are also easier to remove, preventing deterioration of surface resistance due to long-term use, and reducing image quality due to image deletion. The lifespan of the product will be extended. Furthermore, by polishing the surface layer, the substantial surface area of the part filled with fine particles, which is the part where no image can be formed, is reduced together with the photoreceptor, so there is no black spot on the image-1- as in the conventional case, and the image quality is improved. In addition to preventing deterioration, sliding contact with a cleaning blade or the like becomes smooth, preventing abrasion or falling off of fine particles, and stabilizing the characteristics of the photoreceptor over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1の実施例を示し第1
図はその反応容器の概略説明図、第2図はその研磨室の
概略説明図、第3図はその感光体の一部断面図、第4図
は本発明の第2の実施例における感光体の一部断面図、
第5図及び第6図は従来の装置を示し第5図(イ)はそ
の第1の従来例の感光体の一部断面図、第5図(ロ)は
その第2の従来例の感光体の一部断面図、第5図(ハ)
はその第3の従来例の感光体の一部断面図、第5図(ニ
)はその第4の従来例の感光体の一部断面図、第5図(
ホ)はその第5の従来例の感光体の一部断面図、第5図
(へ)はその第6の従来例の感光体の一部断面図、第6
図(イ)は第5図(イ)の表面を拡大した一部断面図、
第6図(ロ)は第6図(イ)に充填材を一23= 充填した状態を示す一部断面図である。 24・・反応容器、   26・・・支持体、27b・
・・モータ、    27・・・支持棒、28・・・電
極、     30・・・ガス導入管、31・研磨室、
    32・・・シャフト、33a・・第1の研磨布
、33b・・・第2の研磨布、34・・・感光体、  
  38・・・表面保護層、39・・・アルミナ微粒子
。 代理人 弁理士  井 上 −男 第  1  図 ロ暴−逼す6i六−票一一1−婦 手続補正書(方式) 特許庁長官 小 川 邦 夫 殿 1、事件の表示 昭和62年特許願第279069号 2、発明の名称 光導電体及びその製造方法 3、 補正をする者 事件との関係 特許出願人 (307)株式会社 1芝(、よ、ヵ、□名)4、代理
人 〒144 東京都大田区蒲田4丁目41番11号 第−津野田ビル 弁上特許事務所内 5、補正命令の日付 発送日 昭和63年2月23日 6、補正の対象 図  面 7、補正の内容 図面第5図(イ)第6図(ロ)とあるのを別紙のとおり
第6図(イ)第6図(ロ)と補正する。 η  〜     \ 0
1 to 3 show a first embodiment of the present invention.
Figure 2 is a schematic diagram of the reaction vessel, Figure 2 is a schematic diagram of the polishing chamber, Figure 3 is a partial sectional view of the photoreceptor, and Figure 4 is the photoreceptor according to the second embodiment of the present invention. A partial cross-sectional view of
5 and 6 show a conventional device, and FIG. 5(a) is a partial sectional view of a photoreceptor of the first conventional example, and FIG. 5(b) is a photoreceptor of the second conventional example. Partial cross-sectional view of the body, Figure 5 (c)
is a partial cross-sectional view of the photoreceptor of the third conventional example, FIG. 5(d) is a partial cross-sectional view of the photoreceptor of the fourth conventional example, and FIG.
E) is a partial cross-sectional view of the photoreceptor of the fifth conventional example, FIG.
Figure (a) is a partial cross-sectional view of the surface of Figure 5 (a), which is enlarged.
FIG. 6(B) is a partial cross-sectional view showing a state in which FIG. 6(A) is filled with a filler material. 24... Reaction container, 26... Support, 27b...
...Motor, 27. Support rod, 28. Electrode, 30. Gas introduction pipe, 31. Polishing chamber.
32... Shaft, 33a... First polishing cloth, 33b... Second polishing cloth, 34... Photoreceptor,
38...Surface protective layer, 39...Alumina fine particles. Agent Patent attorney Inoue - Male No. 1 Figure 6 - 6 - Votes 111 - Written amendment to the procedure (formality) Commissioner of the Japan Patent Office Kunio Ogawa 1. Indication of the case 1988 Patent Application No. 279069 No. 2, Name of the invention Photoconductor and its manufacturing method 3, Relationship with the case of the person making the amendment Patent applicant (307) Co., Ltd. 1 Shiba (,yo, ka, □ name) 4, Agent address: 144 Tokyo No. 4-41-11 Kamata, Ota-ku, Tokyo - Tsunoda Building, Benjo Patent Office 5, Date of amendment order: February 23, 1988 6, Drawing subject to amendment: Plane 7, Contents of amendment: Drawing No. 5 (a) Figure 6 (b) has been amended to read Figure 6 (a) and Figure 6 (b) as shown in the attached sheet. η ~ \ 0

Claims (1)

【特許請求の範囲】 1、導電性の支持体上にシリコンを含む複数の非晶質材
料層が積層されるものにおいて、表面に形成される凹部
内に微粒子が充填されると共に研磨により平滑化される
非晶質材料層を表面層として具備する事を特徴とする光
導電体。 2、表面粗さが0.2〔μmRmax〕(L=0.08
〔mm〕)以下である事を特徴とする特許請求の範囲第
1項記載の光導電体。 3、複数の非晶質材料層の各層の境界の成分量が、勾配
を有するよう変換されている事を特徴とする特許請求の
範囲第1項又は第2項のいづれかに記載の光導電体。 4、導電性の支持体を収納し、シリコンを含む反応ガス
を有する反応容器内で、シリコンを含む複数の非晶質材
料層を積層する成膜工程完了後、表面層凹部に微粒子を
充填し、次いで前記表面層を研磨する事を特徴とする光
導電体の製造方法。 5、成膜工程時、各非晶質材料層毎に反応ガスを交換す
る事を特徴とする特許請求の範囲第4項記載の光導電体
の製造方法。 6、成膜工程時、反応ガスの成分を除々に交換する事を
特徴とする特許請求の範囲第4項記載の光導電体の製造
方法。
[Claims] 1. In a device in which multiple layers of amorphous material containing silicon are laminated on a conductive support, fine particles are filled into the recesses formed on the surface and smoothed by polishing. A photoconductor comprising an amorphous material layer as a surface layer. 2. Surface roughness is 0.2 [μmRmax] (L=0.08
[mm]) or less. 3. The photoconductor according to claim 1 or 2, wherein the component amount at the boundary of each of the plurality of amorphous material layers is changed to have a gradient. . 4. After completing the film-forming process of laminating multiple silicon-containing amorphous material layers in a reaction vessel containing a conductive support and containing a silicon-containing reaction gas, the surface layer recesses are filled with fine particles. and then polishing the surface layer. 5. The method for manufacturing a photoconductor according to claim 4, characterized in that during the film-forming process, a reactive gas is exchanged for each amorphous material layer. 6. The method for producing a photoconductor according to claim 4, wherein the components of the reaction gas are gradually exchanged during the film forming step.
JP62279069A 1987-11-06 1987-11-06 Semiconductor and its production Pending JPH01280767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279069A JPH01280767A (en) 1987-11-06 1987-11-06 Semiconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279069A JPH01280767A (en) 1987-11-06 1987-11-06 Semiconductor and its production

Publications (1)

Publication Number Publication Date
JPH01280767A true JPH01280767A (en) 1989-11-10

Family

ID=17605980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279069A Pending JPH01280767A (en) 1987-11-06 1987-11-06 Semiconductor and its production

Country Status (1)

Country Link
JP (1) JPH01280767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732630A2 (en) * 1995-03-17 1996-09-18 Canon Kabushiki Kaisha Electrophotographic light receiving member, electrophotographic apparatus provided with said light receiving member, and electrophotographic process using said light receiving member
JPH11160896A (en) * 1997-11-28 1999-06-18 Dainippon Printing Co Ltd Optical sensor and information recorder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732630A2 (en) * 1995-03-17 1996-09-18 Canon Kabushiki Kaisha Electrophotographic light receiving member, electrophotographic apparatus provided with said light receiving member, and electrophotographic process using said light receiving member
EP0732630A3 (en) * 1995-03-17 1997-01-15 Canon Kk Electrophotographic light receiving member, electrophotographic apparatus provided with said light receiving member, and electrophotographic process using said light receiving member
JPH11160896A (en) * 1997-11-28 1999-06-18 Dainippon Printing Co Ltd Optical sensor and information recorder

Similar Documents

Publication Publication Date Title
US4559289A (en) Electrophotographic light-sensitive material
US4755444A (en) Electrophotographic photoreceptor
JPH01280767A (en) Semiconductor and its production
JPH0572783A (en) Electrophotographic sensitive material
JP3618919B2 (en) Light receiving member for electrophotography and method for forming the same
US4873165A (en) Electrophotographic photoreceptor having overlayer comprising carbon
JPS6067955A (en) Electrophotographic sensitive body
JPS61243460A (en) Photosensitive body
JPWO2009017207A1 (en) Electrophotographic photoreceptor, method for producing the same, and image forming apparatus
JPH01121859A (en) Photoconductor and production thereof
JPH05303227A (en) Light receptive member for electrophotography
JPH08171220A (en) Electrophotographic photoreceptor and its production
JP4110053B2 (en) Electrophotographic photoreceptor manufacturing method, electrophotographic photoreceptor, and electrophotographic apparatus using the same
JPS63311259A (en) Electrophotographic sensitive body
JP2902509B2 (en) Method of forming light receiving member for electrophotography
JPS5967549A (en) Recording body
JPS61250655A (en) Electrophotographic sensitive body
JP2562583B2 (en) Electrophotographic photoreceptor
JPS5967545A (en) Recording body
JP4143491B2 (en) Method for producing electrophotographic photosensitive member
JP4448043B2 (en) Electrophotographic photoreceptor
JP2566762B2 (en) Electrophotographic photoreceptor
JP2007052242A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2004133398A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus
JP2004133396A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus using the same