JPS6067955A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6067955A
JPS6067955A JP20555583A JP20555583A JPS6067955A JP S6067955 A JPS6067955 A JP S6067955A JP 20555583 A JP20555583 A JP 20555583A JP 20555583 A JP20555583 A JP 20555583A JP S6067955 A JPS6067955 A JP S6067955A
Authority
JP
Japan
Prior art keywords
gas
surface protective
protective layer
glow discharge
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20555583A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Yoshikazu Nakayama
中山 喜万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20555583A priority Critical patent/JPS6067955A/en
Publication of JPS6067955A publication Critical patent/JPS6067955A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Abstract

PURPOSE:To provide excellent stability and durability and to enable ultra-high speed copying by forming an a-Si.H.F.C surface protective layer by the glow discharge made with the gas volume of an F-contg. Si compd. at a specific content with respect to the gas volume of the F-contg. Si compd. and an H-contg. Si compd. CONSTITUTION:An a-Si barrier layer 4 is preferably formed on a conductive substrate 1 and an a-Si photoconductive layer 2 and an a-Si:H:F:C surface protective layer 3 are successively formed thereon. The surface protective layer 3 is formed by the glow discharge made in an atmosphere in which the gas volume of an F-contg. Si compd., for example, SiF4 is regulated to 20-50% with respect to the gas volume of the F-contg. Si compd. and an H-contg. Si compd., for example, SiH4. Gaseous H2 or rare gas, is incorporated as a carrier gas at 50-90% in the gas for decomposition by the glow discharge. A IIIa group element, for example, B or the like is incorporated into the surface protective layer. The stable operation characteristic and durability are further improved by providing the surface protective layer 3 on the photoconductive layer 2 in the above-mentioned way. The photosensitive body particularly adequate for ultra-high speed copying is obtd. Such photosensitive body is usable for an ultra-high speed copying machine, a laser beam printer etc.

Description

【発明の詳細な説明】 本発明はアモルファスシリコン(以下、a−Sj−)を
光導電層とした電子写真感光体の改良−こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of an electrophotographic photoreceptor using amorphous silicon (hereinafter referred to as a-Sj-) as a photoconductive layer.

近年、電子写真技術の進歩は目覚しく、超高速複写機や
レーザービームプリンタなどの開発が活発に進められ′
Cおり、これらの機器に用いられる感光体は、長期間、
高速で使用されるため、動作の安定性及び耐久性が要求
されている。現在、電子写真感光体には、Se 、 C
dS 、 ZnO等の光電材料が一般的に使用されてい
るが、a−8iは耐熱性、耐摩耗性、無公害性、光感度
特性等に優れているという理由から、a −81の電子
写真感光体への応用が報告されている。
In recent years, electrophotographic technology has made remarkable progress, and the development of ultra-high-speed copying machines and laser beam printers is actively underway.
However, the photoreceptors used in these devices are not used for long periods of time.
Since it is used at high speed, stability and durability of operation are required. Currently, electrophotographic photoreceptors include Se, C
Photoelectric materials such as dS and ZnO are commonly used, but a-8i is superior in heat resistance, abrasion resistance, non-pollution, photosensitivity, etc. Application to photoreceptors has been reported.

しかしながら、安定した動作や著しく優れた耐久性がま
すます要求されている今日的状況では、いままで報告さ
れたa −81感光体では十分に対応しきれな(なりつ
つあり、特に、超高速複写用の感光体に要求される特性
を十分に満足しえるものではない。
However, in today's situation where stable operation and outstanding durability are increasingly required, the A-81 photoreceptor reported up to now is no longer able to meet the demands (particularly in ultra-high speed copying). It cannot fully satisfy the characteristics required for a photoreceptor for use in other applications.

本発明は上記事情に鑑みて成されたもので、きわめて安
定した動作特性をもっとともに、著しく優れた耐久性を
有する、超高速複写に好適な電子写真感光体を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an electrophotographic photoreceptor suitable for ultrahigh-speed copying, which has extremely stable operating characteristics and extremely excellent durability.

本発明の要旨は、導電性基板上に、望ましくは、a −
Si障壁層を形成し、その上に、a −Si光光導電層
層、水素及びフッ素とともに炭素を含むa−81表面保
護層とを: グロー放電分解法によって、順次積層して
成る電子写真感光体において、フッ素含有シリコン化合
物と水素含有シリコン化合物のガス容積に封して、フッ
素含有シリコン化合物のガス容積を20〜50%とした
雰囲気の中でグロー放電を発生し、前記a −S1表面
保護層を形成したことを特徴とする電子写真感光体を提
供することにある。
The gist of the present invention is to provide a conductive substrate, preferably a-
A Si barrier layer is formed, and an a-Si photoconductive layer and an a-81 surface protective layer containing carbon as well as hydrogen and fluorine are sequentially laminated by a glow discharge decomposition method. In the body, the gas volume of the fluorine-containing silicon compound and the hydrogen-containing silicon compound is sealed, and a glow discharge is generated in an atmosphere in which the gas volume of the fluorine-containing silicon compound is 20 to 50%, and the a-S1 surface protection is performed. An object of the present invention is to provide an electrophotographic photoreceptor characterized by forming a layer.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の電子写真感光体は、第1図(A)#こ示す通り
、導電性基板(II上に、a −Si光導電層(2)及
びa −Si表面保護層(3)を順次積層して構成され
、望ましくは、第1図の)に示す如く、導電性基板(1
)とa −Si光導電層(2)ノ間に、a −S’r障
壁層(4)を介在させるとよい。
As shown in FIG. 1(A), the electrophotographic photoreceptor of the present invention has an a-Si photoconductive layer (2) and an a-Si surface protection layer (3) sequentially laminated on a conductive substrate (II). Preferably, as shown in FIG. 1, a conductive substrate (1
) and the a-Si photoconductive layer (2), it is preferable to interpose an a-S'r barrier layer (4).

a −Si光導電層(2)には、水素及びフッ素の少な
くとも一種とともに、酸素、並びに周期律表第11[a
族、特に硼素を含有させる。
The a-Si photoconductive layer (2) contains at least one of hydrogen and fluorine, as well as oxygen and elements from periodic table No. 11 [a
containing boron, especially boron.

a −Si表面保護層(3)には、水素及びフッ素とと
もに、炭素を含有し、更に、周期律表第nta族、特に
硼素を含有させてもよい。
The a-Si surface protective layer (3) contains carbon as well as hydrogen and fluorine, and may further contain boron, a member of the Nta group of the periodic table.

a −81障壁NJ T4+には、水素及びフッ素の少
なくとも一種とともに、導電性基板(1)からの電荷の
注入を阻止させるため、例えば、酸素、窒素、炭素の少
なくとも一種、並びにWJ期律表第Ma族、特に硼素を
含有させる。
In addition to at least one of hydrogen and fluorine, the a-81 barrier NJ T4+ contains, for example, at least one of oxygen, nitrogen, and carbon, as well as at least one of oxygen, nitrogen, and carbon, as well as at least one of hydrogen and fluorine. Contains Ma group, especially boron.

第1表は、 a −S、i障壁層(4)に酸素を含有し
た場合について、個々の届の厚み及び含有量を示しであ
る。
Table 1 shows the thickness and content of each layer when the a-S, i barrier layer (4) contains oxygen.

第1表 第1表について、a −Si障壁層(4)に含有させた
酸素にかえて、窒素、炭素を含有した場合でも。
Table 1 Regarding Table 1, even when the a-Si barrier layer (4) contains nitrogen and carbon instead of oxygen.

それぞれの層の厚み並びに他の成分の含有量は何ら変更
される。ものではなく、a −Si障壁ff 141に
、窒素、炭素のそれぞれが単独に含有される場合、窒素
含有量は0.05〜55 atomi、c%、炭素含有
量は0.05〜45 atomj−c%である。
The thickness of each layer as well as the content of other components are not changed at all. When each of nitrogen and carbon is contained independently in the a-Si barrier ff 141, the nitrogen content is 0.05 to 55 atoms, c%, and the carbon content is 0.05 to 45 atoms, c%. c%.

本発明によれば、 a −s1表面保護NI+31をグ
ロ並びに硼素の出発原料ガス(例えば、B2H6など)
のガス流量を調整して、層内のそれぞれの含有量を特定
するとともに、Si、Faなどのフッ素含有シリコン化
合物と、Si、H4などの水素含有シリコン化合物のそ
れぞれのガス容積を特定することにより、きわめて安定
した動作特性をもち、著しく優れた耐久性を有する感光
体となることが判った。
According to the present invention, the a-s1 surface-protected NI+31 can be treated with a starting material gas of boron (e.g., B2H6, etc.).
By adjusting the gas flow rate and specifying the content of each in the layer, as well as specifying the respective gas volumes of fluorine-containing silicon compounds such as Si and Fa, and hydrogen-containing silicon compounds such as Si and H4. It has been found that the photoreceptor has extremely stable operating characteristics and excellent durability.

即ち、フッ素含有シリコン化合物と水素含有シリコン化
合物のガス容積に対して、フッ素含有シリコン化合物の
ガス容積が20%未満となると、比較的大きい結合エネ
ルギをもったSi −Fが減少して耐久性の向上に寄与
せず、50%を超えると、シリコン原子のダングリング
ボンドが増加して、電荷受容量の低下とともに光感度の
劣化を招くことになり、20〜50%の範囲となるよう
に設定するとよい。フッ素含有シリコン化合物には、5
i−Fa、SすFa 、 51ateなど種々の化合物
があり、水素含有シリコン化合物には、Si、H4,5
isHa 。
That is, when the gas volume of the fluorine-containing silicon compound is less than 20% of the gas volume of the fluorine-containing silicon compound and the hydrogen-containing silicon compound, Si-F, which has a relatively large bonding energy, decreases and the durability deteriorates. If it exceeds 50% without contributing to improvement, dangling bonds of silicon atoms will increase, leading to a decrease in charge acceptance and deterioration of photosensitivity. Therefore, it is set in the range of 20 to 50%. It's good to do that. Fluorine-containing silicon compounds contain 5
There are various compounds such as i-Fa, SFa, and 51ate, and hydrogen-containing silicon compounds include Si, H4,5
isHa.

SiaHgなど種々の化合物がある。そして、上記シリ
コン化合物ガスやBgHaガスなどは、Ar、Heなど
の希ガスやH2ガスなどがキャリアガスとして使われて
おり、本発明によれば、表面保護層(3)をグロー放電
分解法により形成する雰囲気ガス中、50〜90%の範
囲に設定するのがよい。
There are various compounds such as SiaHg. In the silicon compound gas, BgHa gas, etc., a rare gas such as Ar or He or H2 gas is used as a carrier gas, and according to the present invention, the surface protective layer (3) is formed by glow discharge decomposition method. It is preferable to set the amount in the range of 50 to 90% in the atmospheric gas to be formed.

かかる条件【こよって形成したa −81表面保護層(
3)は、炭素の含有量を最低で1 atomtc%、最
大゛でも45 atomi、0%まで高めることができ
、これにより、SICを生成して感光体の耐久性を上げ
るという所期の目的を達成することができる。好適には
、電荷保持能力を一層向上させるため、炭素の含有量を
lθ〜45 atom1c%の範囲に設定するとよい。
Such conditions [thus formed a-81 surface protective layer (
3) can increase the carbon content to a minimum of 1 atomtc% and a maximum of 45 atomc% to 0%, thereby achieving the intended purpose of producing SIC and increasing the durability of the photoreceptor. can be achieved. Preferably, in order to further improve the charge retention ability, the carbon content is preferably set in the range of 1θ to 45 atoms 1c%.

そして゛、炭素が1.g atomtc%以下では、耐
久性の向上は見られず、且つ表面電位が低く、電荷保持
能力が向上しない。
And ゛, carbon is 1. At less than g atomtc %, no improvement in durability is observed, and the surface potential is low, resulting in no improvement in charge retention ability.

また、表面保護層(3)の層厚は0.01#l以下で耐
久性の向上は見られず、且つ表面電位が低く、電荷保持
能力が向上しない。そして、0.5μm以上では光感度
が低下傾向を示すと同時に、残留電位が大きくなる。従
って、表面保護層(31の層厚は0.O1〜0,5μm
、好ましくは0.05〜0.15 tinの範囲がよい
。尚、との層厚は1表面保護層(3)の炭素の含有量が
多くなれば層厚を小さく、逆にこれらの含有量が小さく
なれば1層厚を大きくするように、上記の適正範囲内で
決定される。
Further, when the thickness of the surface protective layer (3) is 0.01 #l or less, no improvement in durability is observed, and the surface potential is low, so that the charge retention ability is not improved. When the thickness is 0.5 μm or more, the photosensitivity tends to decrease and at the same time, the residual potential increases. Therefore, the layer thickness of the surface protective layer (31) is 0.01 to 0.5 μm.
, preferably in the range of 0.05 to 0.15 tin. In addition, the layer thickness of the first surface protective layer (3) should be adjusted according to the above-mentioned appropriate method, such that the larger the carbon content in the first surface protective layer (3), the smaller the layer thickness, and conversely, the smaller the carbon content, the larger the first layer thickness. determined within the range.

光導電層(2)については、酸素含有量を5 X 10
−10−2ato%以上とすると光感度が大幅に低下し
For the photoconductive layer (2), the oxygen content was 5 x 10
When the amount is -10-2 ato% or more, the photosensitivity decreases significantly.

また逆に10−’atomic%以下であると、酸素原
子のその大きな電気陰性度によりダングリングボンドの
電子を充分にとり込むことができず、よって暗抵抗にし
て10 Ω・α以上のa −Si光導電層を得ることが
できず、光導電層(2)の酸素含有量は10〜5 X 
to−gatomi、0%の範囲がヨイ。
On the other hand, if it is less than 10-'atomic%, the electrons of the dangling bond cannot be taken in sufficiently due to the large electronegativity of the oxygen atom, and therefore the a-Si has a dark resistance of more than 10 Ω・α. It is not possible to obtain a photoconductive layer, and the oxygen content of the photoconductive layer (2) is 10-5
To-gatomi, the range of 0% is good.

障壁層(4)は光導電層(2)中で発生するキャリアを
導電性基板(1)へ円滑に輸送し、且つ導電性基板(1
)からの電荷の注入を阻止する役目をする。これに対し
、この障壁層(4)がない場合には、導電性基板(1)
からの電荷の注入阻止が有効になされず、表面電位が低
下し、暗減衰速度が大きくなる。
The barrier layer (4) smoothly transports carriers generated in the photoconductive layer (2) to the conductive substrate (1), and
) serves to prevent charge injection from On the other hand, in the absence of this barrier layer (4), the conductive substrate (1)
Injection of charge from the surface of the surface is not effectively prevented, the surface potential decreases, and the dark decay rate increases.

前記障壁層(4)が有効に働くためには、酸素、窒素、
炭素の含有量をそれぞれ0.05〜60 atomi、
0%、Q、Q5〜55 atomi(4%、0.05〜
45 atomi、c%の範囲とするのがよく、これら
の少なくとも一種がQ、Q5 atomi、0%以下で
は導電性基板(1)からの電荷の注入阻止が十分でない
ため、表面電位が不十分で暗減衰速度が大きくなり、そ
れぞれが単独で上記最大値を越えると、光キャリアがド
ラッグされ、残留電位が増加する。尚、この障壁層につ
いて、酸素、窒素、炭素のうちから2種もしくは3種と
組み合わせて含有してもよく、その組み合わせ次第によ
って、それぞれの含有量が適宜決定される。
In order for the barrier layer (4) to work effectively, oxygen, nitrogen,
The carbon content is 0.05 to 60 atoms, respectively.
0%, Q, Q5~55 atoms (4%, 0.05~
45 atoms, c%; if at least one of these is Q, Q5 atoms, 0% or less, the injection of charge from the conductive substrate (1) is not sufficiently blocked, resulting in insufficient surface potential. When the dark decay rate increases and each independently exceeds the above maximum value, photocarriers are dragged and the residual potential increases. Note that this barrier layer may contain a combination of two or three of oxygen, nitrogen, and carbon, and the content of each is determined as appropriate depending on the combination.

本発明のa −、Si電子写真感光体においては。In the a-, Si electrophotographic photoreceptor of the present invention.

a −Si光導電層の上に、炭素を含むa −81表面
保護層をグロー放電分解法によって積層する場合、フッ
素含有シリコン化合物と水素含有シリコン化合物のガス
容積に対して、フッ素含有シリコン化合物のガス容積を
20〜50%とした雰囲気の中でグロー放電を発生して
a −Si表面保護層を形成したため、炭素を含有させ
て達成される安定した動作特性及び耐久性が、更に一層
向上し、特に、超高速複写用の感光体に好適となる。
When a carbon-containing a-81 surface protective layer is laminated on an a-Si photoconductive layer by glow discharge decomposition method, the gas volume of the fluorine-containing silicon compound and the hydrogen-containing silicon compound is Since the a-Si surface protective layer was formed by generating glow discharge in an atmosphere with a gas volume of 20 to 50%, the stable operating characteristics and durability achieved by incorporating carbon were further improved. In particular, it is suitable for photoreceptors for ultra-high speed copying.

次に、a −Si層を生成するための容量結合型グロー
放電分解装置を第2図に基づいて説明する。
Next, a capacitively coupled glow discharge decomposition apparatus for producing an a-Si layer will be described with reference to FIG.

図中の第1.第2.第3.第4.第5タンク(5)f6
1 (71(81(91sこは、それぞれSiF4. 
Si、H4,B+I(a 。
1 in the diagram. Second. Third. 4th. 5th tank (5) f6
1 (71 (81 (91)) are SiF4.
Si, H4, B+I (a.

030E(4ガスが密封されている。また、 SiF4
゜SiH+ 、 BIH6ガス何れもキャリアーガスは
水素である。これらのガスは対応する第1.第2.第3
、第4及び第5調整弁(1[1旧1i1H131(14
1を開放することにより放出され、その流量がマスフロ
ーコントローラ鱈(t61旺71+18狂うにより規制
され、第1.第2及び第3タンク+51 Fe2 (7
+からのガスは第1主管■へ、また、第4及び第5タン
ク+81 (91からの酸素ガス及びメタンガスは第2
主管t211へ送られる。尚、(211は止め弁である
。第1.第2主管■圓を通じて流れるガスは反応管Q4
へと送り込まれるが、この反応管内部の基蔗の周囲には
容量結合型放電用電極(至)が配設されており、それ自
体の高周波電力は50watts乃至3 kj−1ow
attsが、また周波数は1. MHz乃至数IQ M
Hzが適当である。反応管C4内部には、その上にa−
8ill19Bが形成される。例えば、アルミニウムや
NESAガラスのような基板a音がモーター(5)によ
り回転可能であるターンテーブルOa上+こ載置されて
おり、該基板(ハ)自体は適当な加熱手段により、約5
0乃至300℃好ましくは約150乃至250℃の温度
に均一加熱されている。また、反応管(財)の内部はa
 −Si、膜形成時に高度の真空状態(放電圧0.5乃
至2.0 Torr )を必要とすることにより回転ポ
ンプ■と拡散ポンプ(1に連結されてい・る。
030E (4 gases are sealed. Also, SiF4
The carrier gas for both SiH+ and BIH6 gases is hydrogen. These gases correspond to the first. Second. Third
, 4th and 5th regulating valve (1 [1 former 1i1H131 (14
It is released by opening 1, and its flow rate is regulated by the mass flow controller 71 + 18, and the 1st, 2nd and 3rd tanks + 51 Fe2 (7
Gas from + goes to the 1st main pipe ■, and 4th and 5th tanks +81 (oxygen gas and methane gas from 91 go to the 2nd main pipe
It is sent to the main pipe t211. In addition, (211 is a stop valve. The gas flowing through the first and second main pipes is the reaction pipe Q4.
A capacitively coupled discharge electrode (to) is arranged around the base inside this reaction tube, and its high frequency power is 50 watts to 3 kj-1 ow.
atts and the frequency is 1. MHz to number IQ M
Hz is appropriate. Inside the reaction tube C4, there is a-
8ill19B is formed. For example, a substrate (a) such as aluminum or NESA glass is placed on a turntable (Oa) which can be rotated by a motor (5), and the substrate (c) itself is heated by a suitable heating means for approximately 50 minutes.
It is uniformly heated to a temperature of 0 to 300°C, preferably about 150 to 250°C. Also, the inside of the reaction tube (goods) is a
-Si, which requires a high vacuum state (discharge voltage 0.5 to 2.0 Torr) during film formation, is connected to the rotary pump (2) and the diffusion pump (1).

以上の構成のグロー放電分解装置において、例えば炭素
を含有するa −Sj−膜を基板(イ)上に形成すると
きは、第1及び/又は第2調整弁(11011とともに
、第5調整弁(141を開放して第1.第2タンク(5
1(61よりSiF+ガス、S、1−H4ガスを、第5
タンク(9)よりメタンガスを、また硼素も含有させる
ときは第3調整弁任2をも開放して、第3タンク(7)
よりBsH6ガスを放出する。放出量はマスフローコン
トローラミ9住e (171(19により規制され、 
SiF+ガス及び/又はS′LH+ガスの流量が特定さ
れ、それにB2H6ガスが混合されたガスが第1主管■
を介して、また、それとともにSi、F4及び/又ji
 5iE(4iこ対し一定のモル比にあるメタンガスが
第2主管CDを介して反応管(財)へと送り仏学れる。
In the glow discharge decomposition apparatus having the above configuration, for example, when forming a carbon-containing a-Sj- film on the substrate (a), the fifth regulating valve ( 141 and open the 1st and 2nd tanks (5
1 (from 61, SiF + gas, S, 1-H4 gas,
When introducing methane gas from the tank (9) and also containing boron, open the third adjustment valve 2 and move the tank (7) to the third tank (7).
BsH6 gas is released. The amount of emissions is regulated by the mass flow controller Mi9e (171 (19),
The flow rate of SiF+ gas and/or S'LH+ gas is specified, and the gas mixed with B2H6 gas is supplied to the first main pipe ■
via and with Si, F4 and/or ji
Methane gas in a constant molar ratio to 5iE (4i) is sent to the reaction tube via the second main pipe CD.

そして反応室(2)内部が0.5乃至2,0 、、 T
Qrr程度の真壁状態、基板温度が50乃至300℃、
容量型放電用電極(ハ)の高周波電力が50 watt
s乃至3 ki、lowatts 、また周波数が1乃
至数10 M■工Zに設定されてし)ることに損保って
、グロー放電が起こり、ガス力家分解して、基板上にフ
ッ素、水素及び炭素を含有したa −Si膜、或いは、
それに加えて適量の硼素を含有したa −Si、膜が約
lO乃至2500 A /分の成膜速度で形成される。
And the inside of the reaction chamber (2) is 0.5 to 2.0, T
True wall state of about Qrr, substrate temperature 50 to 300℃,
The high frequency power of the capacitive discharge electrode (c) is 50 watts
s to 3 ki, lowatts, and the frequency is set from 1 to several 10 MHz), a glow discharge occurs, the gas is decomposed, and fluorine, hydrogen, and a-Si film containing carbon, or
In addition, an a-Si film containing an appropriate amount of boron is formed at a deposition rate of about 10 to 2500 A/min.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例1〕 上述した第2図に示すグロー放電分解装置でa−81光
導電層とa −Si、表面保護層を形成し、この感光体
の耐久性を試験した。
[Example 1] An a-81 photoconductive layer, a-Si, and a surface protective layer were formed using the glow discharge decomposition apparatus shown in FIG. 2 described above, and the durability of this photoreceptor was tested.

即ち、前記グロー放電分解装置のターンテーブル(2)
上に円筒状のアルミニウム基板(1)を載置し、第1タ
ンク(5)より水素をキャリアーガスとじたSi、F4
ガス(流量tao sccM )を、第2タンク(6)
より水素をキャリアーガスとしたSi、H+ガス(流量
190 SOQM )を、第3タンク(7)より水素を
キャリアーガスとしたB1!Haガス(流量89 se
cM )を、更+c、第4 タンク(81jり酸素ガス
(流ii″c1,4 secM)を放出し、これらのガ
ス流量の割合に応じて、グロー放電雰囲気のガス組成が
決められる。これにより、アルミニウム基板(1)上に
酸素を約lO−10−8ato%、硼素を約200 p
pm 、水素及び77素が合計して約15 atomi
、c%含有する厚さlQttmのa−Sj−光導電層を
得た。このときの製造条件は放電圧を0.6 Torr
 、 基板温度を200℃、 高周波電力を200 w
atts 、膜形成速度を14 A / sθCとした
。更に、同様の方法で、Si、F+ガスを20 SOC
M 。
That is, the turntable (2) of the glow discharge decomposition device
A cylindrical aluminum substrate (1) is placed on top of the Si, F4 substrate with hydrogen as a carrier gas from the first tank (5).
Gas (flow rate tao sccM) is transferred to the second tank (6)
Si, H+ gas (flow rate 190 SOQM) with hydrogen as the carrier gas from the third tank (7), and B1 with hydrogen as the carrier gas from the third tank (7)! Ha gas (flow rate 89 se
cM), and the fourth tank (81j) releases oxygen gas (flow ii''c1,4 secM), and the gas composition of the glow discharge atmosphere is determined according to the ratio of these gas flow rates. , about 1O-10-8ato% of oxygen and about 200p of boron on the aluminum substrate (1).
pm, hydrogen and 77 elements total about 15 atoms
, c% of a-Sj-photoconductive layer having a thickness of lQttm was obtained. The manufacturing conditions at this time were to set the discharge voltage to 0.6 Torr.
, substrate temperature 200℃, high frequency power 200W
atts, and the film formation rate was set to 14 A/sθC. Furthermore, in the same manner, Si, F+ gas was heated to 20 SOC.
M.

SiH4ガスを30 sccM 、 BsHaガスを1
25 secM、更に、第5タンク(9)よりメタンガ
スを20 secMの流量として放出した以外は同一の
条件の下で上記a−Si光導電層上にa −81表面保
護層を形成した。
SiH4 gas at 30 sccM, BsHa gas at 1
An a-81 surface protective layer was formed on the a-Si photoconductive layer under the same conditions except that methane gas was further discharged from the fifth tank (9) at a flow rate of 25 secM and 20 secM.

この時、グロー放電の雰囲気において、SiF4とSi
H4のガス容積に対するSi、F 4ガス容積を約40
%多こ設定し、キャリアーガスとして使ったH2ガスは
約80%となった。これにより、炭素を約20atom
tc%、硼素を約200 ppm、 フッ素及び水素が
合計して約5 atomic%含有する厚さ0.1μm
のa−8i、表面保護層を得た。
At this time, in a glow discharge atmosphere, SiF4 and Si
Si, F4 gas volume relative to H4 gas volume is approximately 40
The amount of H2 gas used as a carrier gas was approximately 80%. This reduces carbon to about 20 atoms.
tc%, approximately 200 ppm boron, and a total of approximately 5 atomic% fluorine and hydrogen, 0.1 μm thick.
a-8i, a surface protective layer was obtained.

かかる電子写真感光体によれば、長波長領域も含めて光
感度特性が優れていることを確認し、更に、暗中で5.
6 k’Vのコロナチャージャで帯電シ、暗中での表面
電位の経時変化並びに77On1llの単色光照射直後
の表面電位の経時変化を追ったところ、表面電位が70
0v以上と大幅に高く、暗減衰も遅く、電荷保持能力に
も優れていることが認められ、この結果、半導体レーザ
を用いたレーザービームプリンタへの応用など今後の幅
広い用途に対応できることが判った。
It has been confirmed that this electrophotographic photoreceptor has excellent photosensitivity characteristics including in the long wavelength region, and furthermore, it has been confirmed that the electrophotographic photoreceptor has excellent photosensitivity characteristics including the long wavelength region, and furthermore,
When charged with a 6 k'V corona charger and followed the change in surface potential over time in the dark and the change in surface potential over time immediately after irradiation with monochromatic light of 77On1ll, the surface potential was 70
It was found that it has significantly higher voltage than 0V, slow dark decay, and excellent charge retention ability.As a result, it was found that it can be used in a wide range of future applications, such as application to laser beam printers using semiconductor lasers. .

かくして得られた電子写真感光体について、5.6kV
のコロナチャージャによる帯電をした後に、画像露光し
磁気ブラシ現象を行った結果、画像濃度が高く、高コン
トラストで良好な画像が得られ、40万回の繰り返しテ
スト後においても、濃度低下、白地のかぶり、ドラム表
面の傷による白抜けなど、初期画像からの劣化は全く見
られず。
Regarding the electrophotographic photoreceptor thus obtained, 5.6 kV
After being charged with a corona charger, image exposure was performed and a magnetic brush phenomenon was performed.As a result, a good image with high image density and high contrast was obtained.Even after 400,000 repeated tests, there was no decrease in density or white background. There was no visible deterioration from the initial image, such as fogging or white spots due to scratches on the drum surface.

耐久性も良好であることが確認された。It was confirmed that the durability was also good.

〔実施例2〕 前記実施例1で得られた感光体において、アルミニウム
基板(1)と光導電層(2)の間に、次の製作条件によ
って形成した障壁層(4)を介在させた電子写真感光体
をつくった。
[Example 2] In the photoreceptor obtained in Example 1, a barrier layer (4) formed under the following manufacturing conditions was interposed between the aluminum substrate (1) and the photoconductive layer (2). I made a photographic photoreceptor.

即ち、第2図に示すグロー放電分解装置でSiF4ガス
を2.OSof3M%SiH+ガスを30 sccM 
、 Bl!Heガスを125 sccM 、 CH4ガ
スを0.8 SOQMの流量とした以外は実施例10条
件の下でアルミニウム基板(1)上tcp素を約0.6
 atomic%、硼素を約200 ppm、フッ素及
び水素が合計して約5 atomi、0%含有する厚さ
2μmのa −85−障壁層を得た。次いで、この上に
、実施例1と全く同一のa −Si光導電層及びa −
Si−表面保護層を順次積層して電子写真感光体を得た
That is, SiF4 gas was heated in a glow discharge decomposition apparatus shown in FIG. OSof3M%SiH+gas at 30 sccM
, Bl! The tcp element on the aluminum substrate (1) was approximately 0.6 scc under the conditions of Example 10, except that the He gas was used at a flow rate of 125 sccM and the CH4 gas was used at a flow rate of 0.8 SOQM.
A 2 μm thick a-85-barrier layer was obtained containing about 200 ppm boron and about 5 atomic 0% fluorine and hydrogen in total. Then, on top of this, an a-Si photoconductive layer exactly the same as in Example 1 and an a-Si photoconductive layer were formed.
An electrophotographic photoreceptor was obtained by sequentially laminating Si-surface protective layers.

かくして得られた電子写真感光体について、5,6kV
ノコロナチヤージヤによる帯電をした後に。
Regarding the electrophotographic photoreceptor thus obtained, 5.6 kV
After being charged with a no-corona charger.

画像露光し磁気ブラシ現象を行った結果、画像濃度が高
く、高コントラストで良好な画像が得られ、40万回の
繰り返しテスト後においても、濃度低下、白地のかぶり
、ドラム表面の傷による白抜けなど、初期画像からの劣
化は全く見られず、耐久性も良好であることが確認され
た。
As a result of image exposure and magnetic brush phenomenon, a good image with high image density and high contrast was obtained, and even after 400,000 repeated tests, there was no loss of density, fogging of the white background, or white spots due to scratches on the drum surface. No deterioration was observed at all from the initial image, and it was confirmed that the durability was good.

更1こ、本例により得られた電子写真感光体は、長波長
領域も含め4て光感度特性が優れていることニ加工、5
.6 kvのコロナチャージャで帯電して、暗中での表
面電位の経時変化並びに’170nwr の単色光照射
直後の表面電位の経時変化によれば、その表面電位が実
施例1よりも一段と大幅Cご高く、850v以上となり
、電荷保持能力にも好適となることが判った。
Furthermore, the electrophotographic photoreceptor obtained in this example has excellent photosensitivity characteristics, including in the long wavelength region.
.. According to the change in surface potential over time in the dark after charging with a 6 kV corona charger and the change in surface potential over time immediately after irradiation with monochromatic light of 170 nwr, the surface potential was much higher by C than in Example 1. , 850V or more, and it was found that the charge retention ability was also suitable.

〔実施例3〕 実施例1で述べた表面保護層を形成する場合、第1タン
ク(5)より水素をキャリアーガスとしたSiF’+ガ
ス、並びに第2タンク(6)より水素をキャリアーガス
とした5l−H4ガスのそれぞれの放出量を変えて、グ
ロー放電雰囲気のガス組成を第2表のように幾通りにも
して、感光体(Al tBl (C1及びCD)を製作
した。但し、その他の製作条件は実施例1と全く同一に
した。
[Example 3] When forming the surface protective layer described in Example 1, SiF'+ gas with hydrogen as a carrier gas was supplied from the first tank (5), and hydrogen was used as a carrier gas from the second tank (6). Photoreceptors (Al tBl (C1 and CD)) were manufactured by changing the release amount of each of the 5l-H4 gases and changing the gas composition of the glow discharge atmosphere as shown in Table 2. The manufacturing conditions were exactly the same as in Example 1.

かかる感光体の耐久性試験を実施例1で述べた方法によ
って確認したところ、第2表の通りである。尚、第2表
中の耐久性試験の評価は、初期画像からの劣化が認めら
れた限界の繰り返し回数を目安とした。
The durability of the photoreceptor was confirmed by the method described in Example 1, and the results are shown in Table 2. Note that the evaluation of the durability test in Table 2 was based on the limit number of repetitions at which deterioration from the initial image was observed.

第2表から明らかなように、感光体IB) tc)は、
■万回の繰り返しテストをおこなっても、濃度低下。
As is clear from Table 2, the photoreceptor IB) tc) is
■Concentration does not decrease even after repeated testing 10,000 times.

白地のかぶり、ドラム表面の傷による白抜けなど、初期
画像からの劣化が見られず、耐久性が著しく向上し、こ
れにより、超高速複写用の感光体として十分に満足しえ
るものとなることが判った。然るに、感光体(Al (
Dlでは、せいぜい、20万回、15万回であり、在来
のa −Si感光体とほぼ同じレベルであった。
There is no deterioration from the initial image, such as fogging on the white background or white spots due to scratches on the drum surface, and the durability has been significantly improved, making it fully satisfactory as a photoreceptor for ultra-high speed copying. It turns out. However, the photoreceptor (Al (
With Dl, the number of cycles was 200,000 to 150,000 cycles at most, which was approximately the same level as the conventional a-Si photoreceptor.

上述した実施例から明らかなように、本発明のa −S
1感光体は、光導電層の上に表面保護層が積層されてお
り、その表面保護層をグロー放電分解装置によって形成
するに際し、フッ素含有シリコン化合物と水素含有シリ
コン化合物のガス組成を特定することにより、きわめて
安定した動作特性並びに優れた耐久性が獲得され、その
結果、今後、ますます要求される超高速複写用の感光体
として期待される。
As is clear from the examples described above, a-S of the present invention
1. A photoreceptor has a surface protective layer laminated on a photoconductive layer, and when forming the surface protective layer using a glow discharge decomposition device, the gas composition of the fluorine-containing silicon compound and the hydrogen-containing silicon compound must be specified. As a result, extremely stable operating characteristics and excellent durability have been obtained, and as a result, it is expected to be used as a photoreceptor for ultra-high speed copying, which will be increasingly required in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る感光体の拡大断面図、第2図はア
モルファスシリコン層を形成するためのグロー放電分解
装置を示す概略図である。 +11−・・導電性基板 (2)・・・アモルファスシリコン光導[Ml(31−
・アモルファスシリコン表面保護層(41・・・アモル
ファスシリコーン1lIiJl特許出願人 京セ ラ株
式会社 同 河 村 孝 夫
FIG. 1 is an enlarged sectional view of a photoreceptor according to the present invention, and FIG. 2 is a schematic diagram showing a glow discharge decomposition apparatus for forming an amorphous silicon layer. +11-...Conductive substrate (2)...Amorphous silicon photoconductive [Ml(31-
・Amorphous silicon surface protective layer (41...Amorphous silicone 1lIiJl Patent applicant: Kyocera Corporation Takao Kawamura

Claims (1)

【特許請求の範囲】 il+ 導[性基板上に、アモルファスシリコン光導電
層と、水素及びフッ素とともに炭素を含むアモルファス
シリコン表面保護層とを、グロー放電分解法によって、
順次積層して成る電子写真感光体1こおいて、フッ素含
有シリコン化合物と水素含有シリコン化合物のガス容積
に対して、フッ素含有シリコン化合物のガス容積を20
〜50%とした雰囲気の中でグロー放電を発生し、前記
アモルファスシリコン表面保護層を形成したことを特徴
とする電子写真感光体。 (21iJ[性基板上に、アモルファスシリコン障壁層
と、アモルファスシリコン光導電層と、水素及びフッ素
とともに炭素を含むアモルファスシリコン表面保護層と
を、グロー放電分解法によって、順次積層して成る電子
写真感光体において、フッ素含有シリコン化合物と水素
含有シリコン化合物のガス容積に対して、フッ素含有シ
リコン化合物のガス容積を20〜50%とした雰囲気の
中でグロー放電を発生し、前記アモルファスシリコン表
面保護層を形成したことを特徴とする電子写真感光体。 (3) 前記グロー放電分解用ガスとともに、キャリア
ーガスとして水素ガス、希ガスの少なくとも一種がグロ
ー放電の雰囲気ガスを占め、その割合が50〜90%と
したことを特徴とする特許請求の範囲第1項又は第2項
記載の電子写真感光体。 (4) 前記フッ素含有7aリコン化合物がSiF+で
あることを特徴とする特許請求の範囲第1項又は第2項
記載の電子写真感光体。 (5)前記水素含有シリコン化合物がSiH+であるこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
電子写真感光体。 (61前記アモルファスシリコン表面保護層に周期律表
第ma族が含まれていることを特徴とする特許請求の範
囲第1項又は第2項記載の電子写真感光体。
[Claims] An amorphous silicon photoconductive layer and an amorphous silicon surface protective layer containing carbon as well as hydrogen and fluorine are deposited on an il+ conductive substrate by a glow discharge decomposition method.
In an electrophotographic photoreceptor 1 formed by sequentially laminating layers, the gas volume of the fluorine-containing silicon compound is 20% of the gas volume of the fluorine-containing silicon compound and the hydrogen-containing silicon compound.
An electrophotographic photoreceptor, characterized in that the amorphous silicon surface protective layer is formed by generating glow discharge in an atmosphere of 50% to 50%. (21iJ) An electrophotographic photosensitive material consisting of an amorphous silicon barrier layer, an amorphous silicon photoconductive layer, and an amorphous silicon surface protective layer containing carbon as well as hydrogen and fluorine, successively laminated on a transparent substrate by glow discharge decomposition method. In the body, a glow discharge is generated in an atmosphere in which the gas volume of the fluorine-containing silicon compound is 20 to 50% of the gas volume of the fluorine-containing silicon compound and the hydrogen-containing silicon compound, and the amorphous silicon surface protective layer is (3) Along with the glow discharge decomposition gas, at least one of hydrogen gas and rare gas as a carrier gas occupies the atmosphere gas of the glow discharge, and the proportion thereof is 50 to 90%. (4) The electrophotographic photoreceptor according to claim 1 or 2, characterized in that the fluorine-containing 7a recon compound is SiF+. or the electrophotographic photoreceptor according to claim 2. (5) The electrophotographic photoreceptor according to claim 1 or 2, characterized in that the hydrogen-containing silicon compound is SiH+. 3. The electrophotographic photoreceptor according to claim 1 or 2, wherein the silicon surface protective layer contains a member of group Ma of the periodic table.
JP20555583A 1983-10-31 1983-10-31 Electrophotographic sensitive body Pending JPS6067955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20555583A JPS6067955A (en) 1983-10-31 1983-10-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20555583A JPS6067955A (en) 1983-10-31 1983-10-31 Electrophotographic sensitive body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17664483A Division JPS6067952A (en) 1983-09-25 1983-09-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6067955A true JPS6067955A (en) 1985-04-18

Family

ID=16508826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20555583A Pending JPS6067955A (en) 1983-10-31 1983-10-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6067955A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675265A (en) * 1985-03-26 1987-06-23 Fuji Electric Co., Ltd. Electrophotographic light-sensitive element with amorphous C overlayer
JPS62183466A (en) * 1986-02-07 1987-08-11 Canon Inc Light receiving member
US4906544A (en) * 1986-03-20 1990-03-06 Minolta Camera Kabushiki Kaisha Photosensitive member of plasma polymerized amorphous carbon charge transporting layer and charge generating layer
US4913994A (en) * 1986-03-20 1990-04-03 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US4913993A (en) * 1986-03-20 1990-04-03 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US4950571A (en) * 1986-04-09 1990-08-21 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
JPWO2007132734A1 (en) * 2006-05-11 2009-09-24 株式会社シンク・ラボラトリー Gravure plate making roll and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675265A (en) * 1985-03-26 1987-06-23 Fuji Electric Co., Ltd. Electrophotographic light-sensitive element with amorphous C overlayer
JPS62183466A (en) * 1986-02-07 1987-08-11 Canon Inc Light receiving member
US4906544A (en) * 1986-03-20 1990-03-06 Minolta Camera Kabushiki Kaisha Photosensitive member of plasma polymerized amorphous carbon charge transporting layer and charge generating layer
US4913994A (en) * 1986-03-20 1990-04-03 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US4913993A (en) * 1986-03-20 1990-04-03 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US4950571A (en) * 1986-04-09 1990-08-21 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
JPWO2007132734A1 (en) * 2006-05-11 2009-09-24 株式会社シンク・ラボラトリー Gravure plate making roll and method for producing the same

Similar Documents

Publication Publication Date Title
JPS58189643A (en) Photoreceptor
JPS6067955A (en) Electrophotographic sensitive body
JP3862334B2 (en) Light receiving member for electrophotography
JPS5967549A (en) Recording body
JPS59212843A (en) Photosensitive body
JPS6067954A (en) Electrophotographic sensitive body
JPS6067952A (en) Electrophotographic sensitive body
JPH0234019B2 (en) DENSHISHASHIN KANKOTAI
JP2000171995A (en) Electrophotographic photoreceptive member
JPS63135954A (en) Electrophotographic sensitive body
JPS635348A (en) Electrophotographic sensitive body
JPS6067953A (en) Electrophotographic sensitive body
JPS6332558A (en) Electrophotographic sensitive body
JPS58150963A (en) Photoconductive material
JPS6330855A (en) Electrophotographic sensitive body
JPS6329762A (en) Electrophotographic sensitive body
JPS5967545A (en) Recording body
JPS6314164A (en) Electrophotographic sensitive body
JPS60140256A (en) Photoconductive member
JPS61281249A (en) Photosensitive body
JPS634240A (en) Electrophotographic sensitive body
JPH0820744B2 (en) Electrophotographic photoreceptor
JPS6382417A (en) Production of electrophotographic sensitive body
JPS6382424A (en) Production of electrophotographic sensitive body
JPS63108343A (en) Electrophotographic sensitive body