JPH01276875A - One-dimensional image sensor - Google Patents

One-dimensional image sensor

Info

Publication number
JPH01276875A
JPH01276875A JP63106959A JP10695988A JPH01276875A JP H01276875 A JPH01276875 A JP H01276875A JP 63106959 A JP63106959 A JP 63106959A JP 10695988 A JP10695988 A JP 10695988A JP H01276875 A JPH01276875 A JP H01276875A
Authority
JP
Japan
Prior art keywords
ccd
photoelectric converting
photoelectric conversion
image sensor
ccds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106959A
Other languages
Japanese (ja)
Inventor
Masao Yamawaki
正雄 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63106959A priority Critical patent/JPH01276875A/en
Publication of JPH01276875A publication Critical patent/JPH01276875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the effect of transmission efficiency and to facilitate a layout by possessing a one-dimensionally arranged photoelectric converting element and a reading CCD to read an output value, and alternately arranging the reading CCD on the both sides of the arrangement of the photoelectric converting element. CONSTITUTION:The title image sensor is equipped with NXM pieces of one- dimensionally arranged photoelectric converting elements 1 and M sets of reading CCDs 21-23 to read the output value of the N pieces if photoelectric converting elements 1, and the reading CCD 21-23 are alternately arranged on the both sides of the arrangement of the photoelectric converting elements. The output from the photoelectric converting element 1 is transferred through divided three transfer gates 31, 32 and 33 and the CCD 21, 22 and 23. Thereafter, it is successively transferred through the CCDs 21-23, and read through output amplifiers 41-43. That is, the reading CCD of the one-dimensional image sensor is divided into plural pieces, a transmission distance in the respective CCDs becomes shorter, and the mutual distance between the respective CCDs is made more separate than before. Thus, the effect of the transmission efficiency is reduced, and the layout is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転送効率の損失が小さい一次元イメージセン
サ(以下「リニアイメージセンサ」という)に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a one-dimensional image sensor (hereinafter referred to as a "linear image sensor") with a small loss in transfer efficiency.

〔従来の技術〕[Conventional technology]

第3図は従来のリニアイメージセンサの構成を示す構成
図である。同図において、lはフォトダイオード等の光
電変換素子、2は読出用のCCD、3は光電変換素子1
からCCD2への電荷の転送を制御するトランスファゲ
ート、4は電荷検出アンプである。
FIG. 3 is a block diagram showing the structure of a conventional linear image sensor. In the figure, l is a photoelectric conversion element such as a photodiode, 2 is a CCD for reading, and 3 is a photoelectric conversion element 1.
A transfer gate 4 controls charge transfer from the CCD 2 to the CCD 2, and 4 is a charge detection amplifier.

次に動作について説明する。一定の時間光信号を光電変
換して信号を蓄積した後、信号電荷は光電変換素子lか
らトランスファゲート3を通してCCD2に転送される
。その後、CCD2を動作させ、信号電荷は順次転送さ
れ、アンプ4から出力される。信号電荷はCCD2を繰
り返し転送され、アンプ4から最も遠い光電変換素子(
第3図では右端の光電変換素子)1では少なくとも光電
変換素子の数よりも多い転送段数を経て出力される。
Next, the operation will be explained. After photoelectrically converting the optical signal for a certain period of time and accumulating the signal, the signal charge is transferred from the photoelectric conversion element 1 to the CCD 2 through the transfer gate 3. Thereafter, the CCD 2 is operated, and the signal charges are sequentially transferred and outputted from the amplifier 4. The signal charge is repeatedly transferred to the CCD 2 and is transferred to the photoelectric conversion element farthest from the amplifier 4 (
In the photoelectric conversion element 1 (on the right end in FIG. 3), the signal is output after passing through at least a number of transfer stages greater than the number of photoelectric conversion elements.

ところが、CCD2の転送効率は有限であり、1段当た
りの転送効率をηとすると、総合の転送効率ηLotは
、 ηい、=η8・・・・・(1) となる。ここで、・NはCCD2の転送段数である。
However, the transfer efficiency of the CCD 2 is finite, and if the transfer efficiency per stage is η, then the overall transfer efficiency ηLot is as follows: η=η8 (1). Here, ·N is the number of transfer stages of the CCD 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のリニアイメージセンサは1ooo〜2000([
1i1の光電変換素子であったが、5000〜1000
0個の光電変換素子を集積する場合、例えば10000
個の光電変換素子数を考えると、1段溝たりの転送効率
が0.99995であっても、(1)式から、η、。−
]、C6 と悪くなる。アンプ4に近い側の光電変換素子1につい
ての転送効率は転送段数が少ないためη、。、はほぼ1
に近いが、右端の光電変換素子1の転送効率η、。、−
0,61となり、不均一性を招く。
Conventional linear image sensors range from 1ooo to 2000 ([
1i1 photoelectric conversion element, but 5000 to 1000
When integrating 0 photoelectric conversion elements, for example, 10000
Considering the number of photoelectric conversion elements, even if the transfer efficiency per groove is 0.99995, from equation (1), η,. −
], C6 becomes worse. The transfer efficiency of the photoelectric conversion element 1 on the side closer to the amplifier 4 is η, since the number of transfer stages is small. , is almost 1
The transfer efficiency η of the photoelectric conversion element 1 on the right end is close to . ,−
0.61, leading to non-uniformity.

このため、転送効率の影響を小さくすべく、従来、第4
図、第5図に示すようなリニアイメージセンサが提案さ
れていた。
Therefore, in order to reduce the effect on transfer efficiency, conventional
A linear image sensor as shown in FIG. 5 has been proposed.

第4図は光電変換素子1の両側にCCD5.6を配置し
た構成であり、光電変換素子lの出力値は1画素おきに
2本のCCD5.6に振り分けて読み出される。7は信
号電荷をCCD6に転送するためのトランスファゲート
、8は信号電荷をCCD5に転送するためのトランスフ
ァゲートである。この構成の場合、転送段数は1/2に
なるが、C0D5.6の1段溝たりの転送距離が長くな
り高速化が難しくなる。なお、9.10は出力アンプで
ある。
FIG. 4 shows a configuration in which CCDs 5.6 are arranged on both sides of a photoelectric conversion element 1, and the output value of the photoelectric conversion element 1 is distributed to two CCDs 5.6 for every other pixel and read out. 7 is a transfer gate for transferring signal charges to CCD 6, and 8 is a transfer gate for transferring signal charges to CCD 5. In the case of this configuration, the number of transfer stages is halved, but the transfer distance per one stage groove of C0D5.6 becomes longer, making it difficult to increase the speed. Note that 9.10 is an output amplifier.

第5図は信号電荷を読み出すCODを複数本に分割した
場合である。同図では、全体を3分割し、それぞれCC
DII、12.13から信号電荷を読み出す。14,1
5.16は出力アンプである。
FIG. 5 shows a case where the COD from which signal charges are read out is divided into a plurality of pieces. In the same figure, the whole is divided into three parts, and each CC
Read signal charges from DII, 12.13. 14,1
5.16 is an output amplifier.

ただし、この構成の場合、C0D11〜13の境界のレ
イアウトが難しい。すなわち、第5図においてAで示す
部分のCCDの分離、電極のレイアウトを1光電変換素
子のピッチで行なう必要があり、現実的ではない。
However, in this configuration, it is difficult to layout the boundaries between C0D11 to C0D13. That is, it is necessary to separate the CCD and layout the electrodes at the portion indicated by A in FIG. 5 at a pitch of one photoelectric conversion element, which is not practical.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、転送効率の影響が少なくレイア
ウトが容易なリニアイメージセンサを得ることにある。
The present invention has been made in view of these points, and an object thereof is to obtain a linear image sensor that has less influence on transfer efficiency and is easy to layout.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために本発明は、−次元に配
置されたN×M個の光電変換素子と、N個の光電変換素
子の出力値を読み出すM組の読出用CCDとを備え、読
出用CCDを光電変換素子の配列の両側に交互に配置す
るようにしたものである。
In order to achieve such an object, the present invention includes N×M photoelectric conversion elements arranged in the − dimension, and M sets of readout CCDs for reading output values of the N photoelectric conversion elements. The readout CCDs are arranged alternately on both sides of the array of photoelectric conversion elements.

〔作用〕[Effect]

本発明による一次元イメージセンサの読出用CCDは複
数に分割され、各CODにおける転送距離が短くなり、
また各CODは互いの距離が従来より離れたものとなる
The readout CCD of the one-dimensional image sensor according to the present invention is divided into a plurality of parts, and the transfer distance in each COD is shortened.
Furthermore, the distances between the CODs are greater than in the past.

〔実施例〕〔Example〕

第1図は本発明に係わるリニアイメージセンサの一実施
例を示す構成図である。同図において、1は直線状に配
置された光電変換素子、21,22.23は読出用CC
D、31,32.33はトランスファゲート、41.4
2.43は出力アンプである。
FIG. 1 is a configuration diagram showing an embodiment of a linear image sensor according to the present invention. In the figure, 1 is a photoelectric conversion element arranged linearly, 21, 22, and 23 are readout CCs.
D, 31, 32.33 are transfer gates, 41.4
2.43 is an output amplifier.

第1図において、光電変換素子1からの出力は分割され
た3つのトランスファゲート31,32.33と3つの
C0D21,22.23を通して転送される。その後、
CCD21〜23中を順次転送され、出力アンプ41〜
43から読み出される。本実施例では、CODを分割し
、かつ光電変換素子の配列の両側に交互に配置したため
に、分割時に発生するレイアウト上の問題がなくなって
いる。また、信号電荷の読出しが複数本のCODから同
時に行えるため、高速に信号続出しを行なうことができ
る。
In FIG. 1, the output from the photoelectric conversion element 1 is transferred through three divided transfer gates 31, 32.33 and three C0Ds 21, 22.23. after that,
Transferred sequentially through CCDs 21 to 23 and output to output amplifiers 41 to 41.
43. In this embodiment, since the COD is divided and arranged alternately on both sides of the array of photoelectric conversion elements, the layout problem that occurs when dividing is eliminated. Further, since signal charges can be read out simultaneously from a plurality of CODs, signals can be continuously output at high speed.

なお、上記実施例では、CCDの読出し方向を図面の左
側への同一方向にしているが、外部での信号処理に応じ
て方向を変えてもよい。また、分割数が3の場合につい
て説明したが、任意の数に分割してもよい。
In the above embodiment, the CCD readout direction is the same direction to the left in the drawing, but the direction may be changed depending on external signal processing. Further, although the case where the number of divisions is three has been described, it may be divided into any number of divisions.

さらに、第1図の例では各分割ブロックにおいて1本の
CCDに信号電荷を転送しているが、第2図に示すよう
に、更に複数本のCCDに分割して読み出すことも考え
られる。第2図は、2本の並列のCCD21a、21b
 〜23a、23bを用いて1画素おきの信号をアンプ
41a、41b〜43a、43bから出力するようにし
た例を示す構成図である。
Further, in the example of FIG. 1, the signal charge is transferred to one CCD in each divided block, but it is also conceivable that the signal charge is further divided into a plurality of CCDs and read out, as shown in FIG. Figure 2 shows two parallel CCDs 21a and 21b.
23a, 23b is used to output signals for every other pixel from amplifiers 41a, 41b to 43a, 43b. FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、−次元に配置されたN×
M個の光電変換素子と、N個の光電変換素子の出力値を
読み出すM組の読出用CODとを備え、読出用CCDを
光電変換素子の配列の両側に交互に配置したことにより
、各読出用CCDにおける転送距離を短くでき、各CC
Dの互いの距離を従来よりも離すことができるので、転
送効率の影響が少なく、高速に信号が読み出せ、レイア
ウトが容易な一次元イメージセンサを得ることができる
効果がある。
As explained above, the present invention provides N×
Equipped with M photoelectric conversion elements and M sets of readout CODs that read out the output values of the N photoelectric conversion elements, each readout CCD is arranged alternately on both sides of the array of photoelectric conversion elements. The transfer distance in the CCD can be shortened, and each CC
Since the distances D can be made greater than in the past, there is an effect that transfer efficiency is less affected, signals can be read out at high speed, and a one-dimensional image sensor that can be easily laid out can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるリニアイメージセンサの一実施
例を示す構成図、第2図は他の実施例を示す構成図、第
3図〜第5図は従来のリニアイメージセンサを示す構成
図である。 ■・・・光電変換素子、21〜23・・・COD、31
〜33・・・トランスファゲート、41〜43・・・ア
ンプ。
Fig. 1 is a block diagram showing one embodiment of a linear image sensor according to the present invention, Fig. 2 is a block diagram showing another embodiment, and Figs. 3 to 5 are block diagrams showing a conventional linear image sensor. It is. ■...Photoelectric conversion element, 21-23...COD, 31
~33...Transfer gate, 41~43...Amplifier.

Claims (1)

【特許請求の範囲】[Claims] 一次元に配置されたN×M個の光電変換素子と、N個の
前記光電変換素子の出力値を読み出すM組の読出用CC
Dとを備え、前記読出用CCDを前記光電変換素子の配
列の両側に交互に配置したことを特徴とする一次元イメ
ージセンサ。
N×M photoelectric conversion elements arranged one-dimensionally and M sets of reading CCs for reading output values of the N photoelectric conversion elements
D, wherein the readout CCDs are alternately arranged on both sides of the array of photoelectric conversion elements.
JP63106959A 1988-04-27 1988-04-27 One-dimensional image sensor Pending JPH01276875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106959A JPH01276875A (en) 1988-04-27 1988-04-27 One-dimensional image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106959A JPH01276875A (en) 1988-04-27 1988-04-27 One-dimensional image sensor

Publications (1)

Publication Number Publication Date
JPH01276875A true JPH01276875A (en) 1989-11-07

Family

ID=14446873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106959A Pending JPH01276875A (en) 1988-04-27 1988-04-27 One-dimensional image sensor

Country Status (1)

Country Link
JP (1) JPH01276875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412271B (en) * 2008-02-15 2013-10-11 Sony Corp Solid-state imaging device, camera, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412271B (en) * 2008-02-15 2013-10-11 Sony Corp Solid-state imaging device, camera, and electronic device

Similar Documents

Publication Publication Date Title
JP5290923B2 (en) Solid-state imaging device and imaging device
US4009388A (en) Arrangement for extending photosensor array resolution
US20100208116A1 (en) Color ccd linear image sensor
JPH01276875A (en) One-dimensional image sensor
JP2891550B2 (en) Image sensor
JPS5975772A (en) Solid-state image pickup device
US7154641B2 (en) Image scanning apparatus
WO2015174762A1 (en) Bidirectional tdi line image sensor
JPH0399574A (en) Color image sensor
TWI793809B (en) Time delay integration sensor with dual gains
US6765699B1 (en) Photosensor array with decreased scan time for decreased optical sampling rates
JP2007235877A (en) Multi-ccd solid-state imaging element module and imaging apparatus
US20080211953A1 (en) Linear image sensor
JP2609133B2 (en) Solid-state imaging device
KR100269747B1 (en) Reduced color image scanner
JPH01241264A (en) Photoelectric converter
JPH01314063A (en) Solid-state image pickup device
JPS6143067A (en) Solid-state image pickup device
JPH05236210A (en) High resolution image pickup system
JPH02145072A (en) Charge transfer device
CN117294965A (en) Image sensor based on back-illuminated technology
JPS62291169A (en) Ccd image sensor
JPS6028384A (en) Solid-state image pickup element
JP4741173B2 (en) Multiple bucket brigade circuit
JPS649790B2 (en)