JPH01275788A - Method and apparatus for electrolysis of water by action of magnetic field - Google Patents

Method and apparatus for electrolysis of water by action of magnetic field

Info

Publication number
JPH01275788A
JPH01275788A JP63106917A JP10691788A JPH01275788A JP H01275788 A JPH01275788 A JP H01275788A JP 63106917 A JP63106917 A JP 63106917A JP 10691788 A JP10691788 A JP 10691788A JP H01275788 A JPH01275788 A JP H01275788A
Authority
JP
Japan
Prior art keywords
magnetic field
water
bubbles
electrolysis
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106917A
Other languages
Japanese (ja)
Inventor
Takashi Aoki
孝志 青木
Kiyoshi Aoyama
清 青山
Tomio Kato
富雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Sangyo KK
Original Assignee
Ishii Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Sangyo KK filed Critical Ishii Sangyo KK
Priority to JP63106917A priority Critical patent/JPH01275788A/en
Publication of JPH01275788A publication Critical patent/JPH01275788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To carry out the electrolysis of water with superior electrolytic current efficiency by making a magnetic field function between electrodes at the time of electrolyzing water to form hydrogen and oxygen. CONSTITUTION:An anode 5 and a cathode 6 made of platinum are attached to a pipe 1 made of acrylic resin, etc., and are connected by respective lead wires to the anode and cathode of a D.C. power source, and then, water containing, e.g., about 18% of electrolytic substance, such as NaOH, is circulated through the pipe 1 by means of a pump at a flow velocity of V upward or downward. At this time, by disposing magnets 7, 8 in the above water- electrolyzing apparatus and applying magnetic field, O2 and H2 gases formed at respective surfaces of the anode 3 and the cathode 4 and adhering to the above surfaces are rapidly desorbed from the electrode surfaces, respectively, by the action of Lorentz's force and separately recovered into collection cells separated by a diaphragm. By this method, the detachment of the bubbles of O2 and H2 from the electrode surfaces is improved and electrolytic reaction can be accelerated with superior current efficiency.

Description

【発明の詳細な説明】 [目的コ σ ′−1 この発明は、磁場が作用する下で、電流を流し水を分解
させて水素と酸素を発生させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective σ'-1] The present invention relates to a method for generating hydrogen and oxygen by passing an electric current and decomposing water under the action of a magnetic field.

毘夫立肢韮 水にNa011やkollなどの電解質を加えて、水の
電気伝導度を上げておいて、その液中に電極を入れ、数
Vの低電圧を加えて、陽極側から酸素を、陰極側から水
素を発生させる方法が従来より実用に供されている。
Add electrolytes such as Na011 and Koll to Bifu's standing limbs water to increase the electrical conductivity of the water.An electrode is placed in the solution, and a low voltage of several V is applied to remove oxygen from the anode side. , a method of generating hydrogen from the cathode side has been put into practical use.

II<゛・ 。胛 電力コストの高い日本においては水を電解して水素を作
るよりも、今のところ石油や天然ガスから水素を作った
方が安くできる。
II<゛・. In Japan, where electricity costs are high, it is currently cheaper to produce hydrogen from oil or natural gas than by electrolyzing water.

しかし化石燃料の枯渇により石油や天然ガスなどが経済
的に成り立たなくなったとき、世界中の自動車はどんな
燃料を使って走るであろうか。そのとき水素はその有力
な代替候補となると考えられている。従っていかに効率
よく化石燃料以外のものから水素を多責に作るかという
ことが重要になる。
However, when fossil fuels such as oil and natural gas become economically unviable due to depletion of fossil fuels, what kind of fuel will cars around the world use to run? At that time, hydrogen is considered to be a promising alternative candidate. Therefore, it is important to find out how to efficiently produce hydrogen from sources other than fossil fuels.

一方現在、世界に目を転すると化石燃料の高価格時代に
なるにつれ、再び水電解法が注目され初めている。実際
、水力発電による安価な電力の得られる国々、例えばエ
ジプト、インド、ノルウェイ、カナダなどでは、極めて
大規模な新鋭水電解工場が続々と建設されつつある。こ
のように水電解による水素の販売が商業的に成り立って
いる。
On the other hand, as the world enters an era of high prices for fossil fuels, water electrolysis is once again attracting attention. In fact, extremely large-scale cutting-edge water electrolysis plants are being built one after another in countries where cheap electricity can be obtained from hydroelectric power generation, such as Egypt, India, Norway, and Canada. In this way, the sale of hydrogen through water electrolysis has become commercially viable.

電気エネルギーを水素という化学エネルギーにかえると
、電気では不可能であったエネルギーの貯蔵が可能とな
り、しかも可搬型の有用なエネルギーとなる。
By converting electrical energy into chemical energy called hydrogen, it becomes possible to store energy that was not possible with electricity, and it becomes a portable and useful form of energy.

このような背景で我々はもっと効率のよい水電解法を開
発しなければならない。言い換えれば従来の電解法は効
率の点てひとつ問題がある。
Against this background, we must develop a more efficient water electrolysis method. In other words, conventional electrolysis methods have one problem in terms of efficiency.

従来法では、電気分解によって発生した水素および酸素
が多くの気泡となって極表面を覆い、電気法導度を低下
させ、その部分の電気分解をさまたげ電力効率を低下さ
せる点がとくに問題である。
In the conventional method, a particular problem is that the hydrogen and oxygen generated by electrolysis form many bubbles that cover the extreme surface, lowering the electric conductivity and hindering electrolysis in that area, reducing power efficiency. .

そこで我々は、磁場を作用させることにより効率の上昇
が可能となる水の電気分解方法および装置を提供しよう
とするものである。
Therefore, we aim to provide a water electrolysis method and device that can increase efficiency by applying a magnetic field.

[(ル成コ il+、  、、′ −−ダの−1 第1図により説明すると、第1図(a)において容器(
またはバイブ)lにNa011などの電解質2を入れ、
電極3.4に結合した導線5.6を介して電圧をかけて
水を分解するときに磁石7.8により磁場を印加する。
[(Lesing coil il+, ,,' -1 of -da) To explain with reference to FIG. 1, in FIG.
Or put electrolyte 2 such as Na011 in vibrator)l,
A magnetic field is applied by a magnet 7.8 when a voltage is applied via a conductor 5.6 connected to the electrode 3.4 to split the water.

第1図(b)は第1図(a)の側面断面図である。第1
図では電極板面に垂直に磁場をかけている場合を示して
いるが、磁場をかける方向はこれに限定するものではな
い。また第1図では、水素と酸素を分離捕集するための
隔壁は簡単のために省略しであるが勿論隔壁をつけても
同じ効果が得られる。
FIG. 1(b) is a side sectional view of FIG. 1(a). 1st
Although the figure shows a case where a magnetic field is applied perpendicularly to the electrode plate surface, the direction in which the magnetic field is applied is not limited to this. Further, in FIG. 1, the partition wall for separating and collecting hydrogen and oxygen is omitted for simplicity, but the same effect can of course be obtained even if the partition wall is provided.

作■ 電解質層)αの電解M、流は物質移動の大きさに依存す
る。物質の移動の仕方は、(1)対流、(2)電気泳動
、(3)拡散、03種類がある。これらの流れに磁場が
作用するときローレンツ力rが働く。
■ Electrolyte layer) The electrolytic flow of α, M, depends on the magnitude of mass transfer. There are three types of methods for the movement of substances: (1) convection, (2) electrophoresis, and (3) diffusion. When a magnetic field acts on these flows, a Lorentz force r acts.

物質の電荷をq、速度をV、磁束密度をBとすると、 f =qVXB            (1)となる
If the charge of the substance is q, the velocity is V, and the magnetic flux density is B, then f = qVXB (1).

電解質溶液中の磁場によるローレンツ力は物質移動に変
化を与える(例えばF、Fujiwara and Y
The Lorentz force due to the magnetic field in the electrolyte solution changes the mass transfer (e.g. F, Fujiwara and Y
.

Llmezawa:“Enl+ancement of
 Polarographic Re−duction
 Currents by a 5tatic Mag
netic Field”TaranLa、 1972
. Vol、+9. pp、497−503. Per
ga−mon Press参照)ことは気泡が発生しな
い場合については知られている。この場合効率低下が報
告されている。しかし、電解が水素や酸素の気泡を発生
し電極表面をその気泡が覆うようなケースについては現
象が複雑になるため研究がなされていなかった。そこで
我々はそのようなケースである水電解への磁場効果をし
らべたところ、条件によフては、電力効率が大きくなる
ことを実験上見いだした。
Llmezawa: “Enl+ancement of
Polarographic Re-duction
Currents by a 5tatic Mag
netic Field"TaranLa, 1972
.. Vol, +9. pp, 497-503. Per
(see ga-mon Press) is known in the case where no bubbles are generated. A decrease in efficiency has been reported in this case. However, no research has been conducted on the case where electrolysis generates hydrogen or oxygen bubbles and the bubbles cover the electrode surface because the phenomenon becomes complicated. Therefore, we investigated the magnetic field effect on water electrolysis in such a case, and found experimentally that power efficiency increases depending on the conditions.

水の電解の場合、TL四裏表面泡の発生は避けられず、
これが大きな電気抵抗となって電力効率を低下させる。
In the case of water electrolysis, the generation of bubbles on the back surface of the TL is unavoidable.
This becomes a large electrical resistance and reduces power efficiency.

ところが磁場を印加すると上述のl流が(1)式による
力を受けるので、特に電極表面における拡散電流が影響
を受け、泡が電極表面から速やかに剥離する。このため
電気抵抗が減少し電圧効率が向上する。
However, when a magnetic field is applied, the above-mentioned l flow is subjected to a force according to equation (1), which particularly affects the diffusion current on the electrode surface, causing the bubbles to quickly peel off from the electrode surface. This reduces electrical resistance and improves voltage efficiency.

第1図に示す実験例では、アクリル樹脂(内径5 mm
X 30mm角)のバイブlの内面に二枚の白金電極板
(各10m10mmX203.4を対向するように接着
した。極板間隔は5III11である。アクリルバイブ
には18%のNa0IIの水溶液を入れ、ポンプにて下
から上へと流速■を与え溶液を循環させる。ポンプにて
流速を与えなくても泡の上昇により自然に流速は発生ず
るが、実験上流速をコントロールし流速依存性を導くた
めにポンプを使用した。これを第1図に示すように21
石の磁Fii7.8の間に挿入する。第2図は上下方向
の磁束密度の分布図である。この図から白金?Tfti
部分は磁束密度の勾配は殆んどないといってよい。
In the experimental example shown in Figure 1, acrylic resin (inner diameter 5 mm
Two platinum electrode plates (each 10 mm x 203.4 x 30 mm square) were adhered to the inner surface of a vibrator L so as to face each other. Circulate the solution by applying a flow rate from the bottom to the top with a pump. Even if the flow rate is not applied with a pump, the flow rate will naturally occur due to the rise of bubbles, but in order to control the upstream speed in the experiment and derive the flow rate dependence. A pump was used for 21 as shown in Figure 1.
Insert it between the stone magnet Fii7.8. FIG. 2 is a distribution diagram of magnetic flux density in the vertical direction. Platinum from this figure? Tfti
It can be said that there is almost no gradient of magnetic flux density in that part.

二枚の白金電極を通して溶液に流す電流は直流定電流電
源を用いて、ある一定電流に設定し、そのときの電極間
電圧をレコーダに記録する。電流を流すと水素と酸素の
泡が白金面に形成され、剥離して上昇する。 &!場を
作用させると、この泡の状態が大きく変わフてくる。第
3図は泡の状態の例を示している。第3図(a)は流速
が0.0137 m/sで分解電流2A一定として、磁
場をかけないときてあり、この電極に垂直の磁場をかけ
た場合が第3図(b)である。第3図(c)は流速がO
,OG? m/sて分解g流5A一定として、磁場をか
けないときてあり、この電極に垂直の磁場をかけた場合
が第3図(d)である。このように磁場をかけると電極
間が気泡でいっばいに満たされるようになる。
The current flowing through the solution through the two platinum electrodes is set to a certain constant current using a DC constant current power supply, and the voltage between the electrodes at that time is recorded on a recorder. When an electric current is applied, hydrogen and oxygen bubbles form on the platinum surface, separate, and rise. &! When a field is applied, the state of this bubble changes greatly. FIG. 3 shows an example of the state of bubbles. FIG. 3(a) shows the case where the flow velocity is 0.0137 m/s and the decomposition current is constant at 2A, and no magnetic field is applied, and FIG. 3(b) shows the case where a magnetic field perpendicular to this electrode is applied. Figure 3(c) shows that the flow velocity is O.
,OG? Figure 3(d) shows the case where a magnetic field is not applied, assuming that the resolved g flow is constant at 5A in m/s, and a magnetic field perpendicular to this electrode is applied. When a magnetic field is applied in this way, the space between the electrodes becomes filled with air bubbles all at once.

電極の数cm上てこの泡を多量にふくんだ溶液バルクの
電気抵抗を交流法(分解をさけるため交流を用いる)に
より測定すると泡の量が多くなるにつれ抵抗値は増大す
ることが4つかる。
When measuring the electrical resistance of a solution bulk containing a large amount of bubbles several centimeters above the electrode using the alternating current method (using alternating current to avoid decomposition), it is found that the resistance value increases as the amount of bubbles increases. .

第4図は分解電流■が3A一定とした場合のレコーダに
記録された電圧変化である。磁場が強くなるに従い電圧
のりプルが大きくなる傾向が現われている。これは泡が
磁場により変動するためである。また第4図では磁場が
大きくなるにつれて電圧が減少する効果(定電流なので
電力は減少する効果となる)が現われている。
FIG. 4 shows the voltage changes recorded on the recorder when the decomposition current (2) was constant at 3A. There is a tendency for the voltage ripple to increase as the magnetic field becomes stronger. This is because the bubbles fluctuate due to the magnetic field. Furthermore, in FIG. 4, there is an effect that the voltage decreases as the magnetic field increases (since it is a constant current, the electric power decreases).

磁場をかけると、電極間が第3図に示すように泡でみた
されて溶液バルクの抵抗値が増大するのにも拘らずこの
ように電圧が減り電流が流れやすくなるのは、極表面に
おける抵抗が磁場により低下したものと考えられる。
When a magnetic field is applied, the space between the electrodes is filled with bubbles as shown in Figure 3, and the resistance value of the bulk of the solution increases.However, the voltage decreases and current flows more easily due to the fact that the electrodes are filled with bubbles as shown in Figure 3. It is thought that the resistance was reduced by the magnetic field.

第5図と第6図はそれぞれ流速V = 0.022m/
sとV = 0.007m/sのときの分解電圧変化率
を分解電流をパラメータとして示したものである。分解
電圧変化率は分解電流が大きい(0,067m/s)と
きに最大のく一8%)変化が得られる。第7図と第8図
はそれぞれ流速V = 0.022m/sとV = 0
.067m/Sのときの電力効率変化率を分解電流をパ
ラメータとして示したものである0分解電流が太きく 
(5A)流速が大きい(0,067m/s)ときに最大
の変化(+7%)が得られている。
Figures 5 and 6 show flow velocity V = 0.022m/, respectively.
The rate of change in decomposition voltage when s and V = 0.007 m/s is shown using decomposition current as a parameter. The maximum decomposition voltage change rate (8%) is obtained when the decomposition current is large (0,067 m/s). Figures 7 and 8 show flow velocity V = 0.022 m/s and V = 0, respectively.
.. The 0 decomposition current, which shows the power efficiency change rate at 067 m/s using the decomposition current as a parameter, is large.
(5A) The maximum change (+7%) is obtained when the flow velocity is high (0,067 m/s).

第6図で分解電流がIAのとき、分解電圧が少し増加し
ているのにもかかわらず、そのときの電力効率(第8図
参照)が大きくなっているのは、電流効率が大きくなっ
ている(実際、定電流下で一定量の水素と酸素をつくる
のに要する時間が短縮するデータが得られている)から
である。
In Figure 6, when the decomposition current is IA, the power efficiency (see Figure 8) increases even though the decomposition voltage increases slightly, because the current efficiency increases. (In fact, data has been obtained that shows that the time required to produce a certain amount of hydrogen and oxygen under constant current is shortened).

V = 0.022m/s程度の流速はポンプで与えな
くても、泡の上昇により自然に発生ずる。流速は■=0
.022m/s程度から0.11 m/s程度まで調べ
たが流速が大きいほど電力効率変化率は大きくなる傾向
があった。
A flow velocity of approximately V = 0.022 m/s is generated naturally by the rise of bubbles without being applied by a pump. The flow velocity is ■=0
.. The results were investigated from about 0.022 m/s to about 0.11 m/s, and there was a tendency for the rate of change in power efficiency to increase as the flow velocity increased.

第1図では電極板面に垂直に磁場をかけている場合とは
いえ、電流の方向と磁場の方向が必ずしも同一とはなら
ないことに注意すべきである。電流の方向は、電極の縁
部分での曲がり、上方への流速、渦流などにより磁場と
は異なった方向になり、従ってローレンツ力が働くこと
になるのである。第11図にこの関係を示した。
Although FIG. 1 shows a case where a magnetic field is applied perpendicular to the electrode plate surface, it should be noted that the direction of the current and the direction of the magnetic field are not necessarily the same. The direction of the current is different from that of the magnetic field due to bending at the edge of the electrode, upward flow velocity, eddies, etc., and thus the Lorentz force is exerted. FIG. 11 shows this relationship.

第11図(a)でポンプによる流速Vは矢印の方向に与
えられているので、電流に関係する物質移動の方向はv
lの方向になる。従って図に示す方向にローレンツ力f
が働く。第11図(b)は(a)の上面断面図である。
In Figure 11(a), the flow velocity V due to the pump is given in the direction of the arrow, so the direction of mass transfer related to the current is v
It will be in the direction of l. Therefore, the Lorentz force f in the direction shown in the figure
works. FIG. 11(b) is a top sectional view of FIG. 11(a).

TrL極の縁部分でのローレンツ力fの方向は図に示す
とうりである。結局(a)、(b)を総合すると第11
図(C)のような力が働くことになる。これは上方への
流速■とぶつかり渦流や乱流を生ずることになって渦も
ぐらぐらと動くことになる。
The direction of the Lorentz force f at the edge of the TrL pole is as shown in the figure. In the end, combining (a) and (b), the 11th
The force shown in diagram (C) will work. This collides with the upward flow velocity ■, creating a vortex or turbulent flow, causing the vortex to move around.

第9図は電極の表面に平行な方向に磁場をかけた図であ
り、(IJ)は(a)の側面断面図である。この場合の
磁場による泡の変化を第10図に示した。
FIG. 9 is a diagram in which a magnetic field is applied in a direction parallel to the surface of the electrode, and (IJ) is a side sectional view of (a). Figure 10 shows the changes in the bubbles due to the magnetic field in this case.

(a)は磁場がない場合、(b)は磁場を掛けた場合で
ある。どちらも分解Tri流5A、流速0.056m/
sの場合である。
(a) is when there is no magnetic field, and (b) is when a magnetic field is applied. Both are decomposition Tri flow 5A, flow rate 0.056m/
This is the case for s.

この場合のローレンツ力fは第12図に示す。第12図
(a)は側面断面図であり、流速は■の方向(上方)に
流れているので電流の方向Viは図に示すとうり斜め上
方とな゛る。従って力fは斜め上方に向かう。第12図
(b)は第12図(a)の平面図である。力fは全て下
方へ働くことになる。従って、(a)、(b)を総合す
ると第12図(c) 、(cl)のようになる。この流
れは流速Vとぶつかるので乱流や渦流が発生することに
なる。
The Lorentz force f in this case is shown in FIG. FIG. 12(a) is a side cross-sectional view, and since the flow velocity is flowing in the direction (i.e., upward), the current direction Vi is obliquely upward as shown in the figure. Therefore, the force f is directed diagonally upward. FIG. 12(b) is a plan view of FIG. 12(a). All of the force f will work downward. Therefore, if (a) and (b) are combined, the result will be as shown in FIG. 12 (c) and (cl). Since this flow collides with the flow velocity V, turbulent flow and vortex flow occur.

上述のマグネトハイドロダイナミック効果が、表面電流
を変え(これが即ち泡の剥離、離脱運動などの状態変化
となっているが)、結局効率に影響を与えることになる
。なお第2図に示すように磁気勾配が存在しないところ
で行なっているので反磁性体の水素や常磁性体の酸素へ
の勾配磁場による反発または吸引の力によって水素・酸
素泡の状態の変化が起こるのではないことがわかる。第
3図(d)に示すように水素も酸素もともに電極よりも
下方へ移動する(容器の中間に隔壁を設けて水素と酸素
力袷昆ざらないようにしてから磁場をかけても同じ<7
C泡は共に下方へ移動する)ことからもこのことがいえ
る。
The above-mentioned magnetohydrodynamic effect changes the surface current (which results in a state change such as bubble separation, detachment movement, etc.), which ultimately affects the efficiency. As shown in Figure 2, since this is carried out in the absence of a magnetic gradient, the state of the hydrogen and oxygen bubbles changes due to the force of repulsion or attraction due to the gradient magnetic field on hydrogen in the diamagnetic material and oxygen in the paramagnetic material. It turns out that this is not the case. As shown in Figure 3(d), both hydrogen and oxygen move downwards from the electrode (even if a magnetic field is applied after installing a partition wall in the middle of the container to prevent the hydrogen and oxygen from colliding) 7
This can also be said from the fact that both the C bubbles move downward.

以上は磁気勾配がない場所での実験結果であるが磁気勾
配が存在する場所で行なってもほぼ同様の結果となる。
The above is an experimental result in a place where there is no magnetic gradient, but almost the same results are obtained even if the experiment is conducted in a place where a magnetic gradient exists.

従って磁場の一様性にこだわる必要は全くない。また電
極は白金での実験を示したが、他の種類のものを用いて
もよいことはいうまでもない。
Therefore, there is no need to be particular about the uniformity of the magnetic field. Further, although the experiment was shown using platinum as the electrode, it goes without saying that other types of electrodes may be used.

[効果] 本発明の磁場を作用させた水の電解方法および装置は、
以下に記す効果を有する。
[Effects] The method and device for electrolyzing water using a magnetic field of the present invention have the following effects:
It has the following effects.

(1)磁場を作用させることにより、数%の効率向上が
得られる。
(1) By applying a magnetic field, efficiency can be improved by several percent.

(2)常温超伝導時代になると電力の消費がなくても強
力なる磁場が得られるようになるので、その磁場を用い
て効率のよい水分解が可能となる。
(2) In the era of room-temperature superconductivity, it will be possible to obtain a strong magnetic field without consuming electricity, making it possible to use that magnetic field to efficiently split water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の水分解方法を説明する図、第2図は磁
束密度のZ方向(上下方向)の分布を示す図、第3図は
磁場による泡の状態変化を示す図、第4図は定電流下の
電圧変化を示す図、第5図および第6図は定電流下の電
圧変化率の磁束密度依存性を示す図、第7図および第8
図は電力効率の磁束密度依存性を示す図、第9図は水分
解方法を説明する図、第1O図は第9図の場合の水素・
酸素の泡の状態を示す図、第11図は磁場が電極表面に
垂直方向に働いているとき、マグネトハイドロダイナミ
ク効果により、電流と泡が受ける変化を示す図、第12
図は磁場が電極表面に平行方向に働いているとき、マグ
ネトハイドロダイナミク効果により、電流と泡が受ける
変化を示す図である。 l・・・容器(またはバイブ)、2・・・電解質溶液、
3・・・電極、4・・・電極、5・・・導線、6・・・
導線、7・・・磁石、8・・・磁石、9・・・容器(ま
たはバイブ)、lO・・・容器(またはバイブ)、12
・・・電解質溶液、13・・・導線、I4・・・電極、
15・・・泡、16・・・泡、17・・・容器(または
バイブ)、18・・・電解費消)α、19・・・電極、
20・・・容器(またはバイブ)、21・・・磁石、2
2・・・導線、23・・・泡。 特許出願人  石井産業株式会社 代表者 石井良平 第1図(a) ¥!J1図(b) !!2 図 Z (mm) 第3図 第3[5i1 第4図 時間(sec) 第5図 第6図 分解電圧の変化率(’/、) 第7圓 電力効率変化率(@ム) 第8図 電力効圭変イヒ孝(’/、) 第9図 (a)(b) 第10図 B、   0Gauss         B=104
00Gauss1=   5A           
 (=   5Av =0.056 m/s     
     v = 0.056m/5(a)     
        (b)第11図 (a) (b)           (C)
Figure 1 is a diagram explaining the water splitting method of the present invention, Figure 2 is a diagram showing the distribution of magnetic flux density in the Z direction (vertical direction), Figure 3 is a diagram showing changes in the state of bubbles due to the magnetic field, and Figure 4 is a diagram showing the distribution of magnetic flux density in the Z direction (vertical direction). The figure shows the voltage change under constant current, Figures 5 and 6 show the dependence of the voltage change rate on magnetic flux density under constant current, and Figures 7 and 8
The figure shows the dependence of power efficiency on magnetic flux density, Figure 9 is a diagram explaining the water splitting method, and Figure 1O is a diagram showing the dependence of power efficiency on magnetic flux density.
Figure 11 is a diagram showing the state of oxygen bubbles, and Figure 12 is a diagram showing the changes that the current and bubbles undergo due to the magnetohydrodynamic effect when a magnetic field is acting perpendicular to the electrode surface.
The figure shows the changes that current and bubbles undergo due to the magnetohydrodynamic effect when a magnetic field is applied in a direction parallel to the electrode surface. l... Container (or vibrator), 2... Electrolyte solution,
3... Electrode, 4... Electrode, 5... Conductor, 6...
Conductive wire, 7... Magnet, 8... Magnet, 9... Container (or vibe), lO... Container (or vibe), 12
...Electrolyte solution, 13...Conducting wire, I4...Electrode,
15... Bubbles, 16... Bubbles, 17... Container (or vibrator), 18... Electrolytic consumption) α, 19... Electrode,
20... Container (or vibrator), 21... Magnet, 2
2... Conductor wire, 23... Bubbles. Patent applicant: Ishii Sangyo Co., Ltd. Representative: Ryohei Ishii Figure 1 (a) ¥! J1 figure (b)! ! 2 Figure Z (mm) Figure 3 Figure 3 [5i1 Figure 4 Time (sec) Figure 5 Figure 6 Rate of change in decomposition voltage ('/,) Figure 7 Rate of change in power efficiency (@mm) Figure 8 Electric power efficiency ('/,) Figure 9 (a) (b) Figure 10 B, 0 Gauss B = 104
00Gauss1=5A
(= 5Av = 0.056 m/s
v = 0.056m/5(a)
(b) Figure 11 (a) (b) (C)

Claims (1)

【特許請求の範囲】 (1)水の電気分解において電極間に磁場を作用させる
構造を有する水の電気分解方法。(2)水を下から上に
流すようにした特許請求範囲第1項記載の水の電気分解
方法。 (3)水の電気分解において電極間に磁場を作用させる
構造を有する水の電気分解装置。(4)水を下から上に
流すようにした特許請求範囲第3項記載の水の電気分解
装置。
[Scope of Claims] (1) A water electrolysis method having a structure in which a magnetic field is applied between electrodes during water electrolysis. (2) A method for electrolyzing water according to claim 1, in which water is caused to flow from bottom to top. (3) A water electrolyzer having a structure that applies a magnetic field between electrodes during water electrolysis. (4) The water electrolyzer according to claim 3, in which water flows from the bottom to the top.
JP63106917A 1988-04-28 1988-04-28 Method and apparatus for electrolysis of water by action of magnetic field Pending JPH01275788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106917A JPH01275788A (en) 1988-04-28 1988-04-28 Method and apparatus for electrolysis of water by action of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106917A JPH01275788A (en) 1988-04-28 1988-04-28 Method and apparatus for electrolysis of water by action of magnetic field

Publications (1)

Publication Number Publication Date
JPH01275788A true JPH01275788A (en) 1989-11-06

Family

ID=14445778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106917A Pending JPH01275788A (en) 1988-04-28 1988-04-28 Method and apparatus for electrolysis of water by action of magnetic field

Country Status (1)

Country Link
JP (1) JPH01275788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
JP2002269633A (en) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Hydrogen automatic vending device
JP2018090882A (en) * 2016-12-07 2018-06-14 武次 廣田 Method for producing hydrogen
CN109913894A (en) * 2019-05-05 2019-06-21 西京学院 A kind of corrosion resistance hydrogen-precipitating electrode and preparation method thereof
JP2019194349A (en) * 2018-05-01 2019-11-07 国立大学法人 名古屋工業大学 Electrolytic solution for water electrolysis, water electrolysis device and water electrolysis method employing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
JP2002269633A (en) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Hydrogen automatic vending device
JP2018090882A (en) * 2016-12-07 2018-06-14 武次 廣田 Method for producing hydrogen
JP2019194349A (en) * 2018-05-01 2019-11-07 国立大学法人 名古屋工業大学 Electrolytic solution for water electrolysis, water electrolysis device and water electrolysis method employing the same
CN109913894A (en) * 2019-05-05 2019-06-21 西京学院 A kind of corrosion resistance hydrogen-precipitating electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
Lin et al. The effect of magnetic force on hydrogen production efficiency in water electrolysis
DK1999767T3 (en) energy collection
Nozik et al. Significance of the Lattice Contribution to Mössbauer Quadrupole Splitting: Re-Evaluation of the Fe 5 7 m Nuclear Quadrupole Moment
TW487684B (en) Magnetic treating apparatus of water
CN110498484A (en) A kind of electrochemistry aeration dechlorination device and method
Lin et al. Effect of Lorentz force on hydrogen production in water electrolysis employing multielectrodes
JPH01275788A (en) Method and apparatus for electrolysis of water by action of magnetic field
Liu et al. Water electrolysis using plate electrodes in an electrode-paralleled non-uniform magnetic field
CN106048645A (en) Method for improving oxyhydrogen machine electric energy efficiency by external magnetic field
JP2004307878A (en) Device for generating hydrogen and oxygen
US7410557B2 (en) Hydrogen activating apparatus
CN115642581B (en) Light storage direct current power supply system for electroplating bath
CN217112169U (en) Portable quick biomacromolecule magnetoelectric double-acting separation equipment
Lopes et al. E-MRS/MRS bilateral energy conference innovative technological configurations of photoelectrochemical cells
Nair et al. Design and Development of an Efficient Electrolyser for Low-Cost Hydrogen Production
Mazloomi et al. Retarding forces cancellation in electrolyte solutions-an electrical approach
Zaichenko et al. CREATION OF FORCED CONVECTION AT WATER ELECTROLYSIS BY MEANS OF EXTERNAL MAGNETIC FIELD.
GB2563478A (en) A device and variants for electroylsts
RU2341332C1 (en) Method for particles separation according to electric conductivity and device for its realisation
KR20240056518A (en) Electromechanical hydrogen generator
Watanabe et al. The Magnetic Field Effects on Electrolysis. II. The Anodic Surface Oxidation of Gold
Kusakabe et al. Effect of electrolyte properties on current efficiency of bipolar packed bed electrodes
Han et al. Physical basis of multi-energy coupling-driven water oxidation
EP4416316A1 (en) Method and device for generating hydrogen
Uechi et al. Magnetic field effects on anodic oxidation of potassium iodide