JP2019194349A - Electrolytic solution for water electrolysis, water electrolysis device and water electrolysis method employing the same - Google Patents

Electrolytic solution for water electrolysis, water electrolysis device and water electrolysis method employing the same Download PDF

Info

Publication number
JP2019194349A
JP2019194349A JP2018087957A JP2018087957A JP2019194349A JP 2019194349 A JP2019194349 A JP 2019194349A JP 2018087957 A JP2018087957 A JP 2018087957A JP 2018087957 A JP2018087957 A JP 2018087957A JP 2019194349 A JP2019194349 A JP 2019194349A
Authority
JP
Japan
Prior art keywords
water electrolysis
electrode
magnetic
magnetic field
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087957A
Other languages
Japanese (ja)
Other versions
JP7114054B2 (en
Inventor
悠宏 岩本
Yuhiro Iwamoto
悠宏 岩本
康司 井門
Yasushi Imon
康司 井門
繁 高木
Shigeru Takagi
繁 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2018087957A priority Critical patent/JP7114054B2/en
Publication of JP2019194349A publication Critical patent/JP2019194349A/en
Application granted granted Critical
Publication of JP7114054B2 publication Critical patent/JP7114054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

To provide an electrolytic solution, a water electrolysis device and a water electrolysis method, capable of improving the efficiency of producing hydrogen by water electrolysis by virtue of an effect of magnetic buoyancy even in a micro-gravitational field.SOLUTION: An electrolytic solution 3 for water electrolysis is characterized by containing a water-based magnetic nano fluid that contains an electrolyte and magnetic nanoparticles. A water electrolysis device 1 is characterized by comprising a power source 2, the electrolytic solution 3 for water electrolysis that contains a water based magnetic nano fluid containing an electrolyte and magnetic nanoparticles, a pair of electrodes 4 each constituting an anode and a cathode respectively, a magnetic field applying means 5 that applies a non-uniform magnetic field at least to one electrode of the pair of electrodes 4, and a container 6 that stores the electrolytic solution 3 for water electrolysis.SELECTED DRAWING: Figure 1

Description

本発明は、磁性ナノ粒子を含む水電解用電解液、それを用いた水電解装置及び水電解方法に関する。 The present invention relates to an electrolytic solution for water electrolysis containing magnetic nanoparticles, a water electrolysis apparatus and a water electrolysis method using the same.

燃料電池自動車を代表とした水素エネルギーを使用した製品が実用化され、水素エネルギーの需要拡大に伴い水素製造の効率化が重要視されて、製造過程でCOを排出せず高純度の水素が得られる水電解が注目されている(非特許文献1)。 Products using hydrogen energy fuel cell vehicle and the representative is commercialized, efficient hydrogen production due to the growing demand for hydrogen energy is important, the high-purity hydrogen without discharging the CO 2 in the manufacturing process The resulting water electrolysis has attracted attention (Non-Patent Document 1).

水電解では生成した水素と酸素が電極に付着して抵抗値が増加し、電解量が抑制されるので、非特許文献2ではMHD対流を用いた電解が記載されている。また、特許文献1には、電解質に少量の磁性ナノ流体を用い、外部磁力により該磁性ナノ流体をガス不透過性絶縁シール部に沿って移動させる燃料電池の多孔質ガス拡散電極シール部のガス不透過性等に関する装置等が記載されている。 In water electrolysis, generated hydrogen and oxygen adhere to the electrode and the resistance value increases, so that the amount of electrolysis is suppressed. Therefore, Non-Patent Document 2 describes electrolysis using MHD convection. Patent Document 1 discloses a gas in a porous gas diffusion electrode seal portion of a fuel cell in which a small amount of magnetic nanofluid is used as an electrolyte and the magnetic nanofluid is moved along a gas-impermeable insulating seal portion by an external magnetic force. An apparatus related to impermeability is described.

しかしながら、水ベース磁性ナノ流体を利用して水電解用電解液とする開示はなかった。水電解に用いる電極については、例えばリチウムイオン電池では効率向上のため、電解表面積が大きい多孔質電極を使用するが、水電解では発生した気泡(酸素や水素)が多孔質電極内部に拘束されるため、多孔質電極を使えず、前記電解水による水素製造の効率化が困難になるという問題があった。 However, there has been no disclosure of using a water-based magnetic nanofluid as an electrolytic solution for water electrolysis. As for the electrode used for water electrolysis, for example, a lithium ion battery uses a porous electrode having a large electrolytic surface area in order to improve efficiency. In water electrolysis, bubbles (oxygen and hydrogen) generated are constrained inside the porous electrode. Therefore, there is a problem that the porous electrode cannot be used and it is difficult to increase the efficiency of hydrogen production by the electrolyzed water.

一方、宇宙開発の対象である月に関わる技術は今後も注目を集め、例えば推薬生成技術や酸素生成システムに関連して、水電解促進技術は重要性を増してくると思われるが、特に宇宙空間のように微小重力な場では、前述した気泡の拘束が顕著になることによって、その困難性が顕著になるといった問題があった。 On the other hand, the technology related to the moon, which is the target of space development, will continue to attract attention in the future.For example, water electrolysis promotion technology is expected to become more important in relation to propellant generation technology and oxygen generation system, In a microgravity field such as outer space, there is a problem in that the difficulty becomes remarkable due to the above-mentioned restriction of bubbles.

特開2000−323160号広報JP 2000-323160 A

吉野 正人,再生エネルギーを活用する水素によるエネルギー貯蔵・供給システム,Electrochemistry Vol.84,pp620-625,2016Masato Yoshino, an energy storage and supply system using hydrogen that uses renewable energy, Electrochemistry Vol. 84, pp620-625, 2016 H.Matsushima,T.Iida,and Y.Fukunaka,“Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field,” J.Solid State Electrochem,vol.16,no.2,pp.617−623,2012H. Matsushima, T .; Iida, and Y. Fukunaka, “Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field,” J. Solid State Electrochem, vol. 16, no. 2, pp. 617-623, 2012 H.Matsushima,T.Nishida,Y.Konishi,Y.Fukunaka,Y.Ito,K.Kuribayashi“Water electrolysis under microgravity Part 1.Experimental technique” Electrochimica Acta(2003)4119-4125H. Matsushima, T .; Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, K. Kuribayashi “Water electrolysis under microgravity Part 1. Experimental technique” Electrochimica Acta (2003) 4119-4125

本発明の課題は上記のような従来の問題を解決し、微小重力な場であっても磁気浮力の作用により、水電解によって水素製造が効率化できる電解液、水電解装置及び水電解方法を提供することである。 An object of the present invention is to solve the conventional problems as described above, and to provide an electrolytic solution, a water electrolysis apparatus, and a water electrolysis method capable of increasing the efficiency of hydrogen production by water electrolysis by the action of magnetic buoyancy even in a microgravity field Is to provide.

(1)電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含むことを特徴とする水電解用電解液である。
(2)前記電解質は中性塩であることを特徴とする(1)に記載の水電解用電解液(以下、「電解液」と言う場合がある)である。
(3)電源と、電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含む水電解用電解液と、陽極及び陰極を構成する一対の電極と、前記一対の電極の少なくても片方の電極に非一様磁場を及ぼす磁場印加手段と、前記水電解用電解液を貯留する容器と、を備えることを特徴とする水電解装置である。
なお、水電解装置が機能するためには、一対の電極と電源とは電気的に接続されていることが必要である。
(4)前記磁場印加手段は磁石又は電磁コイルであることを特徴とする(3)に記載の水電解装置である。
(5)前記一対の電極は、多孔質電極であることを特徴とする(3)又は(4)に記載の水電解装置である。
(6)前記多孔質電極は海綿状の電極であることを特徴とする(5)に記載の水電解装置である。
(7)電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含む水電解用電解液と、電源と、陽極及び陰極を構成する一対の電極と、前記一対の電極の少なくても片方の電極に非一様磁場を及ぼす磁場印加手段と、前記水電解用電解液を貯留する容器と、を備える水電解装置に通電して少なくとも水素を得ることを特徴とする水電解方法である。
(8)前記一対の電極は、鉛直方向に対して15°〜45°の傾斜をなしていることを特徴とする(7)に記載の水電解方法である。
(1) An electrolytic solution for water electrolysis comprising a water-based magnetic nanofluid containing an electrolyte and magnetic nanoparticles.
(2) The electrolyte for water electrolysis according to (1) (hereinafter sometimes referred to as “electrolyte”), wherein the electrolyte is a neutral salt.
(3) a power source, an electrolytic solution for water electrolysis containing a water-based magnetic nanofluid containing an electrolyte and magnetic nanoparticles, a pair of electrodes constituting an anode and a cathode, and at least one of the pair of electrodes A water electrolysis apparatus comprising: a magnetic field application unit that applies a non-uniform magnetic field; and a container that stores the electrolytic solution for water electrolysis.
In order for the water electrolysis apparatus to function, it is necessary that the pair of electrodes and the power source are electrically connected.
(4) The water electrolysis apparatus according to (3), wherein the magnetic field applying means is a magnet or an electromagnetic coil.
(5) The water electrolysis apparatus according to (3) or (4), wherein the pair of electrodes is a porous electrode.
(6) The water electrolysis apparatus according to (5), wherein the porous electrode is a sponge-like electrode.
(7) an electrolytic solution for water electrolysis containing a water-based magnetic nanofluid containing an electrolyte and magnetic nanoparticles, a power source, a pair of electrodes constituting an anode and a cathode, and at least one of the pair of electrodes A water electrolysis method characterized in that at least hydrogen is obtained by energizing a water electrolysis device comprising a magnetic field applying means for applying a non-uniform magnetic field and a container for storing the water electrolysis electrolyte.
(8) The water electrolysis method according to (7), wherein the pair of electrodes has an inclination of 15 ° to 45 ° with respect to the vertical direction.

本発明によれば、水ベース磁性ナノ流体を利用して水電解用電解液とすることができ、微小重力な場であっても磁気浮力の作用により、効率よく水素を製造することができる。 According to the present invention, a water-based magnetic nanofluid can be used to form an electrolytic solution for water electrolysis, and hydrogen can be efficiently produced by the action of magnetic buoyancy even in a microgravity field.

本発明の一つの実施の形態である水電解装置と、陰極及び陽極における磁気排除効果の説明を模式的に示す図である。It is a figure which shows typically the description of the magnetic exclusion effect in the water electrolysis apparatus which is one embodiment of this invention, and a cathode and an anode. 水電解によって発生した気泡(水素、酸素)が電極(陰極、陽極)に付着した状態であって(A)重力環境下、(B)微小重力環境下での状態を、それぞれ示す図である。It is a figure which shows the state (A) under a gravitational environment and (B) under the microgravity environment in a state where bubbles (hydrogen, oxygen) generated by water electrolysis are attached to an electrode (cathode, anode). 水電解によって発生した気泡について(A)静止系、(B)MDH対流、(C)磁気浮力での状態を、それぞれ示す図である。It is a figure which shows the state in (A) static system, (B) MDH convection, and (C) magnetic buoyancy about the bubble produced | generated by water electrolysis. 水電解によって発生した水素について(A)陰極すなわち浮力のみ、(B)磁石による非一様磁場を受けた陰極すなわち浮力と磁気排除効果による磁気浮力を受けた水素の状態を、それぞれ模式的に示す図である。Regarding hydrogen generated by water electrolysis, (A) only the cathode, that is, buoyancy, (B) the state of the cathode that received a non-uniform magnetic field by the magnet, that is, buoyancy and the state of hydrogen that received magnetic buoyancy due to the magnetic exclusion effect, FIG. (A)電解液である磁性ナノ流体に磁場、(B)気泡が発生した一対の電極に磁場が作用したときの気泡の状態を、それぞれ模式的に示す図である。(A) It is a figure which shows typically the state of a bubble when a magnetic field acts on a magnetic nanofluid which is electrolyte solution, and a magnetic field acts on a pair of electrode which (B) bubble generate | occur | produced. 多孔質電極において発生した気泡について(A)微小重力環境下(1/6G)、(B)微小重力環境下(1/6G)で磁気排除効果が作用したときの状態を、それぞれ模式的に示す図である。About the bubble which generate | occur | produced in the porous electrode, the state when a magnetic exclusion effect acts in (A) microgravity environment (1 / 6G) and (B) microgravity environment (1 / 6G) is each shown typically. FIG. 実施例1〜6(電解質が硫酸ナトリウムである水ベース磁性ナノ流体)、比較例1の室温における液状の外観を示す図である(3か月前後)。It is a figure which shows the liquid appearance at the room temperature of Examples 1-6 (water-based magnetic nanofluid whose electrolyte is sodium sulfate) and Comparative Example 1 (around 3 months). 水の電解量を測定する実験装置を模式的に示す図である。It is a figure which shows typically the experimental apparatus which measures the amount of electrolysis of water. 図8の実験装置を構成する電解セルを示す図である。It is a figure which shows the electrolysis cell which comprises the experimental apparatus of FIG. (A)電解液が入った電解セルに磁場を作用させる磁石(ネオジム磁石)を配した装置部分、(B)その装置部分への印加電圧のパターン、(C)磁石近傍空間領域における磁場強度の状態を、それぞれ示す図である。(A) A device part in which a magnet (neodymium magnet) for applying a magnetic field to an electrolytic cell containing an electrolytic solution is disposed, (B) a pattern of applied voltage to the device part, (C) a magnetic field intensity in a space region near the magnet It is a figure which shows a state, respectively. 図10のL=7、9、11、13mm及び無磁場の場合における電流値i[A/cm]と時間経過t[s]の関係を示す図である。It is a figure which shows the relationship between the electric current value i [A / cm < 2 >] and time passage t [s] in the case of L = 7, 9, 11, 13 mm of FIG. 図11について、電流値を時間積分して総電荷量の時間経過を算出した総電荷量と時間応答との関係を示す図である。FIG. 12 is a diagram illustrating a relationship between a total charge amount and a time response in which a current value is integrated with respect to time and a time course of the total charge amount is calculated. 図9の電解セルにおいて電極に海綿状の電極を使用した場合を、模式的に示す図である。It is a figure which shows typically the case where a sponge-like electrode is used for an electrode in the electrolytic cell of FIG. 図13の模式図の実際のものを斜視的に示す図である。It is a figure which shows the actual thing of the schematic diagram of FIG. 海綿状の電極と、海綿状の電極において発生した気泡について(A)電解液に対流が作用したとき、(B)磁気浮力が作用したときの気泡の状態を、それぞれ示す図である。It is a figure which shows the state of a bubble when a convection acts on (A) electrolyte solution about the sponge-like electrode and the bubble which generate | occur | produced in the sponge-like electrode, respectively (B) when a magnetic buoyancy acts. 図13に示す実験装置を用いた水の電解において、時間経過に対する電流値について、電解液が実施例3で有磁場である場合と、電解液が水で無磁場である場合との差を示した図である。In the electrolysis of water using the experimental apparatus shown in FIG. 13, regarding the current value with respect to time, the difference between the case where the electrolyte is a magnetic field in Example 3 and the case where the electrolyte is water and no magnetic field is shown. It is a figure.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

磁性ナノ粒子を含む水ベース磁性ナノ流体は、水に鉄粉粒子等の磁性ナノ粒子と界面活性剤が分散された流体である。本発明では、その水ベース磁性ナノ流体を水電解用電解液として用いるために、電解質を含有させて電気伝導度を増加させている。
電解質としては、電気伝導性が高く、廃棄処理が容易であること、また、中性であるため、磁性ナノ粒子と磁性ナノ粒子に吸着している界面活性剤との結合を破壊するおそれがないことの観点から、中性塩が好ましく用いられる。中性塩としては、硫酸ナトリウム、硝酸カリウムなどが好ましい。
A water-based magnetic nanofluid containing magnetic nanoparticles is a fluid in which magnetic nanoparticles such as iron powder particles and a surfactant are dispersed in water. In the present invention, in order to use the water-based magnetic nanofluid as an electrolytic solution for water electrolysis, an electrolyte is contained to increase electrical conductivity.
The electrolyte has high electrical conductivity, is easy to dispose of, and is neutral, so there is no risk of breaking the bond between the magnetic nanoparticles and the surfactant adsorbed on the magnetic nanoparticles. From this viewpoint, a neutral salt is preferably used. As the neutral salt, sodium sulfate, potassium nitrate and the like are preferable.

図1に示したように、水電解装置(1)は、電源(2)と、水電解用電解液(3)と、陽極及び陰極を構成する一対の電極(4)と、一対の電極(4)に非一様磁場を及ぼす磁場印加手段(5)と、水電解用電解液(3)を貯留する容器(6)を備えて構成されている。ここで、水電解用電解液(3)は、電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含んでいる。 As shown in FIG. 1, the water electrolysis apparatus (1) includes a power source (2), an electrolytic solution for water electrolysis (3), a pair of electrodes (4) constituting an anode and a cathode, and a pair of electrodes ( 4) includes a magnetic field applying means (5) for applying a non-uniform magnetic field and a container (6) for storing the electrolytic solution (3) for water electrolysis. Here, the electrolytic solution (3) for water electrolysis contains a water-based magnetic nanofluid containing an electrolyte and magnetic nanoparticles.

磁場印加手段(5)としては、例えば磁石や電磁コイルを使用することができる。電磁コイルを使用すると、通電する電流を調整することで非一様磁場の大きさを制御することができ、任意の電解量に調整することが可能となる。非一様磁場の大きさとしては実現性の観点から、4T以下が好ましく、経済的、効率的な印加の観点から、50mT〜350mTが好ましい。 As the magnetic field applying means (5), for example, a magnet or an electromagnetic coil can be used. When the electromagnetic coil is used, the magnitude of the non-uniform magnetic field can be controlled by adjusting the current to be energized, and the amount of electrolysis can be adjusted to an arbitrary amount. The magnitude of the non-uniform magnetic field is preferably 4T or less from the viewpoint of feasibility, and is preferably 50 mT to 350 mT from the viewpoint of economical and efficient application.

磁場印加手段(5)が配置される場所は、一対の電極(4)の少なくても片方に、非一様磁場による磁場勾配が効率よく作用できる位置である。すなわち磁場勾配がなるべく大きい位置に磁場印加手段(5)は配置されるべきである。そして、磁場印加手段(5)は、図1のように、両方の電極にそれぞれ配置されてもよい。また、磁場印加手段(5)が配置される場所は、電気分解に作用する電極の面に垂直に磁場が印加されるような位置が好ましい。さらに、磁場印加手段(5)が水分について腐食性であれば、電解液に触れない位置が好ましい。 The place where the magnetic field applying means (5) is arranged is a position where a magnetic field gradient due to a non-uniform magnetic field can efficiently act on at least one of the pair of electrodes (4). That is, the magnetic field applying means (5) should be arranged at a position where the magnetic field gradient is as large as possible. The magnetic field applying means (5) may be disposed on both electrodes as shown in FIG. Further, the place where the magnetic field applying means (5) is arranged is preferably a position where a magnetic field is applied perpendicularly to the surface of the electrode acting on electrolysis. Furthermore, if the magnetic field application means (5) is corrosive with respect to moisture, a position where it does not touch the electrolyte is preferable.

図1において、陽極と陰極のそれぞれに磁場印加手段(5)が配置されているが、磁場印加手段(5)が陽極と陰極のどちらか一方に偏って、又はどちらか一方について配置されている場合には、磁場印加手段(5)が偏って配置されていない、又は配置されていない電極の表面積を、磁場印加手段(5)が配置されている電極の表面積に対して十分に大きくすることによって、水電解をすすめることができる(実施例7〜14参照)。 In FIG. 1, the magnetic field applying means (5) is arranged on each of the anode and the cathode, but the magnetic field applying means (5) is arranged on either the anode or the cathode or on either of them. In this case, the surface area of the electrode on which the magnetic field applying means (5) is not arranged or not arranged is made sufficiently larger than the surface area of the electrode on which the magnetic field applying means (5) is arranged. Can promote water electrolysis (see Examples 7 to 14).

図1おいて、例えば陰極では水が還元されて水酸化イオンと水素が発生して、発生した水素ガスは水素気泡となって陰極表面に付着するが、浮力と共に磁場印加手段(5)によって磁気浮力を受ける。詳細は後述するように、磁気排除効果によって気泡の脱離が促進されるため、陰極の電気抵抗が低減して酸化還元反応が促進されるので、発生する水素量が増加することになる。なお、陽極で水が酸化されて発生する酸素についても同様である。 In FIG. 1, for example, water is reduced at the cathode to generate hydroxide ions and hydrogen, and the generated hydrogen gas forms hydrogen bubbles and adheres to the cathode surface. Receive buoyancy. As will be described in detail later, since the elimination of bubbles is promoted by the magnetic exclusion effect, the electrical resistance of the cathode is reduced and the oxidation-reduction reaction is promoted, so that the amount of generated hydrogen increases. The same applies to oxygen generated when water is oxidized at the anode.

図2において、陰極で発生して陰極表面に付着した水素気泡と、陽極で発生して陽極表面に付着した酸素気泡について、重力環境下と微小重力環境下を対比する。重力環境下では、水素気泡等が電極から脱離するように作用する浮力が、微小重力環境下ではほとんど作用しないため、水素気泡等は陰極等に付着したままとなり、水と電極との接触が妨げられて水電解が鈍化する(非特許文献3)。 In FIG. 2, a gravity environment and a microgravity environment are compared between hydrogen bubbles generated at the cathode and attached to the cathode surface, and oxygen bubbles generated at the anode and attached to the anode surface. In a gravitational environment, the buoyancy that acts to detach hydrogen bubbles from the electrode hardly acts in a microgravity environment, so the hydrogen bubbles remain attached to the cathode, etc., and there is no contact between water and the electrode. This hinders water electrolysis (Non-Patent Document 3).

図3に示したように、MHD対流では電解液中のイオンにローレンツ力が働き、静止系(気泡に浮力が作用する系)と対比して電極に発生した気泡の大きさが小さくなり、さらに浮力と対流によって、電極から気泡が脱離することが促進される。しかし、MHD対流の電解液の電気伝導度は小さく、電極から気泡の脱離は、あくまで電解液中のイオンの対流によるものであって、気泡そのものに作用する磁場勾配によるものではないため、強磁場(1T以上)が必要である。 As shown in FIG. 3, in MHD convection, Lorentz force acts on ions in the electrolyte, and the size of bubbles generated in the electrode is reduced compared to a stationary system (system in which buoyancy acts on bubbles). The buoyancy and convection facilitates the detachment of bubbles from the electrode. However, the electrical conductivity of the electrolyte solution of MHD convection is small, and the detachment of bubbles from the electrode is due solely to the convection of ions in the electrolyte solution, not to the magnetic field gradient acting on the bubbles themselves. A magnetic field (1T or more) is required.

一方、電極に発生する気泡に磁気浮力が作用するときには、図1に示したように、磁気浮力は磁場勾配に沿って作用する。そのため、電極から脱離する気泡の方向が、図3(C)のように、電極の上方に電極から離れる方向となるので、電極から気泡が脱離することが一層促進される。その結果、MHD対流とするために要する装置が不要で、装置が簡易化でき、強磁場であることを要しない。 On the other hand, when magnetic buoyancy acts on bubbles generated in the electrodes, as shown in FIG. 1, the magnetic buoyancy acts along a magnetic field gradient. Therefore, since the direction of the bubbles desorbed from the electrode is a direction away from the electrode above the electrode as shown in FIG. 3C, the desorption of bubbles from the electrode is further promoted. As a result, an apparatus required for MHD convection is unnecessary, the apparatus can be simplified, and it is not necessary to have a strong magnetic field.

図4に基づいて、非磁性体である水素気泡に作用する磁気浮力について、さらに説明を行う。電解液中の水素気泡について、図4(A)で水素気泡に作用するのは、重力と浮力であるため、陰極から行われる水素気泡の脱離は、浮力から重力を差し引いた力によって起こされる。それに対して、図4(B)で水素気泡に作用するのは、重力(図示せず)と浮力、さらに磁場勾配(磁場が磁石から離れるに従って強から弱に変化することに因る勾配)に基づく磁気浮力である。 Based on FIG. 4, the magnetic buoyancy acting on the non-magnetic hydrogen bubbles will be further described. With respect to hydrogen bubbles in the electrolyte, it is gravity and buoyancy that acts on the hydrogen bubbles in FIG. 4 (A), so the desorption of hydrogen bubbles from the cathode is caused by the force obtained by subtracting gravity from buoyancy. . On the other hand, in FIG. 4B, the hydrogen bubbles act on gravity (not shown) and buoyancy, and also on the magnetic field gradient (gradient due to the magnetic field changing from strong to weak as it moves away from the magnet). Based on magnetic buoyancy.

磁気浮力は、磁性ナノ粒子が水素気泡に与える磁気圧の面積分であって、磁気圧が大きい領域から小さい領域の方向に作用することになる。磁気圧は磁場勾配の高い領域の方が、低い領域の方より大きいのであるから、磁気浮力は磁気圧が大きい領域から小さい領域の方向、すなわち例えば陰極から離れる方向に向かって作用することになる。その結果、重力、浮力及び磁気浮力の合力は、水素気泡が電極から脱離するのに効率的な方向である電極の上方に作用し、水素気泡は電極の上方すなわち電極から離れる方向に移動することになる。 The magnetic buoyancy is the area of the magnetic pressure that the magnetic nanoparticles give to the hydrogen bubbles, and acts in the direction from the region where the magnetic pressure is large to the region where it is small. Since the magnetic pressure is higher in the high magnetic field gradient region than in the low magnetic field region, the magnetic buoyancy acts in the direction from the high magnetic pressure region to the small region, for example, away from the cathode. . As a result, the resultant force of gravity, buoyancy and magnetic buoyancy acts above the electrode, which is an efficient direction for hydrogen bubbles to desorb from the electrode, and the hydrogen bubble moves above the electrode, i.e. away from the electrode. It will be.

図5(A)は、電解液(7)中の気泡(8)に、磁石による磁場勾配が作用したときに、磁場勾配に基づいて気泡(8)が磁石から離れる方向に移動することを示している。また、図5(B)は、電解液(7)に電極が配置された場合でも同様に、電極で発生した気泡に対する磁場勾配の作用を示したものである。 FIG. 5A shows that when the magnetic field gradient by the magnet acts on the bubble (8) in the electrolyte solution (7), the bubble (8) moves away from the magnet based on the magnetic field gradient. ing. FIG. 5B also shows the effect of the magnetic field gradient on the bubbles generated at the electrode even when the electrode is arranged in the electrolytic solution (7).

図6(A)は、微小重力環境下(1/6G)において、電解液に発生した気泡(8)は、電極が多孔質電極(9)であるときには、気泡(8)が電極表面に吸着し多孔質電極(9)内部に気泡(8)が滞留すると、電気化学反応が低下して電解が鈍化することを示している。一方、図6(B)は、微小重力環境下(1/6G)であっても、多孔質電極(9)に磁石よる磁場が作用すると、磁気排除効果によって、気泡(8)が多孔質電極(9)内部から離脱し、電気化学反応が低下することなく、電解が促進されることを示している。 FIG. 6 (A) shows that bubbles (8) generated in the electrolyte solution under microgravity environment (1 / 6G) are adsorbed on the electrode surface when the electrode is a porous electrode (9). When the bubbles (8) are retained inside the porous electrode (9), the electrochemical reaction is lowered and the electrolysis is slowed down. On the other hand, FIG. 6B shows that, even in a microgravity environment (1 / 6G), when a magnetic field by a magnet acts on the porous electrode (9), the bubbles (8) are formed into the porous electrode due to the magnetic exclusion effect. (9) It shows that electrolysis is promoted without leaving the inside and reducing the electrochemical reaction.

水電解装置が備える一対の電極は、電解表面を飛躍的に拡大できる観点から、多孔質電極であることが好ましい。そして、電極が多孔質電極である場合、多孔質の平均空孔の大きさ(径)は10nmを超えることが好ましい。なぜなら、多孔質内部に発生した気泡を、磁気浮力によって、多孔質電極の内部から外部に移動させるためには、磁性ナノ粒子が孔質電極の内部に移動することが必要である。ここで、磁性ナノ粒子の一般的な大きさ(径)は、10nmであるから、多孔質電極はその10nmを超える平均空孔を有することが好ましいからである。 The pair of electrodes provided in the water electrolysis device is preferably a porous electrode from the viewpoint of dramatically expanding the electrolysis surface. And when an electrode is a porous electrode, it is preferable that the magnitude | size (diameter) of a porous average void | hole exceeds 10 nm. This is because it is necessary for the magnetic nanoparticles to move to the inside of the porous electrode in order to move the bubbles generated inside the porous body from the inside of the porous electrode to the outside by magnetic buoyancy. Here, since the general size (diameter) of the magnetic nanoparticles is 10 nm, the porous electrode preferably has an average pore exceeding 10 nm.

水電解方法の電気的な条件については、水の標準電極電位E°(1.229V)に基づき、適宜に定めることができる。 The electrical conditions of the water electrolysis method can be appropriately determined based on the standard electrode potential E ° (1.229 V) of water.

(水電解用電解液の調製、実施例1〜6及び比較例1)
磁性ナノ粒子(Fe)を含む水ベース磁性ナノ流体としてferri1003s(イチネンケミカルズ)、電解質として中性塩である硫酸ナトリウム(NaSO、和光純薬)を用いて、水電解用電解液を調製した。表1に示すように、別に調製した1.0mol/L NaSO水溶液と、ferri1003sを混合して、実施例1〜6及び比較例1を調製した。
(Preparation of electrolytic solution for water electrolysis, Examples 1 to 6 and Comparative Example 1)
Electrolysis for water electrolysis using ferri1003s (Ichinen Chemicals) as a water-based magnetic nanofluid containing magnetic nanoparticles (Fe 3 O 4 ) and sodium sulfate (Na 2 SO 4 , Wako Pure Chemicals) as a neutral salt as an electrolyte A liquid was prepared. As shown in Table 1, Examples 1 to 6 and Comparative Example 1 were prepared by mixing 1.0 mol / L Na 2 SO 4 aqueous solution prepared separately and ferri 1003s.

実施例1〜6及び参考例1を、それぞれ10mLずつスクリュー試験管に分取し、室温にて3か月間静置したところ、図7に示したように、すべてに沈殿等は発生せず、外観に変化はなく安定であった。 Examples 1 to 6 and Reference Example 1 were each dispensed in 10 mL screw test tubes and allowed to stand at room temperature for 3 months. As shown in FIG. The appearance was stable and stable.

(電解液の電気分解、実施例7〜10、実施例11〜14)
図8に示した実験装置を使用し、電解液として実施例3の10mLを用いて、電解液の電気分解を行った。実験装置は、三電極式電解セル(以下、「電解セル」と言う場合がある、BAS社製)、ポテンショスタット(北斗電工株式会社製HAL3001)、マルチファンクションジェネレータ(エヌエフ回路設計ブロック社製 WF 1973)、オシロスコープ(横河メータ&インスツルメンツ株式会社製 DLM 2024)より構成した。
ファンクションジェネレータでポテンショスタットから出力する電位を制御し、ポテンショスタットで参照電極に対する作用電極の電位を設定値に保ちながら電解を行った。ポテンショスタットで計測された電流値、電位についてオシロスコープを介して記録した。
図8の実験装置は、ポテンショスタット(電源に相当)、実施例3(水電解用電解液に相当)、図10(A)に示した電解セル(容器、一対の電極に相当)及びネオジウム磁石(磁場印加手段に相当)を備えている。すなわち図8に示した実験装置は本発明の水電解装置の一実施態様である。
(Electrolysis of electrolytic solution, Examples 7 to 10, Examples 11 to 14)
Using the experimental apparatus shown in FIG. 8, the electrolytic solution was electrolyzed using 10 mL of Example 3 as the electrolytic solution. The experimental apparatus is a three-electrode electrolytic cell (hereinafter referred to as “electrolytic cell”, manufactured by BAS), a potentiostat (HAL3001 manufactured by Hokuto Denko Co., Ltd.), a multi-function generator (WF circuit 1973 manufactured by NF Circuit Design Block Co., Ltd.). ), An oscilloscope (Yokogawa Meter & Instruments DLM 2024).
The potential output from the potentiostat was controlled with a function generator, and electrolysis was performed while the potential of the working electrode with respect to the reference electrode was maintained at a set value with the potentiostat. The current value and potential measured with a potentiostat were recorded through an oscilloscope.
8 is a potentiostat (corresponding to a power source), Example 3 (corresponding to an electrolytic solution for water electrolysis), the electrolytic cell (corresponding to a container and a pair of electrodes) and a neodymium magnet shown in FIG. (Corresponding to magnetic field applying means). That is, the experimental apparatus shown in FIG. 8 is an embodiment of the water electrolysis apparatus of the present invention.

図9に電解セルとネオジウム磁石を組み合わせたものの詳細な図を示した。その電解セルは作用電極(Working electrode、陰極)、対電極(Counter electrode、陽極)、参照電極(Reference electrode)、及び内部に電解液を貯留する容器11を備えている。材質については作用電極と対電極は白金であり、参照電極は銀塩化銀であった。作用電極が陰極、対電極が陽極であることは、後述する設定電位においてステップ電位を−2.0Vとしたことにより、そして、その作用電極からは水素気泡が発生した。一方、陰極からは酸素気泡が発生した。 FIG. 9 shows a detailed view of a combination of an electrolytic cell and a neodymium magnet. The electrolytic cell includes a working electrode (cathode electrode), a counter electrode (counter electrode, anode), a reference electrode (reference electrode), and a container 11 for storing an electrolytic solution therein. Regarding the material, the working electrode and the counter electrode were platinum, and the reference electrode was silver-silver chloride. The fact that the working electrode is a cathode and the counter electrode is an anode is that a step potential is set to −2.0 V at a set potential described later, and hydrogen bubbles are generated from the working electrode. On the other hand, oxygen bubbles were generated from the cathode.

ネオジム磁石と作用電極又は対電極の配置関係から、ネオジム磁石は作用電極に偏って又は作用電極について配置されていた場合であった。また、作用電極すなわち陰極(電極面13)の電極面積は7.1mm(=1.5×1.5×π)であったのに対し、対電極すなわち陽極の電極面積は95mm(=円の面積+円柱部分の面積=0.5×0.5×π+30×π)であって、ネオジム磁石が偏って配置されていない、又は配置されていない陽極は、陰極に対して十分に大きな電極面積を有していた。なお、電極面積は電極が電解液に浸漬された部分から求め、陽極の電極面積/陰極の電極面積=95mm/7.1mm=13.4であった。 From the arrangement relationship between the neodymium magnet and the working electrode or the counter electrode, the neodymium magnet was biased toward the working electrode or arranged with respect to the working electrode. The electrode area of the working electrode, ie, the cathode (electrode surface 13) was 7.1 mm 2 (= 1.5 × 1.5 × π), whereas the electrode area of the counter electrode, ie, the anode, was 95 mm 2 (= The area of the circle + the area of the cylindrical portion = 0.5 × 0.5 × π + 30 × π), and the neodymium magnets are not arranged biased, or the anodes that are not arranged are sufficiently larger than the cathodes It had an electrode area. The electrode area is determined from the portion where the electrode is immersed in the electrolytic solution was the electrode area of the electrode area / cathode anode = 95mm 2 /7.1mm 2 = 13.4.

磁場の強さが電解量に与える影響を調査するために、電解量はクロノアンペロメトリー(以下、CAと言う場合がある)法で測定した。
図10に示したように、磁場強度は電解セルとネオジム磁石との距離を調節することにより変化させた。使用した磁石はMagfine製の円柱型ネオジム磁石で、直径Ф25mm×高さ10mm(磁束密度B=373.3mT)であった。作用電極の電極面に対し垂直にネオジム磁石の面を向け、電極面の中心からの距離Lmmをスペ−サーで変化させた。(電極面中心から7mm(実施例7)、9mm(実施例8)、llmm(実施例9)、13mm(実施例10))。CAを行う際の設定電位は、初期電位を自然電位の0.43V、ステップ電位を−2.0Vとした(実施例11〜14)。すなわち水電解方法に関する実施例11〜14は、水電解装置に関する実施例7〜10に対応していた。
In order to investigate the influence of the strength of the magnetic field on the amount of electrolysis, the amount of electrolysis was measured by a chronoamperometry (hereinafter sometimes referred to as CA) method.
As shown in FIG. 10, the magnetic field intensity was changed by adjusting the distance between the electrolytic cell and the neodymium magnet. The magnet used was a Magfine cylindrical neodymium magnet with a diameter of 25 mm and a height of 10 mm (magnetic flux density B = 373.3 mT). The surface of the neodymium magnet was directed perpendicular to the electrode surface of the working electrode, and the distance Lmm from the center of the electrode surface was changed with a spacer. (7 mm (Example 7), 9 mm (Example 8), llmm (Example 9), 13 mm (Example 10)) from the center of the electrode surface. As for the set potential when performing CA, the initial potential was 0.43 V which is a natural potential, and the step potential was −2.0 V (Examples 11 to 14). That is, Examples 11 to 14 related to the water electrolysis method corresponded to Examples 7 to 10 related to the water electrolysis apparatus.

なお、電解セルに関し、CA法では電解量の測定を目的とし、作用電極表面に水素気泡が堆積することを防ぐため、電解セル全体を水平面から約30°傾けた状態で実験を行った。すなわち作用電極は鉛直方向に対して約60°の傾斜をなしていた。この傾斜は電極面(作用電極)13が、鉛直方向と垂直であったことに対するに好ましい態様であって、電極面にそのような条件がなければ、必ずしも必要ではない。 Regarding the electrolytic cell, the CA method was intended to measure the amount of electrolysis, and an experiment was conducted with the entire electrolytic cell tilted by about 30 ° from the horizontal plane in order to prevent hydrogen bubbles from accumulating on the surface of the working electrode. That is, the working electrode was inclined at about 60 ° with respect to the vertical direction. This inclination is a preferable mode for the electrode surface (working electrode) 13 being perpendicular to the vertical direction, and is not necessarily required if the electrode surface does not have such a condition.

図11には、実験から得られた電流値―時間応答を示し、図12には、電流値を時間積分して総電荷量の時間経過を算出した総電荷量―時間応答を示した。図11より、電流値の時間応答はネオジム磁石に最も近い条件、すなわち磁場強度の高い条件における電流値が大きかった。その結果は、図12でも同様に見られ、磁場強度の大きい条件から順に電解量が大きい結果が得られた。永久磁石を用いた低磁場、低磁場勾配の条件下においても磁気浮力の効果は明確に生じており、継続的かつ容易に電解プロセスの促進が行われたといえた。理論上磁気浮力の発生には磁場勾配が重要であり、ネオジム磁石の形や印加方法の最適化ができれば磁気浮力の効果増大が見込まれた。
一方、比較例1の電解液を使用すると、水電解が起こって、水素気泡が発生するような電流は流れなかった。
FIG. 11 shows the current value-time response obtained from the experiment, and FIG. 12 shows the total charge amount-time response obtained by integrating the current value over time and calculating the time course of the total charge amount. From FIG. 11, the time response of the current value was large under the condition closest to the neodymium magnet, that is, under the condition of high magnetic field strength. The result was similarly seen in FIG. 12, and the results of increasing the amount of electrolysis were obtained in order from the condition with the highest magnetic field strength. Even under low magnetic field and low magnetic field gradient conditions using permanent magnets, the effect of magnetic buoyancy was clearly generated, indicating that the electrolysis process was promoted continuously and easily. Theoretically, the magnetic field gradient is important for the generation of magnetic buoyancy, and if the shape and application method of the neodymium magnet can be optimized, the effect of magnetic buoyancy is expected to increase.
On the other hand, when the electrolytic solution of Comparative Example 1 was used, water electrolysis occurred and no current that generated hydrogen bubbles flowed.

(電解液の電気分解、実施例15、16、比較例2)
図9に示した電解セルの代わりに、図13の電極セルを用いた実験装置(実施例15)、電解液として実施例3の450mLを用いて、初期電位を自然電位の0.43V、ステップ電位を−2.0VとしてCA法により電気分解を行った(実施例16)。図13において、一対の電極(作用電極(WE)と対電極(CE))として、炭素の海綿状の電極9を用い、それぞれの炭素の海綿状の電極9の内側に磁場印加手段としてネオジム磁石を配置した。なお、参照電極は銀塩化銀であった。また、炭素の海綿状の電極9は図15に示すようなものであって、3次元の網目状の炭素繊維によって形成されており、多孔質電極の一例であった。なお、図14によっても、炭素の海綿状の電極9やそれを用いた実験装置を確認することができる。
一方、実施例15の実験装置において、ネオジム磁石を除き、電解液として実施例3の代わりに水を用いて、実施例16と同様にCA法により電気分解を行った(比較例2)。
(Electrolysis of electrolyte, Examples 15 and 16, Comparative Example 2)
Experimental apparatus (Example 15) using the electrode cell of FIG. 13 instead of the electrolytic cell shown in FIG. 9, 450 mL of Example 3 as the electrolytic solution, the initial potential is 0.43 V of the natural potential, step Electrolysis was performed by the CA method at a potential of −2.0 V (Example 16). In FIG. 13, a carbon sponge-like electrode 9 is used as a pair of electrodes (working electrode (WE) and counter electrode (CE)), and a neodymium magnet is used as a magnetic field applying means inside each carbon sponge-like electrode 9. Arranged. The reference electrode was silver silver chloride. Further, the carbon sponge-like electrode 9 is as shown in FIG. 15 and is formed of a three-dimensional mesh-like carbon fiber, which is an example of a porous electrode. 14 also shows the carbon sponge-like electrode 9 and the experimental apparatus using it.
On the other hand, in the experimental apparatus of Example 15, electrolysis was performed by the CA method in the same manner as in Example 16 except for the neodymium magnet and using water instead of Example 3 as the electrolytic solution (Comparative Example 2).

図15に示すように、多孔質電極内部に気泡が拘束されると、(C)海綿状の電極に向かう対流では、その対流が多孔質に遮られて、多孔質内部からその滞留した気泡を離脱させることは困難である。一方、(D)海綿状の電極に作用する磁場勾配は、海綿状の電極に遮られることはないので、磁場勾配による磁気浮力によって、滞留した気泡を海綿状に形成された内部から離脱させることができるのである。 As shown in FIG. 15, when bubbles are constrained inside the porous electrode, (C) in the convection toward the spongy electrode, the convection is blocked by the porous, and the accumulated bubbles from the inside of the porous It is difficult to disengage. On the other hand, (D) the magnetic field gradient acting on the sponge-like electrode is not obstructed by the sponge-like electrode, so that the retained bubbles are separated from the inside of the sponge-like shape by magnetic buoyancy due to the magnetic field gradient Can do it.

図16に、実施例16(ferril003sで磁場あり)と比較例2(水で無磁場)のそれぞれで測定された電流値iAについて、実施例16から比較例2を差し引いたものを、0〜40sの通電時間で示した。陰極から発生する水素の量は電流値に比例するのであるから、実施例16の方が発生する水素の量は多いことが分かった。 FIG. 16 shows the current value iA measured in Example 16 (with a magnetic field at ferrl003s) and Comparative Example 2 (without a magnetic field in water) minus 0 to 40 s obtained by subtracting Comparative Example 2 from Example 16. It was shown by the energizing time. Since the amount of hydrogen generated from the cathode is proportional to the current value, it was found that the amount of hydrogen generated in Example 16 was larger.

微小重力な場であっても磁気浮力の作用により、効率よく水素を製造することができる。 Even in a microgravity field, hydrogen can be produced efficiently by the action of magnetic buoyancy.

1 :水電解装置
2 :電源
3、7、10:水電解用電解液(電解液)
4 :一対の電極
5 :磁場印加手段
6、11:容器
8 :気泡
9 :海綿状の電極
13:電極面(作用電極)
1: Water electrolysis device 2: Power supply 3, 7, 10: Electrolyte for water electrolysis (electrolyte)
4: Pair of electrodes 5: Magnetic field applying means 6, 11: Container 8: Bubble 9: Spongy electrode 13: Electrode surface (working electrode)

Claims (8)

電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含むことを特徴とする水電解用電解液。 An electrolytic solution for water electrolysis comprising a water-based magnetic nanofluid containing an electrolyte and magnetic nanoparticles. 前記電解質は中性塩であることを特徴とする請求項1に記載の水電解用電解液。 The electrolyte for water electrolysis according to claim 1, wherein the electrolyte is a neutral salt. 電源と、電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含む水電解用電解液と、陽極及び陰極を構成する一対の電極と、前記一対の電極の電極の少なくても片方の電極に非一様磁場を及ぼす磁場印加手段と、前記水電解用電解液を貯留する容器と、を備えることを特徴とする水電解装置。 A power source, an electrolytic solution for water electrolysis containing a water-based magnetic nanofluid containing electrolyte and magnetic nanoparticles, a pair of electrodes constituting an anode and a cathode, and at least one of the electrodes of the pair of electrodes A water electrolysis apparatus comprising: a magnetic field application unit that applies a uniform magnetic field; and a container that stores the water electrolysis electrolyte. 前記磁場印加手段は磁石又は電磁コイルであることを特徴とする請求項3に記載の水電解装置。 The water electrolysis apparatus according to claim 3, wherein the magnetic field applying unit is a magnet or an electromagnetic coil. 前記一対の電極は、多孔質電極であることを特徴とする請求項3又は4に記載の水電解装置。 The water electrolysis apparatus according to claim 3 or 4, wherein the pair of electrodes are porous electrodes. 前記多孔質電極は海綿状の電極であることを特徴とする請求項5に記載の水電解装置。 The water electrolysis apparatus according to claim 5, wherein the porous electrode is a sponge-like electrode. 電解質及び磁性ナノ粒子を含む水ベース磁性ナノ流体を含む水電解用電解液と、電源と、陽極及び陰極を構成する一対の電極と、前記一対の電極の少なくても片方の電極に非一様磁場を及ぼす磁場印加手段と、前記水電解用電解液を貯留する容器と、を備える水電解装置に通電して少なくとも水素を得ることを特徴とする水電解方法。 Electrolyte for water electrolysis containing water-based magnetic nanofluid containing electrolyte and magnetic nanoparticles, power supply, pair of electrodes constituting anode and cathode, and non-uniformity on at least one of said pair of electrodes A water electrolysis method characterized in that at least hydrogen is obtained by energizing a water electrolysis apparatus comprising a magnetic field application means for applying a magnetic field and a container for storing the water electrolysis electrolyte. 前記一対の電極は、鉛直方向に対して15°〜45°の傾斜をなしていることを特徴とする請求項7に記載の水電解方法。
The water electrolysis method according to claim 7, wherein the pair of electrodes are inclined at 15 ° to 45 ° with respect to the vertical direction.
JP2018087957A 2018-05-01 2018-05-01 Electrolyte for water electrolysis, water electrolysis apparatus and water electrolysis method using the same Active JP7114054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087957A JP7114054B2 (en) 2018-05-01 2018-05-01 Electrolyte for water electrolysis, water electrolysis apparatus and water electrolysis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087957A JP7114054B2 (en) 2018-05-01 2018-05-01 Electrolyte for water electrolysis, water electrolysis apparatus and water electrolysis method using the same

Publications (2)

Publication Number Publication Date
JP2019194349A true JP2019194349A (en) 2019-11-07
JP7114054B2 JP7114054B2 (en) 2022-08-08

Family

ID=68469568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087957A Active JP7114054B2 (en) 2018-05-01 2018-05-01 Electrolyte for water electrolysis, water electrolysis apparatus and water electrolysis method using the same

Country Status (1)

Country Link
JP (1) JP7114054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339485B1 (en) * 2021-06-30 2022-05-24 RQT Energy Storage Corp. Electrolysis electrode structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321047A (en) * 1976-08-11 1978-02-27 Kawasaki Steel Co Production method of composite coating material
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
JPH01275788A (en) * 1988-04-28 1989-11-06 Ishii Sangyo Kk Method and apparatus for electrolysis of water by action of magnetic field
WO2013059964A1 (en) * 2011-10-28 2013-05-02 General Electric Company An apparatus and method for electrocoagulation
EP3023517A1 (en) * 2014-11-20 2016-05-25 Université Paris Diderot - Paris 7 Electrogeneration of a catalytic film for producing H2 through water electrolysis
JP2016524037A (en) * 2013-05-13 2016-08-12 ホガナス アクチボラグ (パブル) Cathode, electrochemical cell and use thereof
JP2017122255A (en) * 2016-01-06 2017-07-13 エア・ウォーター株式会社 Method and apparatus for water electrolysis, and electrode unit used therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321047A (en) * 1976-08-11 1978-02-27 Kawasaki Steel Co Production method of composite coating material
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
JPH01275788A (en) * 1988-04-28 1989-11-06 Ishii Sangyo Kk Method and apparatus for electrolysis of water by action of magnetic field
WO2013059964A1 (en) * 2011-10-28 2013-05-02 General Electric Company An apparatus and method for electrocoagulation
JP2016524037A (en) * 2013-05-13 2016-08-12 ホガナス アクチボラグ (パブル) Cathode, electrochemical cell and use thereof
EP3023517A1 (en) * 2014-11-20 2016-05-25 Université Paris Diderot - Paris 7 Electrogeneration of a catalytic film for producing H2 through water electrolysis
JP2017122255A (en) * 2016-01-06 2017-07-13 エア・ウォーター株式会社 Method and apparatus for water electrolysis, and electrode unit used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339485B1 (en) * 2021-06-30 2022-05-24 RQT Energy Storage Corp. Electrolysis electrode structure

Also Published As

Publication number Publication date
JP7114054B2 (en) 2022-08-08

Similar Documents

Publication Publication Date Title
Arenas et al. The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage
Lin et al. The effect of magnetic force on hydrogen production efficiency in water electrolysis
JP5897512B2 (en) Method for electrolytic concentration of heavy water
Amadelli et al. Composite PbО2–TiO2 materials deposited from colloidal electrolyte: Electrosynthesis, and physicochemical properties
CN105683418A (en) Positive electrode for alkaline water electrolysis
JPWO2013179553A1 (en) Method for producing metal hydroxide and method for producing ITO sputtering target
JP6138694B2 (en) Method for forming an electrode for an electrochemical cell
Rocha et al. Pulsed water electrolysis: A review
Zadeh Hydrogen production via ultrasound-aided alkaline water electrolysis
Sun et al. Ultrafast Electrodeposition of Ni− Fe Hydroxide Nanosheets on Nickel Foam as Oxygen Evolution Anode for Energy‐Saving Electrolysis of Na2CO3/NaHCO3
Leong et al. Doubling the power output of a Mg-air battery with an acid-salt dual-electrolyte configuration
Amini et al. Electrodeposition and electrodissolution of zinc in mixed methanesulfonate-based electrolytes
Wang et al. Magnetic field improving interfacial behavior of the two-electrode system
Perera et al. Probing the nucleation, growth, and evolution of hydrogen nanobubbles at single catalytic sites
JP7114054B2 (en) Electrolyte for water electrolysis, water electrolysis apparatus and water electrolysis method using the same
Farmani et al. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force
KR101714601B1 (en) Electrochemical reduction method of carbon dioxide and apparatus therefor
KR20160038363A (en) Electrochemical reduction method of carbon dioxide and apparatus therefor
JP2008243490A (en) Electrode material, manufacturing method therefor, electrochemical sensor, and electrode for fuel cell
US10665868B2 (en) Electrochemical cells and batteries
JP2019067637A (en) Flow battery
JP2012097334A (en) Method for recovering bromine and device for the same
JP5545893B2 (en) Method for producing carbon-based electrode material and fuel cell using electrode material produced thereby
Burstein et al. Developing a Battery using Concrete as an Electrolyte
CA2510371A1 (en) Hydrogen generation system

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7114054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150