JP2018090882A - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP2018090882A
JP2018090882A JP2016237353A JP2016237353A JP2018090882A JP 2018090882 A JP2018090882 A JP 2018090882A JP 2016237353 A JP2016237353 A JP 2016237353A JP 2016237353 A JP2016237353 A JP 2016237353A JP 2018090882 A JP2018090882 A JP 2018090882A
Authority
JP
Japan
Prior art keywords
ferromagnetic material
present
electrolysis
hydrogen
producing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016237353A
Other languages
Japanese (ja)
Other versions
JP6875114B2 (en
Inventor
武次 廣田
Takeji Hirota
武次 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATADA YOHEI
Hirota Ayumi
Original Assignee
HATADA YOHEI
Hirota Ayumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATADA YOHEI, Hirota Ayumi filed Critical HATADA YOHEI
Priority to JP2016237353A priority Critical patent/JP6875114B2/en
Publication of JP2018090882A publication Critical patent/JP2018090882A/en
Application granted granted Critical
Publication of JP6875114B2 publication Critical patent/JP6875114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for efficiently producing hydrogen by electrolysis of water.SOLUTION: The method for producing hydrogen by electrolysis of water includes a ferromagnetic body 10 disposed in a water which is stored in an electrolysis tank 2, in which electrolysis is performed while applying a magnetic field to the ferromagnetic body 10.SELECTED DRAWING: Figure 1

Description

本発明は、水を電気分解することによって水素を得る水素の製造方法に関する。   The present invention relates to a method for producing hydrogen in which hydrogen is obtained by electrolyzing water.

近年、燃料電池技術などの展開によって水素の需要が急激に高まってきている。現在、工業的な水素の製造は、主に炭化水素を水蒸気改質したり部分酸化したりする炭化水素ガス分解法によって行われている。   In recent years, the demand for hydrogen has increased rapidly due to the development of fuel cell technology and the like. At present, industrial hydrogen production is mainly performed by a hydrocarbon gas decomposition method in which hydrocarbon is steam reformed or partially oxidized.

最近では、風力発電や太陽光発電などの自然エネルギーによって発生させた電力によって水を電気分解し、もって水素(及び酸素)を製造する手段も提案されている(例えば、下記特許文献1、2参照。)。   Recently, means for producing hydrogen (and oxygen) by electrolyzing water with electric power generated by natural energy such as wind power generation or solar power generation has been proposed (for example, see Patent Documents 1 and 2 below). .)

特開2012‐131697号公報JP 2012-131597 A 特開2014‐203274号公報JP, 2014-203274, A

しかしながら、不安定要素が多い自然エネルギーを利用した電気分解では、安定的な水素の製造・供給を担保することができない。又、電気分解により水素を製造するためには、電気抵抗値が高い水に電流を通す必要があるため、電極間電圧を高くしたり、電解槽を電極間距離が短い比較的小型のものとしたりする必要がある。そのため、電気分解による大量の水素の製造は困難とされていた。   However, electrolysis using natural energy with many unstable elements cannot secure stable production and supply of hydrogen. In addition, in order to produce hydrogen by electrolysis, it is necessary to pass an electric current through water having a high electric resistance value, so that the voltage between electrodes is increased or the electrolytic cell is made relatively small with a short distance between electrodes. It is necessary to do. Therefore, production of a large amount of hydrogen by electrolysis has been considered difficult.

本発明は、前記技術的課題を解決するために開発されたものであって、電気分解により効率良く水素を得るための新規な水素の製造方法を提供することを目的とする。   The present invention has been developed to solve the above technical problem, and an object of the present invention is to provide a novel hydrogen production method for efficiently obtaining hydrogen by electrolysis.

前記技術的課題を解決するための本発明の水素の製造方法は、水を電気分解することによって水素を得る水素の製造方法であって、電解槽に貯められた水中に強磁性体を配し、前記強磁性体に磁場をかけながら電気分解を行うことを特徴とする(以下、「本発明製造方法」と称する。)。   The hydrogen production method of the present invention for solving the technical problem is a hydrogen production method for obtaining hydrogen by electrolyzing water, wherein a ferromagnetic material is disposed in water stored in an electrolytic cell. Electrolysis is performed while applying a magnetic field to the ferromagnetic material (hereinafter referred to as “the manufacturing method of the present invention”).

本発明製造方法においては、前記強磁性体として鉄を用いることが好ましい態様となる。   In the production method of the present invention, it is preferable to use iron as the ferromagnetic material.

本発明製造方法においては、前記強磁性体に永久磁石を接触させることによって、前記強磁性体に磁場をかけることが好ましい態様となる。   In the production method of the present invention, it is preferable to apply a magnetic field to the ferromagnetic material by bringing a permanent magnet into contact with the ferromagnetic material.

前記本発明製造方法によれば、電気分解により効率良く水素を得ることができる。   According to the production method of the present invention, hydrogen can be obtained efficiently by electrolysis.

図1は、本発明製造方法を実行するための装置1の概略を示す正面図である。FIG. 1 is a front view schematically showing an apparatus 1 for carrying out the manufacturing method of the present invention. 図2は、強磁性体を示す斜視図(a)と、断面図(b)である。FIG. 2 is a perspective view (a) and a sectional view (b) showing the ferromagnetic material.

以下、本発明の実施形態を説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to this embodiment.

<実施形態>
図1に、本発明製造方法を実行するための装置1を示す。本発明製造方法では、電解槽2に貯められた水中に強磁性体10を配し、前記強磁性体10に磁場をかけながら電気分解を行う。本実施形態においては、水に接触させた電極(陽極3P、陰極3N)3間に電圧をかけることによって電気分解を行った。
<Embodiment>
FIG. 1 shows an apparatus 1 for carrying out the manufacturing method of the present invention. In the manufacturing method of the present invention, the ferromagnetic material 10 is disposed in the water stored in the electrolytic cell 2, and electrolysis is performed while applying a magnetic field to the ferromagnetic material 10. In the present embodiment, electrolysis was performed by applying a voltage between the electrodes (anode 3P, cathode 3N) 3 in contact with water.

図2(a)、(b)に、本実施形態において用いた前記強磁性体10を示す。前記強磁性体10は、鉄製のパンチングメタルを箱型に成形した容器11と、前記容器11内の空間を占有するようにして配したスチールウール12と、を具備する。本発明製造方法を実行するにあたり、前記強磁性体10は、前記電解槽2に貯められた水中に配される。この際、前記強磁性体10は、前記陽極3Pと前記陰極3N間に配することが好ましい。   2A and 2B show the ferromagnetic body 10 used in the present embodiment. The ferromagnetic body 10 includes a container 11 in which a punching metal made of iron is formed into a box shape, and a steel wool 12 disposed so as to occupy the space in the container 11. In carrying out the manufacturing method of the present invention, the ferromagnetic material 10 is disposed in the water stored in the electrolytic cell 2. At this time, the ferromagnetic material 10 is preferably disposed between the anode 3P and the cathode 3N.

又、本発明製造方法を実行するにあたっては、前記強磁性体10に磁場をかける。本実施形態においては、前記強磁性体10の容器11内壁に複数個の磁石Mを接触させる(張り付ける)ことによって、前記強磁性体10(容器11及びスチールウール12)に磁場をかけた。   In carrying out the manufacturing method of the present invention, a magnetic field is applied to the ferromagnetic material 10. In the present embodiment, a magnetic field was applied to the ferromagnetic body 10 (the container 11 and the steel wool 12) by bringing a plurality of magnets M into contact (sticking) to the inner wall of the container 11 of the ferromagnetic body 10.

[実施例1]
前記構成を有する装置1を用い、下記条件にて、本発明製造方法を実行した。
‐条件‐
電解槽2:330×330×250mm(=0.027m
電極3:ステンレス電極(陰極3N)、炭素電極(陽極3P)
電極間距離:200mm
印加電圧:24V
強磁性体10:容器11のサイズ(110×150×260mm)
磁石M:フェライト磁石(磁束密度0.3T)×12個
水:0.2%水酸化カリウム水溶液(12.45リットル、水温27℃)
[Example 1]
Using the apparatus 1 having the above-described configuration, the manufacturing method of the present invention was executed under the following conditions.
-conditions-
Electrolysis tank 2: 330 × 330 × 250 mm (= 0.027 m 3 )
Electrode 3: Stainless steel electrode (cathode 3N), carbon electrode (anode 3P)
Distance between electrodes: 200mm
Applied voltage: 24V
Ferromagnetic material 10: size of the container 11 (110 × 150 × 260 mm)
Magnet M: Ferrite magnet (magnetic flux density 0.3T) × 12 pieces Water: 0.2% potassium hydroxide aqueous solution (12.45 liters, water temperature 27 ° C.)

[比較例1]
電解槽2内に強磁性体10を配置しなかった以外は、前記実施例1と同様にして電気分解を行った。
[Comparative Example 1]
Electrolysis was performed in the same manner as in Example 1 except that the ferromagnetic material 10 was not disposed in the electrolytic cell 2.

[比較例2]
前記強磁性体10から磁石Mを取り外し、前記強磁性体10のみを前記電解槽2内に配置した以外は、前記実施例1と同様にして電気分解を行った。
前記実施例1及び比較例の双方につき60分の電気分解を行った結果を下記表1に示す。
[Comparative Example 2]
Electrolysis was performed in the same manner as in Example 1 except that the magnet M was removed from the ferromagnetic material 10 and only the ferromagnetic material 10 was placed in the electrolytic cell 2.
The results of electrolysis for 60 minutes for both Example 1 and Comparative Example are shown in Table 1 below.

Figure 2018090882
Figure 2018090882

表1に示す結果から解るように、電解槽2内に配した強磁性体10に磁場をかけながら電気分解する実施例1は、比較例1や比較例2と同じ電圧を印加したにもかかわらず、電解槽2中を流れる電流の値が大きくなっており、結果として発生する水素の量が多くなることが確認された。これより、本発明製造方法によれば、電気分解により効率よく水素を得ることができることが認められた。   As can be seen from the results shown in Table 1, Example 1 that electrolyzes the ferromagnetic material 10 disposed in the electrolytic cell 2 while applying a magnetic field applied the same voltage as Comparative Example 1 and Comparative Example 2. It was confirmed that the value of the current flowing in the electrolytic cell 2 was large, and the amount of hydrogen generated as a result increased. From this, it was recognized that according to the production method of the present invention, hydrogen can be efficiently obtained by electrolysis.

[実施例2]
‐条件‐
電解槽2:1200×700×1000mm(=0.84m
電極3:炭素電極(陽極3P、陰極3N)
電極間距離:1000mm
印加電圧:20〜42.8V
入力電流:42〜110A
強磁性体10:容器11のサイズ(150×600×500mm)
磁石M:フェライト磁石(磁束密度0.3T)×36個
水:0.2%水酸化カリウム水溶液(800リットル、水温45℃)
[Example 2]
-conditions-
Electrolytic cell 2: 1200 × 700 × 1000 mm (= 0.84 m 3 )
Electrode 3: Carbon electrode (anode 3P, cathode 3N)
Distance between electrodes: 1000mm
Applied voltage: 20-42.8V
Input current: 42-110A
Ferromagnetic material 10: size of the container 11 (150 × 600 × 500 mm)
Magnet M: Ferrite magnet (magnetic flux density 0.3T) × 36 pieces Water: 0.2% potassium hydroxide aqueous solution (800 liters, water temperature 45 ° C.)

前記条件にて、本発明製造方法を実行した際、前記強磁性体10に流れる電流(強磁性体内部電流)を測定した結果を下記表2に示す。   Table 2 below shows the results of measuring the current flowing through the ferromagnetic material 10 (ferromagnetic internal current) when the manufacturing method of the present invention was performed under the above conditions.

Figure 2018090882
Figure 2018090882

表2に示す結果から解るように、電解槽2内を流れる電流の85%以上が、強磁性体10内を流れていることが確認された。即ち、本発明製造方法の実行中、磁場をかけられた強磁性体10内を電流が流れ得ることから、電解槽2中に存する水のみかけの電気抵抗値が相対的に下げられ、結果として、発生する水素の量が増加していると考えられる。   As can be seen from the results shown in Table 2, it was confirmed that 85% or more of the current flowing in the electrolytic cell 2 flows in the ferromagnetic body 10. That is, during the execution of the manufacturing method of the present invention, the current can flow through the ferromagnetic material 10 subjected to the magnetic field, so that the apparent electrical resistance value existing in the electrolytic cell 2 is relatively lowered, and as a result It is considered that the amount of generated hydrogen is increasing.

なお、本実施形態においては、強磁性体10として、鉄製の容器11及びスチールウール12を用いているが、強磁性体10としてコバルトやニッケルなどの他の素材を用いて本発明製造方法を実行しても、同様の結果が得られることが確認されている。本発明において、「強磁性体」とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを有する金属材料を意味し、例えば、鉄系金属(鉄、及び鉄を母材とする合金)、コバルト系金属(コバルト、及びコバルトを母材とする合金)、及びニッケル系金属(ニッケル、及びニッケルを母材とする合金)等を挙げることができる。   In this embodiment, the iron container 11 and the steel wool 12 are used as the ferromagnetic body 10, but the manufacturing method of the present invention is executed using other materials such as cobalt and nickel as the ferromagnetic body 10. However, it has been confirmed that similar results can be obtained. In the present invention, “ferromagnetic material” means a metal material in which adjacent spins are aligned in the same direction and have a large magnetic moment as a whole. For example, an iron-based metal (iron and iron as a mother material). Alloy), cobalt-based metal (cobalt and cobalt-based alloy), nickel-based metal (nickel and nickel-based alloy), and the like.

又、本発明製造方法においては、前記強磁性体10のサイズが大きくなるにつれ、又、かける磁場が大きくなるにつれ、電解槽2内のみかけの電気抵抗値が下がり、より水素の発生が効率良くなることが確認されている。前記強磁性体10のサイズは、電極間距離に応じて80%〜95%程度とすることが好ましく、かける磁場については、0.1T以上とすることが好ましい。   Moreover, in the manufacturing method of the present invention, as the size of the ferromagnetic material 10 increases and as the magnetic field applied increases, the apparent electrical resistance value in the electrolytic cell 2 decreases, and hydrogen generation is more efficient. It has been confirmed that The size of the ferromagnetic body 10 is preferably about 80% to 95% depending on the distance between the electrodes, and the applied magnetic field is preferably 0.1 T or more.

更に、前記強磁性体10に磁場をかける手段(磁石M)についても特に限定されるものではなく、フェライト磁石、サマリウムコバルト磁石、ネオジウム磁石等の永久磁石の他、電磁石を用いることもできる。   Further, the means (magnet M) for applying a magnetic field to the ferromagnetic material 10 is not particularly limited, and an electromagnet can be used in addition to a permanent magnet such as a ferrite magnet, a samarium cobalt magnet, or a neodymium magnet.

ところで、本発明製造方法における「水」とは、純水のみを意味するのではなく、電解質を溶かした水溶液等も「水」の範疇に入る。   By the way, “water” in the production method of the present invention does not mean only pure water, but an aqueous solution in which an electrolyte is dissolved also falls within the category of “water”.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、電気分解にて水素を得る手段として好適に用いることができる。   The present invention can be suitably used as a means for obtaining hydrogen by electrolysis.

1 装置
2 電解槽
3 電極
10 強磁性体
11 容器
12 スチールウール
M 磁石

1 Apparatus 2 Electrolytic Cell 3 Electrode 10 Ferromagnetic Material 11 Container 12 Steel Wool M Magnet

Claims (3)

水を電気分解することによって水素を得る水素の製造方法であって、
電解槽に貯められた水中に強磁性体を配し、前記強磁性体に磁場をかけながら電気分解を行うことを特徴とする水素の製造方法。
A method for producing hydrogen, wherein hydrogen is obtained by electrolyzing water,
A method for producing hydrogen, comprising: arranging a ferromagnetic material in water stored in an electrolytic cell; and performing electrolysis while applying a magnetic field to the ferromagnetic material.
請求項1に記載の水素の製造方法において、
前記強磁性体として鉄を用いる水素の製造方法。
The method for producing hydrogen according to claim 1,
A method for producing hydrogen using iron as the ferromagnetic material.
請求項1又は2に記載の水素の製造方法において、
前記強磁性体に永久磁石を接触させることによって、前記強磁性体に磁場をかける水素製造方法。


The method for producing hydrogen according to claim 1 or 2,
A method for producing hydrogen, wherein a magnetic field is applied to the ferromagnetic material by bringing a permanent magnet into contact with the ferromagnetic material.


JP2016237353A 2016-12-07 2016-12-07 Hydrogen production method Active JP6875114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237353A JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237353A JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Publications (2)

Publication Number Publication Date
JP2018090882A true JP2018090882A (en) 2018-06-14
JP6875114B2 JP6875114B2 (en) 2021-05-19

Family

ID=62564354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237353A Active JP6875114B2 (en) 2016-12-07 2016-12-07 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP6875114B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
JPH01275788A (en) * 1988-04-28 1989-11-06 Ishii Sangyo Kk Method and apparatus for electrolysis of water by action of magnetic field
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
JP2003112042A (en) * 2001-10-03 2003-04-15 Ebara Jitsugyo Co Ltd Electrochemical apparatus and process
JP2006022398A (en) * 2004-07-06 2006-01-26 Nezugaseki Saiseki Kogyo Kk Apparatus for producing oxygen and hydrogen in water
JP2009167514A (en) * 2008-01-11 2009-07-30 Success Life Kk Generation apparatus of gaseous hydrogen and gaseous oxygen by electropulse cracking reaction
US20120097550A1 (en) * 2010-10-21 2012-04-26 Lockhart Michael D Methods for enhancing water electrolysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
JPH01275788A (en) * 1988-04-28 1989-11-06 Ishii Sangyo Kk Method and apparatus for electrolysis of water by action of magnetic field
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
JP2003112042A (en) * 2001-10-03 2003-04-15 Ebara Jitsugyo Co Ltd Electrochemical apparatus and process
JP2006022398A (en) * 2004-07-06 2006-01-26 Nezugaseki Saiseki Kogyo Kk Apparatus for producing oxygen and hydrogen in water
JP2009167514A (en) * 2008-01-11 2009-07-30 Success Life Kk Generation apparatus of gaseous hydrogen and gaseous oxygen by electropulse cracking reaction
US20120097550A1 (en) * 2010-10-21 2012-04-26 Lockhart Michael D Methods for enhancing water electrolysis

Also Published As

Publication number Publication date
JP6875114B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
Yu et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting
Bezerra et al. Developing efficient catalysts for the OER and ORR using a combination of Co, Ni, and Pt oxides along with graphene nanoribbons and NiCo 2 O 4
Xu et al. High‐performance water electrolysis system with double nanostructured superaerophobic electrodes
CN105970265B (en) A kind of preparation method for decomposing the Ni-Fe hydroxide nano film catalysts of the doping sulphur of water oxygen
TWI717070B (en) A method for preparing dual function large area catalyst electrode
CN105734600A (en) Three-electrode system double-electrolytic bath two-step water-electrolytic hydrogen producing device and method
CN105951117B (en) A kind of electrolytic method of low cost production high purity of hydrogen peroxide and hydrogen
JP6148472B2 (en) Metal-air secondary battery and electrode manufacturing method
Li et al. A sea anemone-like CuO/Co 3 O 4 composite: an effective catalyst for electrochemical water splitting
Qi et al. Self-supported cobalt–nickel bimetallic telluride as an advanced catalyst for the oxygen evolution reaction
Liu et al. Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution
GB2552270A (en) Electrolytic storage of hydrogen
Farmani et al. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force
CN106884190A (en) A kind of preparation of classifying porous material and classifying porous material
Zhou et al. Recent progress on bulk Fe-based alloys for industrial alkaline water electrolysis
JP6875114B2 (en) Hydrogen production method
Zhang et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities
US2016442A (en) Production of gases by decomposition of aqueous electrolytes
EP2723917A1 (en) Cavitation assisted sonochemical hydrogen production system
JP6208992B2 (en) Alloy electrode for oxygen generation and manufacturing method thereof
JP6932759B2 (en) How to make a large area catalyst electrode
Kim et al. Fabrication of 63Ni layer for betavoltaic battery
RU153346U1 (en) ELECTROLYTIC PLANT FOR PRODUCING A GAS MIXTURE OF HYDROGEN AND OXYGEN
CN101864578A (en) Method for preparing peroxysulfuric acid by sonoelectrochemical method
CN113215612A (en) Method for electrolyzing water and method for preparing catalyst for electrolyzing water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201021

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250