JPH01275737A - High strength stainless steel having excellent cold workability - Google Patents

High strength stainless steel having excellent cold workability

Info

Publication number
JPH01275737A
JPH01275737A JP10269288A JP10269288A JPH01275737A JP H01275737 A JPH01275737 A JP H01275737A JP 10269288 A JP10269288 A JP 10269288A JP 10269288 A JP10269288 A JP 10269288A JP H01275737 A JPH01275737 A JP H01275737A
Authority
JP
Japan
Prior art keywords
less
stainless steel
cold workability
steel
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10269288A
Other languages
Japanese (ja)
Inventor
Michio Okabe
道生 岡部
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10269288A priority Critical patent/JPH01275737A/en
Publication of JPH01275737A publication Critical patent/JPH01275737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title steel with high strength and to improve its corrosion resistance and cold workability by specifying the content of C, Cr, Mo, Ca, etc. in a stainless steel. CONSTITUTION:The compsn. of a high strength stainless steel is constituted of, by weight, 0.3-0.6% C, <=0.3% Si, <=0.3% Mn, <=0.03% P, <=0.005% S, <=0.6% Ni, 13.0-19.0% Cr, 0.3-3.0% Mo, 0.002-0.02% Ca and <=0.05% Al, furthermore of 0.002-0.02% B and one or more kinds among 0.005-0.05% rare earths and balance consisting of Fe with inevitable impurities. If required, one or more kinds among 0.03-0.30% V, 0.03-0.30% Nb and 0.03-0.30% Ta, and, moreover, 0.3-2.0% Cu are incorporated thereto. The stainless steel has excellent cold workability as cast, furthermore has high hardness after quenching and tempering and has excellent corrosion resistance as well.

Description

【発明の詳細な説明】[Detailed description of the invention]

【発明の目的】 (産業上の利用分野) 本発明は、OA種機器自動車、各種産業機械。 各種農業機械、化学装置等において、錆の発生を妹い、
耐摩耗性を含め高強度が要求される部品の素材として利
用される高強度Crステンレス鋼に係り、特に冷間加工
で成形される部品の素材として好適に利用される冷間加
工性の優れた高強度ステンレス鋼に関するものである。 (従来の技術) 従来より錆の発生を嫌う高強度部品、例えば、各種シャ
フト類、セルフタッピンねじ。 電子燃料噴射ノズル、#食軸受などの素材には、5US
410,5US420J2,5US440Cなどのマル
テンサイト系Crステンレス鋼が使用されている。 (発明が解決しようとする課題) しかしながら、これらはステンレス鋼ではあるものの、
使用中に錆が発生することがあり、製品性能の劣化や信
頼性の低下を引き起こすことがある。 さらに、高硬度用の5US440Cなどの高C高Cr材
は、粗大な炭化物を含むので、熱間および冷間における
加工性があまり良くなく、製造が困難な場合がある。ま
た、異形圧延や冷間鍛造も出来にくい。そのため、5U
S440Cなどを素材とする部品形状への加工は、焼鈍
状態で大部分を切削し、焼入れ焼もどし後研削して最終
仕上げすることが多い。 また、Crステンレス鋼よりも高価な5US630など
の析出硬化型マルテンサイト系ステンレス鋼も強度と耐
食性が必要な場合に用いられ、固溶化処理−機械加工−
時効硬化処理の工程で部品に加工されることが多いが、
これもまた、冷間鍛造等の加工が困難である。 このように、従来のマルテンサイト系Crステンレス鋼
は、全般に耐食性が悪く、しかも高硬度材では素材の製
造性と加工性も悪いという問題点がある。また、高価な
析出硬化型マルテンサイト系ステンレス鋼(SUS63
0)でも冷間加工性が悪いという問題点がある。 そして、現在は、これらに代わる比較的安価な材料がな
いため、やむを得ず使用している状態である。このため
、加工費が上昇し、部品価格が材料費に比べ高いものに
なっている。したがって、自動車部品等の大量に生産さ
れ、コスト低減の要求がきつい分野では、この高価格が
、材料の適用範囲や新技術を利用した部品の普及を制限
しているという課題があった。 (発明の目的) 本発明は、この耐食性と冷間加工性の双方の問題を解決
し、比較的安価な冷間加工用高耐食性高強度ステンレス
鋼を提供することによって上述した従来の課題を解決す
ることを目的とするものである。
[Object of the Invention] (Industrial Application Field) The present invention is applicable to OA type equipment, automobiles, and various industrial machines. Prevents rust from forming on various agricultural machinery, chemical equipment, etc.
High-strength Cr stainless steel is used as a material for parts that require high strength including wear resistance, and has excellent cold workability and is particularly suitable as a material for parts formed by cold working. It concerns high-strength stainless steel. (Conventional technology) High-strength parts that are more resistant to rust, such as various shafts and self-tapping screws. 5US is used for materials such as electronic fuel injection nozzles and food bearings.
Martensitic Cr stainless steel such as 410, 5US420J2, 5US440C is used. (Problem to be solved by the invention) However, although these are stainless steel,
Rust may occur during use, leading to deterioration of product performance and reliability. Furthermore, since high C and high Cr materials such as 5US440C for high hardness contain coarse carbides, their workability in hot and cold conditions is not very good and manufacturing may be difficult. It is also difficult to perform deformation rolling or cold forging. Therefore, 5U
When processing a material such as S440C into a part shape, most of the part is cut in an annealed state, quenched and tempered, and then ground for final finishing. In addition, precipitation hardening martensitic stainless steels such as 5US630, which are more expensive than Cr stainless steels, are also used when strength and corrosion resistance are required, and solution treatment - machining -
It is often processed into parts through the age hardening process,
This is also difficult to process such as cold forging. As described above, conventional martensitic Cr stainless steels generally have poor corrosion resistance, and in the case of high-hardness materials, there are problems in that the material has poor manufacturability and workability. In addition, expensive precipitation hardening martensitic stainless steel (SUS63
0) also has the problem of poor cold workability. Currently, there are no relatively inexpensive materials to replace them, so they are used out of necessity. For this reason, processing costs have increased, and parts prices have become higher than material costs. Therefore, in fields such as automobile parts, which are produced in large quantities and where there is a strong demand for cost reduction, there is a problem in that this high price limits the range of application of the material and the spread of parts using new technology. (Objective of the Invention) The present invention solves the above-mentioned conventional problems by solving both the problems of corrosion resistance and cold workability, and providing a relatively inexpensive high-corrosion-resistant, high-strength stainless steel for cold working. The purpose is to

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 鋼材の耐食性を向上させるためには、保護皮膜の安定化
、皮膜補修能力の向上、不動態化皮膜形戊能の向上など
が期待出来るCr、Mo、Cuなどの合金元素の添加が
有効である。 また、冷間加工性の向上には、割れやボイドの起点とな
る粗大炭化物の除去が効果的である。この炭化物は、M
、C3(Mは、主にCr)が主体であるため、これを生
成させないような鋼組成上の配慮が必要である。具体的
には、これは、Cr 、 M o量との関係と必要とす
る強度とを考慮しながらC量を低減することにより達成
される。 さらに1歩留りを向上させて材料を安価に提供するため
には、熱間加工性が優れることが必須である。これには
、低Si、低Sにすると共に、Caの微量添加が有効で
ある。さらに改善するには、B、REMの添加も有効で
ある。 発明者らは、上記の様に強度と耐食性、冷間および熱間
の加工性を考慮し研究開発を進めたところ、これらの特
性に優れたCr系高強度マルテンサイトステンレス鋼を
見いだした。 すなわち、本発明に係る高強度ステンレス鋼は1重量%
で、C:0.3〜0.6%、Si二0.3%以下、M 
n + 0 、3%以下、P:0.03%以下、S:0
.005%以下、Ni:0.6%以下、Cr: 13.
0〜19.0%、Mo:0.3〜3.0%、 Ca:0
.002〜0.02%、Al:0.05%以下、さらに
B:0.002〜0.02%および希土類元素二0.0
05〜0.05%のうちから選ばれる1種または2種以
上、さらにまた必要に応じてV:0.03〜0.30%
、Nb:0.03〜0.30%およびTa:0.03〜
0.30%のうちから選ばれる1種または2種以上、同
じく必要に応じてCu:0.3〜2.0%を含有し、残
部Feおよび不純物からなり、焼なまし状態において優
れた冷間加工性を有することを特徴としており、このよ
うな高Crステンレス鋼の組成とすることにより上述し
た従来の課題を解決するための手段としたものである。 次に、本発明に係る冷間加工性の優れた高強度ステンレ
ス鋼の成分組成(重量%)の限定理由について説明する
。 C:0.3〜0.6% Cは鋼の強度を得るのに必須の元素である。すなわち、
焼入れ時に母相の大部分をマルテンサイト組織にし、こ
れに固溶して強度を著しく高める。また、その後続もど
しを行う場合には、炭化物を形成して強化に寄与する。 そして、十分な強度を得るためには、0.3%以上の添
加が必要である。しかし、Cを多量に添加すると、冷間
加工するための球状化焼鈍(S A)による軟化処理を
施した時に、母相に未固溶の粗大なM、C3(Mは主に
Cr)が残留し、冷間加工性を害する。さらに、Cはマ
ルテンサイト変態点を低下させ、焼入れ時にオーステナ
イト相を残留させ、強度を低下させると共に置き割れを
生じさせ易くする。そのため、Cの上限を0.6%とし
た。 Si:0.3%以下 Siは通常脱酸剤として添加される。このSiは冷間お
よび熱間の加工性を害するので、極力添加を抑制するこ
とが望ましいが、溶製時の製造性を考え、上限を0.3
%とした。 Mn:0.3%以下 MnもSiと同様に脱酸剤として添加されるが、冷間加
工性と耐食性を害するので、0.3%以下とした。 P:0.03%以下 Pは原料等より鋼中に不純物として混入するものである
が、多すぎると、鋼の靭性を損なうので、0.03%以
下とした。 S:0.005%以下 Sも鋼中に不純物として混入するもので、熱間加工性を
劣化させるので、その上限を0 、005%とした。 Ni:0.6%以下 Niはマルテンサイト相の靭性を向上させる元素である
が、多量に含まれると焼鈍しにくくなると同時に変態点
が低下して残留オーステナイトが生成し易くなるので、
上限を0.8%とした。 Cr: 13.0〜19.0% Crは鋼に耐食性を付与する最も基本的な元素であると
同時に、本発明では炭化物を形成する。 そして、十分な耐食性を得るには13.0%以上のCr
が母相に固溶することが必要である。さらに、含有する
C量にもよるが、Crが13.0%未満では粗大な炭化
物であるCr7C3が生成して冷間加工性を害するので
、Cr含有量は13.0%以上とした。また、Crを多
量に含有するとδ−フェライト相を生成して弾度が低下
するので、その上限を19.0%にした。 Mo:0.3〜3.0% MOは鋼の耐食性を向上させるのに有効な元素であり、
この様な効果を得るには0.3%以上含有することが必
要である。また、3.0%超過では、Crと同様にδ−
フェライトが生成し易くなると共に熱間加工性も劣化さ
せる。 Ca:0.002〜0.02% Caは少量の含有により熱間加工性と被削性を向上させ
る。しかし、0.002%未満ではその効果は期待でき
ない、また、多量に含有するとかえって熱間加工性が低
下するので、その上限を0.02%とした。 A又:0.05%以下 AILは脱酸剤として使用されるが、冷間加工性を害す
る酸化物として鋼中に残存するおそれがあるので、不必
要な添加は避ける必要があり、0.05%を上限とした
。 B:0.002〜0.02% 希土類元素(REM):0.005〜0.05% BとREM (希土類元素のうちから選ばれる1種また
は2種以上)は共に熱間加工性を向上させる同様の作用
を有するので、BおよびREMのうちの少なくとも1種
または2種以上を添加する。 このBおよびREMの作用は、Bが0.002%以上、
REMが0.005%以上含有させなければ顕著な作用
が得られない、また、多量に添加するといずれの元素も
熱間加工性をかえって低下させる。そして、Bが多量に
なると、粒界でほう化物を形成したり、濃化してその部
分の融点を下げ、熱間割れを生じ易くする。また、RE
Mが多量になると、介在物を多数形成し1割れの起点と
して作用して熱間加工性を低下させる。したがって、こ
れらの理由により、Bの上限を0.02%、REMの上
限を0.05%とした。 V:0.03〜0.30% Nb:0.03〜0.30% Ta:0.03〜0.30% V、NbおよびTaは微細な炭化物を形成して強度の向
上に寄与するので、必要に応じて添加する。しかし、0
.03%未満ではその効果は少なく、0.30%を超え
て多量に含有すると炭化物が粗大となり熱間、冷間の加
工性が悪くなる。そのため添加する場合にはV、Nbお
よびTaの含有量をそれぞれ0.03〜0.30%とし
た。 Cu:0.3〜2.0% Cuは耐食性を向上させるのに有効な元素であり、必要
に応じて添加する。そして、明瞭な効果を得るには0.
3%以上含有させる必要があるが、多量に添加すると熱
間加工性を害するばかりでなく、Niと同じく変態点を
低下させるので、添加する場合には含有量の上限を2.
0%とした。 (実施例) 第1表に示す化学成分の本発明実施例鋼No。 1〜8と比較例鋼N001〜7を真空およびアルゴン雰
囲気中で50Kg溶製し、鍛造して直径16mmの素材
を製造した0次いで、これらの素材より、熱間加工性を
評価するための素材を採取した後、軟化させるために球
状化焼鈍を施した。 そして、熱間加工性の評価に際しては、1000℃での
熱間圧延時において割れの程度により評価した。この結
果を同じく第1表に示す。 なお、第1表の熱間加工性の欄において、Aは割れがな
かったこと、Bは割れが少しあったこと、Cは割れが多
かったことを示している。 第1表に示すように、本発明実施例鋼No、  1〜8
は、比較例鋼のNo、5 (SUS410)およびNo
、6 (SUS42(lJ2)なみの優れた熱間加工性
を有していることが確かめられた。 次に、冷間加工性を評価するために、球状化焼鈍材を用
いて室温圧縮試験を実施した。この実施の間における圧
縮真応力と圧縮歪との関係を本発明実施例鋼No、 2
 、比較例鋼N004およびN006について第1図に
示す、また、割れの発生しない限界の圧縮全文n (h
o / h)  (ho :圧縮前の試験片の高さ、h
:試験後の試験片の高さ)を同じく第1表に示す。 第1図に示すように、本発明実施例鋼N002は、比較
例鋼N004の5US440Cよりも大幅に冷間加工性
が優れており、同じく比較例鋼No。 6の5US420J2と同等ないしはそれ以上であり、
冷間加工用として十分使用に酎え得るものである。また
、他の本発明実施例鋼も割れの発生しない限界圧縮歪が
第1表に示すように1.80以上であり、良好な冷間加
工性を有していることが認められた。そしてさらに、冷
間加工性を害する粗大炭化物の有無を調査したところ、
同じく第1表のミクロ組織の欄に示すように(0印は粗
大炭化物なし、X印は粗大炭化物ありを示す、)、冷間
加工性と良い対応を示した。 さらに、各供試材の焼入れ・低温焼もどし後の硬さを調
べたところ、同じく第1表の硬さの欄に示すように、本
発明実施例鋼の硬さはいずれもHRC50以上であり、
強度も優れていることが確かめられた。さらにまた、焼
入れ・低温焼もどし後の各供試材の耐食性を湿潤試験に
より調べた。この湿潤試験は、温度49℃、湿度95%
以上の湿潤環境に72時間保持した後の錆の発生の有無
を調べたもので、この結果を同じく第1表の耐食性の欄
に示す。なお、第1表において、Aは錆の発生がなかっ
たこと、Bは錆の発生が少しあったこと、Cは錆の発生
がかなりあったこと、Dは錆の発生が全面にあったこと
を示している。 第1表に示すように、本発明実施例鋼はいずれも比較例
鋼No、4 (SUS440C)やN006(SUS4
20J2)に比べて1ランク上の湿潤耐食性を有してい
ることが認められた。
(Means for solving the problem) In order to improve the corrosion resistance of steel materials, Cr, Mo, Cu, etc. are expected to stabilize the protective film, improve the film repair ability, and improve the passivation film forming ability. The addition of alloying elements is effective. Furthermore, in order to improve cold workability, it is effective to remove coarse carbides that become starting points for cracks and voids. This carbide is M
, C3 (M is mainly Cr), so consideration must be given to the steel composition to prevent the formation of Cr. Specifically, this is achieved by reducing the amount of C while taking into account the relationship between the amounts of Cr and Mo and the required strength. Furthermore, in order to improve the yield and provide the material at low cost, it is essential that the material has excellent hot workability. For this purpose, it is effective to reduce Si and S, as well as add a small amount of Ca. For further improvement, addition of B and REM is also effective. The inventors carried out research and development in consideration of strength, corrosion resistance, and cold and hot workability as described above, and discovered a Cr-based high-strength martensitic stainless steel that is excellent in these properties. That is, the high strength stainless steel according to the present invention contains 1% by weight.
So, C: 0.3 to 0.6%, Si 0.3% or less, M
n + 0, 3% or less, P: 0.03% or less, S: 0
.. 005% or less, Ni: 0.6% or less, Cr: 13.
0-19.0%, Mo: 0.3-3.0%, Ca: 0
.. 002 to 0.02%, Al: 0.05% or less, further B: 0.002 to 0.02%, and rare earth element 20.0
One or more types selected from 0.05 to 0.05%, and further V: 0.03 to 0.30% as necessary.
, Nb: 0.03~0.30% and Ta: 0.03~
Contains one or more selected from 0.30%, Cu: 0.3 to 2.0% if necessary, and the remainder is Fe and impurities, and has excellent cooling properties in the annealed state. It is characterized by having machinability, and by having such a composition of high Cr stainless steel, it is a means to solve the above-mentioned conventional problems. Next, the reasons for limiting the composition (wt%) of the high-strength stainless steel with excellent cold workability according to the present invention will be explained. C: 0.3-0.6% C is an essential element to obtain the strength of steel. That is,
During quenching, most of the matrix becomes a martensite structure, which is solidly dissolved in it to significantly increase its strength. In addition, when the subsequent restoring is performed, carbides are formed and contribute to strengthening. In order to obtain sufficient strength, it is necessary to add 0.3% or more. However, when a large amount of C is added, coarse M and C3 (M is mainly Cr) not dissolved in the matrix are formed in the matrix when softening treatment is performed by spheroidizing annealing (SA) for cold working. It remains and impairs cold workability. Furthermore, C lowers the martensitic transformation point and causes an austenite phase to remain during quenching, lowering the strength and making it more likely to cause cracking. Therefore, the upper limit of C was set to 0.6%. Si: 0.3% or less Si is usually added as a deoxidizing agent. Since this Si impairs cold and hot workability, it is desirable to suppress its addition as much as possible, but considering the manufacturability during melting, the upper limit is set at 0.3
%. Mn: 0.3% or less Mn is also added as a deoxidizing agent like Si, but since it impairs cold workability and corrosion resistance, it is set to 0.3% or less. P: 0.03% or less P is mixed into steel as an impurity from raw materials, etc., but if it is too large, it impairs the toughness of the steel, so it is set to 0.03% or less. S: 0.005% or less S is also mixed into steel as an impurity and deteriorates hot workability, so the upper limit was set at 0.005%. Ni: 0.6% or less Ni is an element that improves the toughness of the martensitic phase, but if it is included in a large amount, it becomes difficult to anneale and at the same time lowers the transformation point and makes it easier to form retained austenite.
The upper limit was set at 0.8%. Cr: 13.0-19.0% Cr is the most basic element that imparts corrosion resistance to steel, and at the same time forms carbides in the present invention. In order to obtain sufficient corrosion resistance, the Cr content must be 13.0% or more.
is required to be dissolved in the matrix. Further, although it depends on the amount of C contained, if the Cr content is less than 13.0%, coarse carbide Cr7C3 will be generated and impair cold workability, so the Cr content is set to 13.0% or more. Further, if a large amount of Cr is contained, a δ-ferrite phase is generated and the elasticity is lowered, so the upper limit is set to 19.0%. Mo: 0.3-3.0% MO is an effective element for improving the corrosion resistance of steel,
To obtain such an effect, it is necessary to contain 0.3% or more. In addition, if it exceeds 3.0%, δ-
Ferrite is easily generated and hot workability is also deteriorated. Ca: 0.002 to 0.02% Ca improves hot workability and machinability by containing a small amount. However, if it is less than 0.002%, the effect cannot be expected, and if it is contained in a large amount, the hot workability will deteriorate, so the upper limit was set at 0.02%. AIL: 0.05% or less AIL is used as a deoxidizing agent, but there is a risk that it may remain in the steel as an oxide that impairs cold workability, so unnecessary addition must be avoided. The upper limit was set at 0.05%. B: 0.002-0.02% Rare earth element (REM): 0.005-0.05% B and REM (one or more selected from rare earth elements) both improve hot workability. At least one or two or more of B and REM are added because they have the same effect as that of B and REM. The effect of this B and REM is that B is 0.002% or more,
A significant effect cannot be obtained unless REM is contained in an amount of 0.005% or more, and if added in large amounts, either element will actually reduce hot workability. When a large amount of B is present, it forms borides at grain boundaries or becomes concentrated, lowering the melting point of those portions and making hot cracking more likely to occur. Also, RE
When M is present in a large amount, a large number of inclusions are formed, which act as starting points for single cracks and reduce hot workability. Therefore, for these reasons, the upper limit of B was set to 0.02%, and the upper limit of REM was set to 0.05%. V: 0.03-0.30% Nb: 0.03-0.30% Ta: 0.03-0.30% V, Nb, and Ta form fine carbides and contribute to improving strength. , add as necessary. However, 0
.. If the content is less than 0.3%, the effect will be small, and if the content exceeds 0.30%, the carbide will become coarse and the hot and cold workability will deteriorate. Therefore, when added, the contents of V, Nb, and Ta are each 0.03 to 0.30%. Cu: 0.3 to 2.0% Cu is an effective element for improving corrosion resistance, and is added as necessary. And to get a clear effect, 0.
It is necessary to contain 3% or more, but if added in a large amount, it not only impairs hot workability but also lowers the transformation point like Ni, so if it is added, the upper limit of the content should be 2.
It was set to 0%. (Example) Example steel No. of the present invention having the chemical composition shown in Table 1. 1 to 8 and Comparative Example Steel N001 to 7 were melted in a vacuum and in an argon atmosphere in an amount of 50 kg and forged to produce a material with a diameter of 16 mm.Next, from these materials, materials for evaluating hot workability were obtained. After collecting it, it was subjected to spheroidizing annealing to soften it. The hot workability was evaluated based on the degree of cracking during hot rolling at 1000°C. The results are also shown in Table 1. In the hot workability column of Table 1, A indicates that there were no cracks, B indicates that there were some cracks, and C indicates that there were many cracks. As shown in Table 1, invention example steel Nos. 1 to 8
Comparative example steel No. 5 (SUS410) and No.
, 6 (It was confirmed that it has excellent hot workability comparable to SUS42 (lJ2).Next, in order to evaluate the cold workability, a room temperature compression test was performed using the spheroidized annealed material. The relationship between compressive true stress and compressive strain during this implementation was determined for Invention Example Steel No. 2.
, Comparative example steels N004 and N006 are shown in Fig. 1, and the maximum compression range n (h
o/h) (ho: Height of specimen before compression, h
: height of the test piece after the test) are also shown in Table 1. As shown in FIG. 1, Example Steel No. 002 of the present invention has significantly better cold workability than Comparative Example Steel No. 5US440C, which is also Comparative Example Steel No. It is equivalent to or more than 5US420J2 of 6,
It can be fully used for cold processing. Further, the critical compressive strain at which cracking does not occur for other steels of the present invention was 1.80 or more as shown in Table 1, and it was recognized that they had good cold workability. Furthermore, we investigated the presence of coarse carbides that impair cold workability.
Similarly, as shown in the microstructure column of Table 1 (0 mark indicates no coarse carbide, X mark indicates presence of coarse carbide), there was a good correspondence with cold workability. Furthermore, when the hardness of each sample material after quenching and low-temperature tempering was investigated, as shown in the hardness column of Table 1, all of the steels of the present invention had a hardness of HRC50 or higher. ,
It was confirmed that the strength was also excellent. Furthermore, the corrosion resistance of each sample material after quenching and low-temperature tempering was investigated by a wet test. This humidity test was conducted at a temperature of 49°C and a humidity of 95%.
The presence or absence of rust was investigated after being kept in the above humid environment for 72 hours, and the results are also shown in the corrosion resistance column of Table 1. In Table 1, A means that there was no rust, B means that there was a little rust, C means that there was a lot of rust, and D means that there was rust all over the surface. It shows. As shown in Table 1, the example steels of the present invention are comparative example steel No. 4 (SUS440C) and N006 (SUS4
It was recognized that the wet corrosion resistance was one rank higher than that of 20J2).

【発明の効果】【Effect of the invention】

以上のように、本発明に係るステンレス鋼は、重量%で
、C:0.3〜0.6%、Si:0.3%以下、M n
 : 0 、3%以下、P:0.03%以下、S:0.
005%以下、Ni:0.6%以下、Cr: 13.0
〜19.0%、M o + 0 、3〜3.0%、Ca
:0.002〜0.02%、Al:0.05%以下、さ
らにB:0.002〜0.02%および希土類元素: 
0.005〜0.05%のうちから選ばれる1種または
2種以上、さらにまた必要に応じてV:0.03〜0.
30%、Nb:0.03〜0.30%およびTa:0.
03〜0.30%のうちから選ばれる1種または2種以
上、同じく必要に応じてCu:0.3〜2.0%を含有
し、残部Feおよび不純物からなるものであるから、素
材製造時の熱間加工性が良好であるため、製造性にすぐ
れたものとなっており、したがって素材を安価に提供す
ることができ、かつまた従来鋼に比べて焼なまし状態に
おいて冷間加工性に著しく優れていると共に、焼入れ焼
もどし後の硬さが大で強度が比較的高く、さらにまた従
来鋼に比べて耐食性にも著しくすぐれたものであって、
従来の耐食性と冷間加工性の双方の課題を解決し、比較
的安価な冷間加工用高耐食性高強度ステンレス鋼を提供
することが可能であるという著大なる効果がもたらされ
る。
As described above, the stainless steel according to the present invention has C: 0.3 to 0.6%, Si: 0.3% or less, M n
: 0, 3% or less, P: 0.03% or less, S: 0.
005% or less, Ni: 0.6% or less, Cr: 13.0
~19.0%, M o + 0, 3~3.0%, Ca
: 0.002 to 0.02%, Al: 0.05% or less, B: 0.002 to 0.02%, and rare earth elements:
One or more types selected from 0.005 to 0.05%, and if necessary, V: 0.03 to 0.05%.
30%, Nb: 0.03-0.30% and Ta: 0.
The material contains one or more selected from 0.03 to 0.30%, and if necessary Cu: 0.3 to 2.0%, with the balance consisting of Fe and impurities. Because it has good hot workability during annealing, it has excellent manufacturability, so the material can be provided at a low price, and it also has good cold workability in the annealed state compared to conventional steel. In addition, it has a high hardness and relatively high strength after quenching and tempering, and it also has significantly superior corrosion resistance compared to conventional steel.
A significant effect is brought about in that it is possible to solve the conventional problems of both corrosion resistance and cold workability, and to provide a relatively inexpensive high corrosion resistance and high strength stainless steel for cold working.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例鋼N002および比較例鋼No、
 4 、 No、 6について室温圧縮試験を行った際
の圧縮真応力と圧縮歪との関係を調べた結果を例示する
グラフである。
Figure 1 shows Example Steel No. 002 of the present invention and Comparative Example Steel No.
4 is a graph illustrating the results of examining the relationship between compressive true stress and compressive strain when a room temperature compression test was performed on Samples No. 4, No. 6, and No. 6.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、C:0.3〜0.6%、Si:0.3
%以下、Mn:0.3%以下、P:0.03%以下、S
:0.005%以下、Ni:0.6%以下、Cr:13
.0〜19.0%、Mo:0.3〜3.0%、Ca:0
.002〜0.02%、Al:0.05%以下、さらに
B:0.002〜0.02%および希土類元素:0.0
05〜0.05%のうちから選ばれる1種または2種以
上、残部Feおよび不純物からなり、焼なまし状態にお
いて優れた冷間加工性を有することを特徴とする冷間加
工性の優れた高強度ステンレス鋼。
(1) In weight%, C: 0.3-0.6%, Si: 0.3
% or less, Mn: 0.3% or less, P: 0.03% or less, S
: 0.005% or less, Ni: 0.6% or less, Cr: 13
.. 0-19.0%, Mo: 0.3-3.0%, Ca: 0
.. 002 to 0.02%, Al: 0.05% or less, further B: 0.002 to 0.02%, and rare earth elements: 0.0
0.05 to 0.05%, the balance being Fe and impurities, and having excellent cold workability in an annealed state. High strength stainless steel.
(2)重量%で、C:0.3〜0.6%、Si:0.3
%以下、Mn:0.3%以下、P:0.03%以下、S
:0.005%以下、Ni:0.6%以下、Cr:13
.0〜19.0%、Mo:0.3〜3.0%、Ca:0
.002〜0.02%、Al:0.05%以下、さらに
B:0.002〜0.02%および希土類元素:0.0
05〜0.05%のうちから選ばれる1種または2種以
上、さらにまたV:0.03〜0.30%、Nb:0.
03〜0.30%およびTa:0.03〜0.30%の
うちから選ばれる1種または2種以上、残部Feおよび
不純物からなり、焼なまし状態において優れた冷間加工
性を有することを特徴とする冷間加工性の優れた高強度
ステンレス鋼。
(2) In weight%, C: 0.3 to 0.6%, Si: 0.3
% or less, Mn: 0.3% or less, P: 0.03% or less, S
: 0.005% or less, Ni: 0.6% or less, Cr: 13
.. 0-19.0%, Mo: 0.3-3.0%, Ca: 0
.. 002 to 0.02%, Al: 0.05% or less, further B: 0.002 to 0.02%, and rare earth elements: 0.0
05 to 0.05%, one or more selected from 0.05 to 0.05%, furthermore V: 0.03 to 0.30%, Nb: 0.
03 to 0.30% and Ta: 0.03 to 0.30%, the balance being Fe and impurities, and having excellent cold workability in an annealed state. High strength stainless steel with excellent cold workability.
(3)重量%で、C:0.3〜0.6%、Si:0.3
%以下、Mn:0.3%以下、P:0.03%以下、S
:0.005%以下、Ni:0.6%以下、Cr:13
.0〜19.0%、Mo:0.3〜3.0%、Ca:0
.002〜0.02%、Al:0.05%以下、さらに
B:0.002〜0.02%および希土類元素:0.0
05〜0.05%のうちから選ばれる1種または2種以
上、さらにまたCu:0.3〜2.0%、残部Feおよ
び不純物からなり、焼なまし状態において優れた冷間加
工性を有することを特徴とする冷間加工性の優れた高強
度ステンレス鋼。
(3) In weight%, C: 0.3 to 0.6%, Si: 0.3
% or less, Mn: 0.3% or less, P: 0.03% or less, S
: 0.005% or less, Ni: 0.6% or less, Cr: 13
.. 0-19.0%, Mo: 0.3-3.0%, Ca: 0
.. 002 to 0.02%, Al: 0.05% or less, further B: 0.002 to 0.02%, and rare earth elements: 0.0
Cu: 0.3-2.0%, balance Fe and impurities, and has excellent cold workability in the annealed state. A high-strength stainless steel with excellent cold workability.
(4)重量%で、C:0.3〜0.6%、Si:0.3
%以下、Mn:0.3%以下、P:0.03%以下、S
:0.005%以下、Ni:0.6%以下、Cr:13
.0〜19.0%、Mo:0.3〜3.0%、Ca:0
.002〜0.02%、Al:0.05%以下、さらに
B:0.002〜0.02%および希土類元素:0.0
05〜0.05%のうちから選ばれる1種または2種以
上、さらにまたV:0.03〜0.30%、Nb:0.
03〜0.30%およびTa:0.03〜0.30%の
うちから選ばれる1種または2種以上、さらにまたCu
:0.3〜2.0%、残部Feおよび不純物からなり、
焼なまし状態において優れた冷間加工性を有することを
特徴とする冷間加工性の優れた高強度ステンレス鋼。
(4) In weight%, C: 0.3 to 0.6%, Si: 0.3
% or less, Mn: 0.3% or less, P: 0.03% or less, S
: 0.005% or less, Ni: 0.6% or less, Cr: 13
.. 0-19.0%, Mo: 0.3-3.0%, Ca: 0
.. 002 to 0.02%, Al: 0.05% or less, further B: 0.002 to 0.02%, and rare earth elements: 0.0
05 to 0.05%, one or more selected from 0.05 to 0.05%, furthermore V: 0.03 to 0.30%, Nb: 0.
03 to 0.30% and one or more selected from Ta: 0.03 to 0.30%, furthermore Cu
: 0.3 to 2.0%, the balance consisting of Fe and impurities,
A high-strength stainless steel with excellent cold workability, which is characterized by excellent cold workability in an annealed state.
JP10269288A 1988-04-27 1988-04-27 High strength stainless steel having excellent cold workability Pending JPH01275737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269288A JPH01275737A (en) 1988-04-27 1988-04-27 High strength stainless steel having excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269288A JPH01275737A (en) 1988-04-27 1988-04-27 High strength stainless steel having excellent cold workability

Publications (1)

Publication Number Publication Date
JPH01275737A true JPH01275737A (en) 1989-11-06

Family

ID=14334304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269288A Pending JPH01275737A (en) 1988-04-27 1988-04-27 High strength stainless steel having excellent cold workability

Country Status (1)

Country Link
JP (1) JPH01275737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053555A1 (en) * 2000-01-17 2001-07-26 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
WO2016093762A1 (en) * 2014-12-09 2016-06-16 Voestalpine Precision Strip Ab Stainless steel for flapper valves
SE1751230A1 (en) * 2017-10-05 2019-04-06 Uddeholms Ab Stainless steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053555A1 (en) * 2000-01-17 2001-07-26 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
GB2374605A (en) * 2000-01-17 2002-10-23 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
GB2374605B (en) * 2000-01-17 2004-02-25 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
US6770243B2 (en) 2000-01-17 2004-08-03 Stahlwerk Ergste Westig Gmbh Chrome steel alloy
CZ297208B6 (en) * 2000-01-17 2006-10-11 Stahlwerk Ergste Westig Gmbh Chrome-steel alloy
WO2016093762A1 (en) * 2014-12-09 2016-06-16 Voestalpine Precision Strip Ab Stainless steel for flapper valves
SE1751230A1 (en) * 2017-10-05 2019-04-06 Uddeholms Ab Stainless steel
WO2019070189A1 (en) * 2017-10-05 2019-04-11 Uddeholms Ab Stainless steel, a prealloyed powder obtained by atomizing the steel and use of the prealloyed powder
SE541151C2 (en) * 2017-10-05 2019-04-16 Uddeholms Ab Stainless steel
US11591678B2 (en) 2017-10-05 2023-02-28 Uddeholms Ab Stainless steel

Similar Documents

Publication Publication Date Title
US5288347A (en) Method of manufacturing high strength and high toughness stainless steel
CN114787406A (en) Austenitic stainless steel material, method for producing same, and plate spring
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JP3932995B2 (en) Induction tempering steel and method for producing the same
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JPH0772323B2 (en) Non-heat treated steel bar for hot forging
JPH02236223A (en) Production of high strength steel excellent in delayed fracture characteristic
EP0498105B1 (en) High strength and high toughness stainless steel and method of manufacturing the same
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH03100142A (en) Case hardening steel for bearing having excellent crushing property and its manufacture
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPH01275737A (en) High strength stainless steel having excellent cold workability
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP2828754B2 (en) Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability
JP5233848B2 (en) Non-tempered steel bar for direct cutting
JPH04120249A (en) Martensitic stainless steel and its production
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
CN111334708B (en) High-strength spring steel with tensile strength of more than or equal to 2250MPa and excellent fatigue performance and production method thereof
KR900007446B1 (en) Method for producing a high tensile steel having a good properties of strength resistant abraison resistant carrosion
JPH1072639A (en) Steel material for machine structural use, excellent in machinability, cold forgeability, and hardenability
JPH0717944B2 (en) Manufacturing method of bainite steel sheet with excellent spring characteristics