JPH01274841A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH01274841A
JPH01274841A JP63102294A JP10229488A JPH01274841A JP H01274841 A JPH01274841 A JP H01274841A JP 63102294 A JP63102294 A JP 63102294A JP 10229488 A JP10229488 A JP 10229488A JP H01274841 A JPH01274841 A JP H01274841A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
refractory
nd2o3
la2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63102294A
Other languages
Japanese (ja)
Other versions
JP2606279B2 (en
Inventor
Hisanori Itou
寿記 伊藤
Shinichi Matsumoto
伸一 松本
Naoto Miyoshi
直人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63102294A priority Critical patent/JP2606279B2/en
Publication of JPH01274841A publication Critical patent/JPH01274841A/en
Application granted granted Critical
Publication of JP2606279B2 publication Critical patent/JP2606279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the activity and refractoriness of the title catalyst by laminating a refractory coat layer contg. Nd2O3 carrying Pd and La2O3 carrying Rh on a refractory carrier to form the catalyst for purifying exhaust gas. CONSTITUTION:The powder of Nd2O3 is added to an aq. soln. of Pd salt, and the mixture is dried and then calcined to prepare the Nd2O3 carrying Pd. The La2O3 carrying Rh is prepared in the same way. The material for a refractory coat layer, the Nd2O3 carrying Pd, and the La2O3 carrying Rh are mixed in a specified ratio to prepare a slurry. A refractory carrier is dipped in the slurry, dried, and then calcined to form an exhaust gas purifying catalyst wherein the refractory coat layer 2 contg. Nd2O3-Pd and La2O3-Rh is laminated on the refractory carrier 1. Cordierite, etc., are used for the refractory carrier, and activated alumina, etc., are used for the refractory coat layer material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気ガス浄化用触媒、更に詳しくは触媒成分と
してパラジウム(P d)及びロジウA(Rh)を含む
排気ガス浄化用触媒に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust gas purification catalyst, and more particularly to an exhaust gas purification catalyst containing palladium (Pd) and Rhodium A (Rh) as catalyst components. be.

〔従来の技術〕[Conventional technology]

自動車等の内燃機関から排出される排気ガス中に含有さ
れる有害物質のうち、主なものは炭化水素(HC)、−
酸化炭素(CO)及び窒素醸化物(NOx)の三成分で
ある。この三成分を一度に浄化処理できる触媒を三元触
媒と呼んでいる。三元触媒においては触媒成分として青
金層が使用されており、例えば白金(Pt)又はパラジ
ウムはHC及びCOの酸化に有効であり、又、RhはN
Oxの還元に有効である。それ故、三元触媒としては(
pt又はPd)/Rh系触媒が用いられているが、近年
、ptよりも資源量及び価格の点で有利なPdを用いた
P d/Rh系触媒を用いる試みがなされている。
Among the harmful substances contained in the exhaust gas emitted from internal combustion engines such as automobiles, the main ones are hydrocarbons (HC), -
It consists of three components: carbon oxide (CO) and nitrogen compounds (NOx). A catalyst that can purify these three components at once is called a three-way catalyst. In three-way catalysts, a blue gold layer is used as a catalyst component; for example, platinum (Pt) or palladium is effective for oxidizing HC and CO, and Rh is effective for oxidizing HC and CO.
Effective in reducing Ox. Therefore, as a three-way catalyst (
Although PT or Pd)/Rh-based catalysts have been used, in recent years, attempts have been made to use Pd/Rh-based catalysts using Pd, which is more advantageous than PT in terms of resource amount and price.

L記触奴において、Pdは還元性雰囲気で粒成長し易く
、それ自体の表面積を減少させて活性を低下させる傾向
がある。又、PdはRhの表面を覆ったり、これと合金
化し易く、触媒活性や耐久性の点で問題がある。
In L-catalysts, Pd tends to grow grains in a reducing atmosphere, reducing its own surface area and reducing its activity. Furthermore, Pd tends to cover the surface of Rh or form an alloy with it, which poses problems in terms of catalytic activity and durability.

前記問題点を解決するため、本出願人は特開昭80−1
14341号公報において、アルミナ(AM2O3 )
などからなる触媒担体上に触媒成分としてPd、Rh及
びネオジA(Nd)及び/又はサマリウム(Sm)を相
持せしめてなる排気ガス浄化用触媒を提案した。
In order to solve the above-mentioned problems, the applicant has
In Publication No. 14341, alumina (AM2O3)
We have proposed an exhaust gas purifying catalyst in which Pd, Rh, and neodymium A (Nd) and/or samarium (Sm) are supported as catalyst components on a catalyst carrier made of the following materials.

又1本出願人は特開昭82−571351号公報におい
て、モノリス担体にアルミナコート層が形成されており
、このアルミナコート層に触媒成分が担持されている排
気ガス浄化用モノリス触媒において、Nd若しくはSm
が添加されたPdからなる触媒成分が担持されたアルミ
ナコート層と、ランタン(La)、イツトリウム(Y)
若しくはスカンジウム(S e)が添加されたRhから
なる触媒成分が担持されたアルミナコート層と、セリウ
ム(Ce)が添加されたPtからなる触媒成分が相持さ
れたアルミノ−コート層とからなる3層のアルミナコー
ト層が形成されている排気ガス浄化用モノリス触媒を提
案した。
In addition, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 82-571351 a monolith catalyst for exhaust gas purification in which an alumina coat layer is formed on a monolith carrier, and a catalyst component is supported on this alumina coat layer. Sm
an alumina coat layer supporting a catalyst component made of Pd doped with lanthanum (La) and yttrium (Y);
Or three layers consisting of an alumina coat layer supporting a catalyst component made of Rh to which scandium (Se) is added, and an alumino coat layer supporting a catalyst component made of Pt to which cerium (Ce) is added. We have proposed a monolithic catalyst for exhaust gas purification that has an alumina coat layer formed on it.

前記二つの提案は、NdやSmがPdと複合酸化物を作
ること&こよりPdの粒成長を抑制するという知見に基
づいてなされたものである。
The above two proposals were made based on the knowledge that Nd and Sm form a composite oxide with Pd and thereby suppress the grain growth of Pd.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特開昭60−114341号公報記載の
排気ガス浄化用触媒は、アルミナなどからなる触媒担体
にNd及び/又はSmを添加し、その後Pd及びRhを
担持するものであるため、NdやSmのところにPdを
全て担持できず、他のところに担持されたPdは粒成長
し易い。
However, the exhaust gas purifying catalyst described in JP-A-60-114341 adds Nd and/or Sm to a catalyst carrier made of alumina or the like, and then supports Pd and Rh. All the Pd cannot be supported in some places, and the Pd supported in other parts tends to grow into grains.

又、RhにはNdやSmよりもLaの方が効果が大きい
Furthermore, La has a greater effect on Rh than Nd or Sm.

又、特開昭132−57851号公報記載の排気ガス詐
化用モノリス触媒は、各々異なる触媒成分が担持された
3層のアルミナコート層を形成する必要があり、触媒の
構成が複雑であるのでその調製が容易ではない。
Furthermore, the monolithic catalyst for exhaust gas fraud described in JP-A No. 132-57851 requires the formation of three alumina coat layers, each carrying a different catalyst component, and the structure of the catalyst is complicated. Its preparation is not easy.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするどころは製造が容易で活性
及び耐久性に優れ、且つ高価で貴重な貴金属を有効に使
用することができる排気ガス浄化用触媒を提供すること
にある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to provide an exhaust gas that is easy to manufacture, has excellent activity and durability, and can effectively use expensive and precious precious metals. An object of the present invention is to provide a catalyst for gas purification.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明の排気ガス浄化用触媒は、耐火性担体と
該担体上の耐火性コート層とから形成され、該コート層
には予めパラジウム(P d)が相持された酸化ネオジ
ム(Nd2O3 )と予めロジウム(Rh)が担持され
た酸化ランタン(La2O3)とが含まれることを特徴
とする。
That is, the exhaust gas purifying catalyst of the present invention is formed of a refractory carrier and a refractory coat layer on the carrier, and the coat layer is coated with neodymium oxide (Nd2O3) on which palladium (Pd) has been previously supported. It is characterized by containing lanthanum oxide (La2O3) on which rhodium (Rh) is supported.

耐火性押体の材質は例えばコーディエライト、ムライト
、アルミナ、耐熱性金属等であってよい、その大きさや
形状は特に限定されない。
The material of the refractory press may be, for example, cordierite, mullite, alumina, heat-resistant metal, etc., and its size and shape are not particularly limited.

形状としては例えばベレット状又はハニカム状のモノリ
ス担体等であってよい、コーディエライト質モノリス担
体を用いるのが好ましい。
It is preferable to use a cordierite monolithic support, which may have a shape such as a pellet-like or honeycomb-like monolithic support.

耐火性コート層の材料としてはセラミック例えば活性ア
ルミナが挙げられる。
Materials for the refractory coating layer include ceramics such as activated alumina.

PdをNd2O3に担持させるには、慣用の方法例えば
浸漬法を用いる。すなわち、Pd塩水溶液にNd2O3
粉末を加え、乾燥後焼成する。RhをLa2O3に担持
させるにも同様の方法を用いることができる。
To support Pd on Nd2O3, a conventional method such as a dipping method is used. That is, Nd2O3 is added to the Pd salt aqueous solution.
Powder is added, dried and fired. A similar method can be used to support Rh on La2O3.

耐火性コート層の材料とPdが担持されたNd、、03
及びRhが相持されたLa2O3とを所望比率で混合し
たスラリー中に耐火性担体を浸漬し7、乾燥後焼成する
ことにより本発明の排気ガス浄化用触媒を得ることがで
きる。なお、前記スラリー中には他の成分例えば助触媒
成分などを加えてもよい。
Fire-resistant coating layer material and Pd-supported Nd, 03
The exhaust gas purifying catalyst of the present invention can be obtained by immersing a refractory carrier in a slurry prepared by mixing La2O3 and La2O3 with Rh in a desired ratio, drying the carrier, and then calcining it. Note that other components such as promoter components may be added to the slurry.

〔作 用〕[For production]

Nd2O3はPdの粒成長を抑制する効果を持っている
。又、Nd2O3とPdは一部複合酸化物を作り、この
複合酸化物によってもPdの粒成長が抑制される。同様
に、La2O3はRh(7)粒成長を抑制し、又、La
2O3とRhの複合酸化物によってもRhの粒成長が抑
制される。それ故、Nd2O3にPdを担持させ、La
2O3にRhを担持させることにより、PdとRhの両
方の粒成長が有効に抑制されるので活性の低下を防ぐこ
とができる。又、多孔質の耐火性コート層を用いること
によりコート層中に排気ガスを効率よく分散させること
がCきる。
Nd2O3 has the effect of suppressing grain growth of Pd. Further, Nd2O3 and Pd partially form a composite oxide, and this composite oxide also suppresses the grain growth of Pd. Similarly, La2O3 suppresses Rh(7) grain growth, and La2O3 also suppresses Rh(7) grain growth.
The composite oxide of 2O3 and Rh also suppresses Rh grain growth. Therefore, by supporting Pd on Nd2O3, La
By supporting Rh on 2O3, grain growth of both Pd and Rh can be effectively suppressed, thereby preventing a decrease in activity. Further, by using a porous fire-resistant coating layer, exhaust gas can be efficiently dispersed in the coating layer.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in further detail in the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

硝酸パラジウム水溶液(1,2wt%)にNd2O3粉
末2O0 gを入れて攪拌し、約2時間後PiMして、
その粉末を100℃で1時間乾燥後600℃で3時間焼
成し、Pd12gが担持されたNd2O3粉末(粉末A
)を作る。次に硝酸ロジウム水溶液(0,15wt%)
にLa2O3粉末180gを入れて攪拌し、約2時間接
濾過して、その粉末を 100℃で1時間乾燥後600
℃で3時間焼成し、Rh1.5gが担持されたLa2O
3粉末(粉末B)を作る。続いて活性アルミナ粉末10
00 g、上記粉末A、粉末B、硝酸アルミニウム水溶
液(40wt%)  300g及び黒潮水900gtW
合し、攪拌し2てスラリーエを調製した6、このスラリ
ーエに、コーディエライト質モノリス担体(φ107X
78L)を1分間侵漬した後、引き挙げて余分な水分を
吹きとばし、 100℃で1時間乾燥後、700″Cで
2時間焼成し、70gコートした。
2O0 g of Nd2O3 powder was added to a palladium nitrate aqueous solution (1.2 wt%) and stirred, and after about 2 hours PiM was carried out.
The powder was dried at 100°C for 1 hour and then calcined at 600°C for 3 hours.
)make. Next, rhodium nitrate aqueous solution (0.15wt%)
180g of La2O3 powder was added to the container, stirred, and filtered for about 2 hours.The powder was dried at 100℃ for 1 hour and then heated to 600℃
La2O with 1.5g of Rh supported by firing at ℃ for 3 hours
3. Make powder (powder B). Next, activated alumina powder 10
00 g, the above powder A, powder B, aluminum nitrate aqueous solution (40 wt%) 300 g, and Kuroshio water 900 gtW
A slurry was prepared by mixing and stirring 2. A cordierite monolithic carrier (φ107X
78L) was immersed for 1 minute, then pulled out, excess moisture was blown off, dried at 100°C for 1 hour, and then baked at 700''C for 2 hours to coat 70g.

このようにして、 Nd2 03−Pd  。In this way, Nd203-Pd.

La2O3−Rhを触媒成分として担持している触媒工
を得たや 図は本発明の排気ガス浄化用触媒の概略構成図である0
図中、1はコーディエライト賀モノリス担体、2は活性
アルミナコート層を表わす。
A catalyst structure supporting La2O3-Rh as a catalyst component was obtained. The figure is a schematic diagram of the exhaust gas purifying catalyst of the present invention.
In the figure, 1 represents the cordierite monolith carrier, and 2 represents the activated alumina coat layer.

比較例1 活性アルミナ粉末1000g、硝酸アルミニウム水溶液
(40wt%)  300sr、純水900gを混合し
、攪拌してスラリーIIを調製した。このスラリーII
にコーディエライト質モノリス担体(φ107 X78
L)を1分間浸漬した後、引き」−ばて余分な水分を吹
きとばし、100℃で1時間乾燥後、700℃で2時間
焼成し70gコートした。この担体を硝酸ランタン(2
8,8wt%)、硝酸ネオジム(28,9wt%)の混
合水溶液に浸漬した後引き上げ、余分な水分を吹きとば
し、 100°Cで1時間乾燥した後、700℃で2時
間焼成した。次いで、この担体を硝酸パラジウム水溶液
(0,44wt%)に攪拌しながら2時間浸漬した後、
引き上げ乾燥した。更に、この担体を硝酸ロジウム水溶
液(0,044wt%)に攪拌しながら1時間浸漬した
後、引き上げ乾燥した。
Comparative Example 1 1000 g of activated alumina powder, 300 sr of aluminum nitrate aqueous solution (40 wt%), and 900 g of pure water were mixed and stirred to prepare slurry II. This slurry II
Cordierite monolith carrier (φ107 x 78
L) was immersed for 1 minute, then stretched to remove excess moisture, dried at 100°C for 1 hour, and then baked at 700°C for 2 hours to coat 70g. This carrier is lanthanum nitrate (2
After being immersed in a mixed aqueous solution of neodymium nitrate (28.9 wt%) and neodymium nitrate (28.9 wt%), it was pulled out, excess water was blown off, dried at 100°C for 1 hour, and then fired at 700°C for 2 hours. Next, this carrier was immersed in an aqueous palladium nitrate solution (0.44 wt%) for 2 hours while stirring, and then
Pulled up and dried. Further, this carrier was immersed in an aqueous rhodium nitrate solution (0,044 wt%) for 1 hour while stirring, and then pulled up and dried.

このようにして、Nd、La、Pd及びRhを触媒成分
として担持している触媒IIを得た。
In this way, catalyst II supporting Nd, La, Pd, and Rh as catalyst components was obtained.

比較例2 実施例のようにNdz03−Pdの粉末Aを作る。続い
て活性アルミナ粉末1000 g、粉末A、硝酸アルミ
ニウム水溶液(40wt%)  300g及び黒潮水9
00 gを混合し攪拌してスラリーmを調製した。
Comparative Example 2 Ndz03-Pd powder A is made as in Example. Next, 1000 g of activated alumina powder, powder A, 300 g of aluminum nitrate aqueous solution (40 wt%), and Kuroshio water 9
00 g was mixed and stirred to prepare slurry m.

このスラリーmに、コーディエライト質モノリス担体(
φ107 X78L)を1分間浸漬した後、引き上げて
余分な水分を吹きとばし、 100°Cで1時間乾燥後
、700″Cで2時間焼成し、7゜gコートした0次に
この担体を硝酸ロジウム水溶液(0,044wt%)に
攪拌しながら1時間浸漬した後、引き上げ乾燥した。
A cordierite monolith carrier (
φ107 x 78L) was immersed for 1 minute, pulled out, blown off excess water, dried at 100°C for 1 hour, baked at 700″C for 2 hours, coated with 7°g, and then coated with rhodium nitrate. After being immersed in an aqueous solution (0,044 wt%) for 1 hour while stirring, it was pulled up and dried.

コノヨうニシテ、Nd2O3−Pd及びRhを触媒成分
として担持している触媒■を得た。
A catalyst (2) was obtained in which Nd2O3-Pd and Rh were supported as catalyst components.

比較例3 実施例のようにLa2O3−Rhの粉末Bを作る。続い
て活性アルミナ粉末1000 g、粉末B、硝酸アルミ
ニウム水溶液(40wt%)  300g及び黒潮水7
00gを混合し攪拌してスラリー■を調製した。
Comparative Example 3 Powder B of La2O3-Rh is prepared as in Example. Next, 1000 g of activated alumina powder, Powder B, 300 g of aluminum nitrate aqueous solution (40 wt%), and Kuroshio water 7
00g were mixed and stirred to prepare slurry (■).

このスラリー■に、コーディエライト質モノリス担体(
φ107 X78L)を1分間侵漬した後、引き上げて
余分な水分を吹きとばし、 100℃で1時間乾燥後、
700℃で2時間焼成し、70gコートした0次にこの
担体を硝酸パラジウム水溶液(0゜44wt%)に攪拌
しながら2時間浸漬した後、引き上げ乾燥した。
A cordierite monolithic carrier (
φ107 x 78L) was immersed for 1 minute, then pulled out and the excess water was blown off. After drying at 100℃ for 1 hour,
The carrier was calcined at 700°C for 2 hours, coated with 70g, and immersed in an aqueous palladium nitrate solution (0°44 wt%) for 2 hours with stirring, and then pulled up and dried.

このようにしてt Pd及びLa2O3−Rhを触媒成
分として担持している触媒■を得た。
In this way, a catalyst (2) supporting tPd and La2O3-Rh as catalyst components was obtained.

実施例及び比較例1,2.3より得られた各触媒の成分
含有量を第1表に示す。
Table 1 shows the component content of each catalyst obtained in Examples and Comparative Examples 1, 2.3.

第1表 く耐久試験〉 これら4種の触媒に対し、以下の方法により耐久試験を
実施12、浄化性能を評価した。
Durability test shown in Table 1> Durability tests were conducted on these four types of catalysts according to the following method12, and the purification performance was evaluated.

耐久試験は、6気筒2800ccエンジン(5M−G)
の排気系に触媒を設置する方法で、空燃比(A/F) 
+4.+3、空間速度(S V )  eooooH,
−−i及び触媒床温度800℃で2O0時間運転した。
Durability test was conducted using a 6-cylinder 2800cc engine (5M-G)
A method of installing a catalyst in the exhaust system of the air-fuel ratio (A/F)
+4. +3, space velocity (SV) eooooH,
--i and catalyst bed temperature of 800°C for 200 hours.

浄化性能については、空燃比14.6のエンジン排気ガ
スを模したモデル排気ガスを用い、S■= 85000
 Hr−1として触媒を通過させ、C02HC及びNO
xの浄化率を測定した。
Regarding the purification performance, a model exhaust gas imitating engine exhaust gas with an air-fuel ratio of 14.6 was used, and S = 85000.
Passed through the catalyst as Hr-1, CO2HC and NO
The purification rate of x was measured.

測定の結果得られたCO、HC及びNOxの浄化率を第
2表に丞す。
Table 2 shows the purification rates of CO, HC and NOx obtained as a result of the measurement.

第  2  表 第2表から11らかな如く1本実施例で得られた@媒工
は、比較例1,2及び3で得られた触媒よりも、耐久試
験後の活性が更に優れ゛〔いることが認められた。これ
は、全てのPdはNd2O3に、全テ(7)RhはLa
2O3に担持され、全てのPd及びRhに対して粒成長
が抑制されているためと考えられる。
Table 2 From Table 2, as shown in Table 11, the catalyst obtained in this example had even better activity after the durability test than the catalysts obtained in Comparative Examples 1, 2, and 3. This was recognized. This means that all Pd is Nd2O3, and all Te(7)Rh is La
This is thought to be because Pd is supported on 2O3 and grain growth is suppressed for all Pd and Rh.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の排気ガス浄化用触媒は、耐火性コ
ート層中に触媒成分と17で予めPdが担持されたNd
2O3と予めRhが担持されたLa2O3どが含まれる
ため、担持された全てのPd及びRhの粒I&長が抑制
され、それらの貴金属を無駄なく有効に利用でさるとと
もに、触媒活性及び耐久性が向1−シまた。又、P d
 、!: R,hが分離されるので、PdがRhの表面
を覆ってその触媒性能を低下させるという悪い相互作用
を排除することができる。更に、耐火性コート層に多孔
質の活性アルミナなどを用いることにより、コート層中
に効率よく排気ガスが分散するので浄化効率が良い。
As described above, the exhaust gas purifying catalyst of the present invention includes a catalyst component and Nd on which Pd is supported in advance in the fire-resistant coating layer.
Since it contains 2O3 and La2O3 on which Rh has been supported in advance, the grain I&length of all supported Pd and Rh is suppressed, allowing these precious metals to be used effectively without wasting them, and improving catalyst activity and durability. Direction 1-shi again. Also, P d
,! : Since R and h are separated, the bad interaction of Pd covering the surface of Rh and reducing its catalytic performance can be eliminated. Furthermore, by using porous activated alumina or the like for the fire-resistant coating layer, exhaust gas is efficiently dispersed in the coating layer, resulting in good purification efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の排気ガス浄化用触峰の概略構成図である。 図中、 l・・・コーディエライト質モ/°リス担体2・・・活
性アルミナコート層 特許出願人 トヨタ自動車株式会社 (ほか2名)
The figure is a schematic configuration diagram of the exhaust gas purifying probe of the present invention. In the figure, l...Cordierite molybdenum/°lith carrier 2...Activated alumina coat layer Patent applicant Toyota Motor Corporation (and two others)

Claims (1)

【特許請求の範囲】[Claims] 耐火性担体と該担体上の耐火性コート層とから形成され
、該コート層には予めパラジウム(Pd)が担持された
酸化ネオジム(Nd_2O_3)と予めロジウム(Rh
)が担持された酸化ランタン(La_2O_3)とが含
まれることを特徴とする排気ガス浄化用触媒。
It is formed from a refractory carrier and a refractory coat layer on the carrier, and the coat layer includes neodymium oxide (Nd_2O_3) on which palladium (Pd) is supported in advance and rhodium (Rh).
) supported on lanthanum oxide (La_2O_3).
JP63102294A 1988-04-25 1988-04-25 Exhaust gas purification catalyst Expired - Lifetime JP2606279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102294A JP2606279B2 (en) 1988-04-25 1988-04-25 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102294A JP2606279B2 (en) 1988-04-25 1988-04-25 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH01274841A true JPH01274841A (en) 1989-11-02
JP2606279B2 JP2606279B2 (en) 1997-04-30

Family

ID=14323594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102294A Expired - Lifetime JP2606279B2 (en) 1988-04-25 1988-04-25 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2606279B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435339B1 (en) * 2001-09-27 2004-06-10 현대자동차주식회사 Catalyst of De-NOx for diesel automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435339B1 (en) * 2001-09-27 2004-06-10 현대자동차주식회사 Catalyst of De-NOx for diesel automobile

Also Published As

Publication number Publication date
JP2606279B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP3956437B2 (en) Exhaust gas purification catalyst
JP2553167B2 (en) Method for producing catalyst for simultaneously converting carbon monoxide hydrocarbon and nitrogen oxide from exhaust gas of internal combustion engine
EP0125565B1 (en) Process for producing honeycomb catalyst for exhaust gas conversion
EP0443765B1 (en) Catalyst composition containing segregated platinum and rhodium components
JPH0675676B2 (en) Exhaust gas purification catalyst
JPS59127649A (en) Catalyst for purifying exhaust gas
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JPH05237390A (en) Catalyst for purification of exhaust gas
JP2669861B2 (en) Catalyst
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH11285644A (en) Production of catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JP3247956B2 (en) Exhaust gas purification catalyst
JPS6117544B2 (en)
JPH0472577B2 (en)
JPH05115780A (en) Catalyst for cleaning exhaust gas
JPH01274841A (en) Catalyst for purifying exhaust gas
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JPS6380850A (en) Catalyst for purifying exhaust gas
JPH10151357A (en) Production of catalyst