JPH01271049A - Secondary cooling method in continuous casting - Google Patents

Secondary cooling method in continuous casting

Info

Publication number
JPH01271049A
JPH01271049A JP9818988A JP9818988A JPH01271049A JP H01271049 A JPH01271049 A JP H01271049A JP 9818988 A JP9818988 A JP 9818988A JP 9818988 A JP9818988 A JP 9818988A JP H01271049 A JPH01271049 A JP H01271049A
Authority
JP
Japan
Prior art keywords
cooling
gas
water
pressure
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9818988A
Other languages
Japanese (ja)
Other versions
JP2598298B2 (en
Inventor
Akira Matsushita
昭 松下
Takeyoshi Ninomiya
二宮 健嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9818988A priority Critical patent/JP2598298B2/en
Publication of JPH01271049A publication Critical patent/JPH01271049A/en
Application granted granted Critical
Publication of JP2598298B2 publication Critical patent/JP2598298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To save a cooling energy by deciding a spray pattern on each steel kind, setting the allowable limit value of an air-water mixture ratio as well and controlling the feeding amt. and pressure of a compressed gaseous body so as to maintain the allowable limit value mixture ratio while under continuous casting. CONSTITUTION:A molten steel 21 forms a solidified shell 22 from the surface layer with a primary cooling of a mold 1, is drawn continuously and cooled by a secondary cooling belt 40. The spray pattern formed by the mixture ratio of a gaseous body and cooling water is found in advance on each cast steel kind and the allowable limit value of an air-water mixture ratio is experimentally set. The valves 5, 7 for controlling the amt. of the cooling water and gaseous body in the air-water and valve opening control devices 6, 8 are set up and during continuous casting a secondary cooling control device 9 controls the amt. and pressure of the cooling water and gaseous body so as to maintain the allowable limit mixture ratio. The air-water secondary cooling in the necessary lowest limit is performed, so the cooling energy is drastically saved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、連続鋳造における2次冷却に関し、2次冷却
設備のエネルギーロスを少なくシ、効率的な鋳片の冷却
を可能ならしめる方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to secondary cooling in continuous casting, and provides a method that reduces energy loss in secondary cooling equipment and enables efficient cooling of slabs. It is something.

従来の技術 近年、連続鋳造速度の高速化や連続鋳造と圧延工程の直
結化(以下、直送圧延と言う)が積極的に実施されてい
る。この直送圧延を効率的に実施するためには、高温の
鋳片を無欠陥の状態で圧延工程に供給する必要がある。
BACKGROUND OF THE INVENTION In recent years, efforts have been made to increase the speed of continuous casting and to directly connect the continuous casting and rolling processes (hereinafter referred to as direct rolling). In order to carry out this direct rolling efficiently, it is necessary to supply the hot slab to the rolling process in a defect-free state.

連続鋳造においては、鋳型に溶鋼を注入し、鋳型表面か
ら凝固させながら鋳型下方に連続的に引き出し、鋳型下
方においては、冷却水のみ、あるいは圧縮気体と冷却水
の混合気水(以下単に気水と言う)を鋳片に噴射し冷却
を行い、前記凝固殻の成長を行わしめている。前記鋳型
内における冷却を一般に1次冷却と称し、鋳型より引き
抜かれた鋳片の冷却を2次冷却と称している。この2次
冷却は前述した高温鋳片を無欠陥状態で製造する上で極
めて重要な影響を与え、その状況如何によっては、高温
鋳片の製造ができなかったり、鋳片の表面割れや内部割
れという欠陥が発生することになる。
In continuous casting, molten steel is injected into a mold, solidified from the surface of the mold, and continuously drawn out below the mold. ) is injected onto the slab and cooled to cause the solidified shell to grow. Cooling within the mold is generally referred to as primary cooling, and cooling of the slab pulled out of the mold is referred to as secondary cooling. This secondary cooling has an extremely important effect on the production of the aforementioned high-temperature slabs without defects, and depending on the situation, it may be impossible to manufacture high-temperature slabs, or surface cracks or internal cracks may occur in the slabs. This defect will occur.

このため従来においても例えば、特開昭57−1914
4および特開昭57−187150で、鋳片の冷却に必
要とされる冷却部から設定される冷却水量の変化に対応
して、効率的な気水冷却を行うために必要な冷却水、お
よび気体の圧力の最適な制御量を求める技術が開示され
ている。すなわち、必要な冷却水能を有するための気水
冷却水量と、その時の最適な噴霧状態を確保するための
必要な冷却水の圧力、および気体圧を制御する技術が開
示されている。
Therefore, in the past, for example, Japanese Patent Application Laid-Open No. 57-1914
4 and Japanese Patent Application Laid-Open No. 57-187150, cooling water necessary for efficient air-water cooling in response to changes in the amount of cooling water set from a cooling section required for cooling slabs, and A technique for determining an optimal control amount for gas pressure has been disclosed. That is, a technique is disclosed for controlling the amount of air-water cooling water to have the necessary cooling water capacity, the pressure of the cooling water necessary to ensure the optimum spray condition at that time, and the gas pressure.

発明が解決しようとする課題 前述した従来法においては、ストランド(以下、鋳型か
ら引き出され、所定寸法に切断される前の、連続鋳造設
備内を移動する鋳片をストランドと言い、切断された後
の鋳片を単に鋳片と言う)の冷却条件としては高温かつ
無欠陥の鋳片を製造するための技術の開示のみがなされ
ており、その冷却方法の1つとして前述した気水でスト
ランドを冷却する方法が提案されている。このような気
水冷却を行うと冷却水のみの冷却に比べ、ストランドの
冷却が均一化され、製造される鋳片の欠陥発生という観
点からは非常に有効な手段である。
Problems to be Solved by the Invention In the conventional method described above, a strand (hereinafter referred to as a strand is a slab that is drawn out of a mold and moves through continuous casting equipment before being cut into a predetermined size, and Regarding the cooling conditions for the strands (simply referred to as strands), only the technology for manufacturing high-temperature and defect-free slabs has been disclosed, and one of the cooling methods is to cool the strands with air and water as described above. A cooling method has been proposed. When such air-water cooling is performed, the cooling of the strand is made more uniform than when cooling only with cooling water, and it is a very effective means from the viewpoint of preventing defects in the manufactured slab.

このため従来は最良の噴霧状態の確保のみに主眼がおか
れ、気体の供給圧もきわめて高いものであった。すなわ
ち前記気水冷却法を用いると、鋳片の品質、特に表面品
質の改善には効果がある反面、良好な噴霧状態を得るた
めに、気体を周知の圧縮機で高圧まで昇圧する必要があ
り、気体の必要量や昇圧後の気体圧如何によっては圧縮
機の運転に多大なエネルギーを要していた。
For this reason, conventional methods have focused only on ensuring the best spray conditions, and the gas supply pressure has been extremely high. In other words, using the air-water cooling method is effective in improving the quality of the slab, especially the surface quality, but on the other hand, it is necessary to pressurize the gas to a high pressure using a well-known compressor in order to obtain a good spray condition. However, depending on the amount of gas required and the pressure of the gas after increasing the pressure, a large amount of energy is required to operate the compressor.

本発明は、このストランド冷却のための気体の供給に要
する多大なエネルギー消費を低減し効率的にストランド
の冷却を行う方法を提供するものである。
The present invention provides a method for efficiently cooling a strand by reducing the large energy consumption required for supplying gas for cooling the strand.

課題を解決するための手段 前記課題を解決するための本発明は、鋳型より引き抜か
れた高温鋳片に、冷却水と圧縮気体の混合気水を噴射し
て冷却する連続鋳造における2次冷却方法において、前
記冷却水に対する圧縮気体の混合比(気体/水)から決
定される噴霧パターンと、予め求められた鋼種毎の前記
噴霧パターンと鋳造欠陥発生率との相関から当該鋳造時
の前記気水混合比の許容限界値を設定し、連続鋳造中前
記許容限界混合比を維持するよう圧縮気体の供給量、も
しくは供給量に加えて供給圧を制御して鋳片の冷却を行
うことを特徴とする連続鋳造における2次冷却方法に関
する。
Means for Solving the Problems The present invention for solving the problems described above provides a secondary cooling method in continuous casting in which a hot slab pulled out of a mold is cooled by injecting a water mixture of cooling water and compressed gas. The air water at the time of casting is determined from the spray pattern determined from the mixture ratio (gas/water) of the compressed gas to the cooling water, and the correlation between the spray pattern and the casting defect occurrence rate determined in advance for each steel type. A permissible limit value of the mixture ratio is set, and the slab is cooled by controlling the supply amount of compressed gas or the supply pressure in addition to the supply amount so as to maintain the permissible limit mixture ratio during continuous casting. The present invention relates to a secondary cooling method in continuous casting.

作用 前述したように、圧縮気体と冷却水を混合した気水によ
るストランドの冷却法を用いると、気体を圧縮機で昇圧
して2次冷却装置に供給する必要があり、そのため気体
の必要量や昇圧後の気体圧如何によっては圧1iIl&
に多大なエネルギーが必要となる。当然のことながら圧
縮機に要するエネルギーは気体の必要量から決定される
。気体の必要量は、ストランドへの冷却水の量と冷却水
の噴霧状態から決定できる。すなわち、気体の供給に必
要なエネルギーは、冷却水の必要量と冷却水の噴霧状態
によって決定できる。
Function As mentioned above, when using the strand cooling method using air water, which is a mixture of compressed gas and cooling water, it is necessary to increase the pressure of the gas with a compressor and supply it to the secondary cooling device, which reduces the amount of gas required. Depending on the gas pressure after pressurization, the pressure is 1iIl&
requires a large amount of energy. Naturally, the energy required by the compressor is determined by the amount of gas required. The required amount of gas can be determined from the amount of cooling water to the strands and the spray state of the cooling water. That is, the energy required to supply gas can be determined by the required amount of cooling water and the spray state of the cooling water.

冷却水の必要量については前述した周知の技術と同様に
して決定できる。しかし、冷却水の噴霧状態は、従来鋳
片の表面欠陥等を防止する観点から最良な状態となるよ
うに決定されていた。つまり、連続鋳造で製造されるあ
らゆる鋼種に対し、冷却水の量が同一であれば、同一の
気体量を混合し、同一の噴霧状態となるように制御して
いた。
The required amount of cooling water can be determined in a manner similar to the well-known technique described above. However, the spraying condition of the cooling water has conventionally been determined to be the best condition from the viewpoint of preventing surface defects, etc. of the slab. In other words, if the amount of cooling water is the same for all types of steel manufactured by continuous casting, the same amount of gas is mixed and controlled so that the spray state is the same.

言い換えれば冷却水の量と気体の量、あるいは気体の圧
力の関係は後述する2次冷却帯が同一の場合、例えば下
記関係式に基づいて設定され、冷却水の量に比例した値
となるよう制御されており、鋳造される鋼種が変更した
際においても全て前述したのと同一の関係式に従って制
御を行っていた。
In other words, the relationship between the amount of cooling water and the amount of gas, or the pressure of the gas, is set based on the following relational expression, for example, when the secondary cooling zone (described later) is the same, and the relationship between the amount of cooling water and the amount of gas, or the pressure of the gas is set to be a value proportional to the amount of cooling water. Even when the type of steel to be cast was changed, the control was performed according to the same relational expression as described above.

P=A−Q2 +B・Q+C P:気体の圧力、 Q:冷却水量、 A、B、C:係数 一般に連続鋳造設備で鋳造される対象材は複数の鋼種で
ある。鋼種が異なると当然のことながら、0片の表面割
れ発生等の感受性が異なる。つまり、割れ感受性の高い
鋼種については、割れ感受性の低い鋼種に比べ、微細な
(良好な)噴霧状態の冷却水をストランドに噴射させる
必要があり、その分気体の供給量が増大し、それに要す
る圧縮機のエネルギーも増大する。
P=A-Q2 +B・Q+C P: pressure of gas, Q: amount of cooling water, A, B, C: coefficients Generally, the target materials cast in continuous casting equipment are multiple steel types. As a matter of course, different steel types have different susceptibilities such as occurrence of surface cracks on zero pieces. In other words, for steel types with high cracking susceptibility, compared to steel types with low cracking susceptibility, it is necessary to inject cooling water in a fine (good) spray state to the strand, which increases the amount of gas supplied, and Compressor energy also increases.

本発明者らは、ストランドの冷却を効率的に、すなわち
表面割れ等の欠陥を発生させずに、かつ前述の圧縮機に
要するエネルギーを最小限にするための冷却を行うため
に以下に述べる研究を行った。
The present inventors conducted the research described below in order to efficiently cool the strands, that is, without causing defects such as surface cracks, and to minimize the energy required by the aforementioned compressor. I did it.

本発明者らは、先ず、気体と冷却水の気水冷却を行う2
次冷却において、気体と冷却水の混合比(気体/冷却水
、の比を言い、以下単に混合比という)から決定される
冷却水の噴霧パターンを求めた。
The present inventors first carried out air-water cooling of the gas and cooling water.
In the next cooling, a spray pattern of cooling water determined from the mixing ratio of gas and cooling water (ratio of gas/cooling water, hereinafter simply referred to as mixing ratio) was determined.

第2図はその結果の一例を示すもので横軸に冷却水量を
、縦軸に気体量を表している0本例では冷却水量に対す
る気体の混合量をそれぞれ変化させ、噴霧ノズルより所
定の距離(約50〜200I1m)離れた平板上に噴射
される冷却水の霧化状態を調査した。前記霧化状態は、
冷却水が微細な粒状となりしかも均等に分散されている
良好噴霧パターン、冷却水が比較的粗い粒状となってい
る粗噴霧パターン、冷却水中に気体が息付き状に間欠的
に供給される間欠噴霧パターン、気体が殆ど供給されて
いない、つまり冷却水のみが不規則に噴霧される水噴霧
パターンに類別された。
Figure 2 shows an example of the results, with the horizontal axis representing the amount of cooling water and the vertical axis representing the amount of gas. The atomization state of cooling water injected onto a flat plate separated by approximately 50 to 200 Ilm was investigated. The atomization state is
A good spray pattern in which the cooling water is in the form of fine particles and evenly distributed, a coarse spray pattern in which the cooling water is in the form of relatively coarse particles, and an intermittent spray in which the gas is intermittently supplied into the cooling water in a breath-like manner. This pattern was classified as a water spray pattern in which almost no gas was supplied, that is, only cooling water was sprayed irregularly.

この第2図から判るように、冷却水に対する気体の1合
割合、つまり混合比を変化させると、冷却水の噴霧状況
に大きな差が認められ、逆に言うと前記混合比を制御す
ることにより、任意の噴霧パターンを得ることができる
As can be seen from Fig. 2, when the ratio of gas to cooling water, that is, the mixing ratio, is changed, there is a large difference in the spraying condition of cooling water; conversely, by controlling the mixing ratio, , any spray pattern can be obtained.

次いで鋳造される鋼種と、前記混合比を種々変更して決
定された前述した各噴霧パターンで鋳造試験を繰り返し
実施し、鋳片の欠陥と噴霧パターンとの関係を調査した
。第3図はその結果の一例を示すもので、横軸に噴霧パ
ターンを、縦軸に鋳片の表面欠陥の発生率を表したもの
である。本例では対象鋼種として割れ感受性の高い中度
アルミギルド鋼と、割れ感受性の低い低度アルミギルド
鋼を比較して調査し1表面欠陥の発生率は鋳造された鋳
片に発生した縦割れ等の表面欠陥の個数を鋳片枚数で除
したものを指数化して表した。
Next, casting tests were repeatedly conducted using the above-mentioned spray patterns determined by variously changing the steel type to be cast and the mixing ratio, and the relationship between defects in the slab and the spray patterns was investigated. FIG. 3 shows an example of the results, with the horizontal axis representing the spray pattern and the vertical axis representing the incidence of surface defects on the slab. In this example, we compared and investigated medium-grade aluminum guild steel, which has high cracking susceptibility, and low-grade aluminum guild steel, which has low cracking susceptibility. The number of surface defects divided by the number of slabs is expressed as an index.

この第3図から明らかなように、同一噴霧パターンでも
gasが変われば欠陥の発生状況は大きく変化し、全て
のfIA種に良好噴霧パターンを確保する必要のないこ
とが判った。
As is clear from FIG. 3, even if the spray pattern is the same, the occurrence of defects changes greatly if the gas changes, indicating that it is not necessary to ensure a good spray pattern for all fIA types.

すなわち割れ感受性の低い鋼種は、割れ感受性の高い鋼
種に比べ、混合比が小さくても欠陥が発生しないという
結果が得られ、鋳造される鋼種に応じて表面欠陥を発生
させないために、最低限必要な噴霧パターンが異なるこ
とが知見された。而して予めこのような調査を行うこと
により、直送圧延を実施し得る高温鋳片を、しかも表面
欠陥を発生させることなく鋳片ヒf3ための2次冷却の
ために許容される前記混合比の限界(以下許容限界混合
比と言う)を鋼種毎に設定することが可能となる。
In other words, compared to steel types with high crack susceptibility, steel types with low cracking susceptibility do not generate defects even at a small mixing ratio, and depending on the type of steel being cast, the minimum necessary amount is required to prevent surface defects. It was found that the spray patterns were different. By conducting such a survey in advance, it is possible to determine the mixing ratio that is acceptable for secondary cooling of high-temperature slabs that can be directly rolled without causing surface defects. It becomes possible to set the limit (hereinafter referred to as allowable limit mixture ratio) for each steel type.

次に、第4図は気体の供給量とそれを供給するための圧
縮機に必要なエネルギー(電力消費量)の関係を示し、
第5図には圧縮機で昇圧した気体の圧力とそれに必要な
エネルギー(電力消費量)の関係を示す、気体の供給量
が多ければ多い程、また昇圧する圧力が高ければ高い程
、圧縮機にはより多いエネルギーが必要である。
Next, Figure 4 shows the relationship between the amount of gas supplied and the energy (power consumption) required for the compressor to supply it.
Figure 5 shows the relationship between the pressure of the gas boosted by the compressor and the energy (power consumption) required for it. requires more energy.

而して前述した許容限界混合比が求まれば、その混合比
を得るために必要な気体の量、あるいは気体量に加えて
圧力を設定できる。
Once the above-mentioned allowable limit mixing ratio is determined, the amount of gas required to obtain the mixing ratio, or the pressure in addition to the amount of gas, can be set.

さて第1図は周知の弯曲型連続鋳造設備に前述した本発
明を実施する2次冷却装置を付設した一例を示す説明図
である。
Now, FIG. 1 is an explanatory view showing an example of a well-known curved continuous casting equipment in which a secondary cooling device for carrying out the above-described invention is attached.

図において1は鋳型であり、この鋳型1に注入された溶
鋼21は、鋳型lにおける1次冷却で順次その表層部か
ら凝固殻22を生成し、ストランド3を形成していく、
該ストランド3は鋳型1下方の案内ロール群2によって
支持され、かつ連続的に引き抜かれる。鋳型l以降のス
トランド3の冷却には2次冷却帯40が設けられ、鋳造
方向、鋳造幅方向で必要に応じた分割冷却制御が各冷却
帯4で行われている。
In the figure, 1 is a mold, and the molten steel 21 injected into the mold 1 undergoes primary cooling in the mold 1 to sequentially generate a solidified shell 22 from its surface layer, forming a strand 3.
The strand 3 is supported by a group of guide rolls 2 below the mold 1 and is continuously drawn out. A secondary cooling zone 40 is provided to cool the strand 3 after the mold 1, and divided cooling control is performed in each cooling zone 4 as necessary in the casting direction and the casting width direction.

本実施例の2次冷却は、鋳型lを出た直後は符合41で
示す冷却水のみの噴射による冷却を行い、それ以降は本
発明に基づく気水冷却水にて行った。気水にてストラン
ド3の冷却を行うため、冷却水と気体の量を制御するた
めのバルブ5.7と各々のバルブ開度の制御装置6.8
が設置されている。
In the secondary cooling of this example, immediately after exiting the mold 1, cooling was performed by spraying only the cooling water indicated by reference numeral 41, and after that, cooling was performed using air-water cooling water based on the present invention. In order to cool the strand 3 with air and water, a valve 5.7 for controlling the amount of cooling water and gas and a control device 6.8 for the opening degree of each valve are provided.
is installed.

本発明においては、鋳造される鋼種の情報が作業指示装
置10から冷却水の量と、気体の量、あるいは圧力等を
演算決定する2次冷却制御装置9に入力される。2次冷
却制御装置9では作業指示装置10からの情報に基づい
て予め求めておいた前記許容限界混合比に基づいて冷却
水、気体の量、圧力等を決定し、前記制御装置6.8に
各々の制御信号を発する。制御装置6.8では前記制御
信号に基づいて冷却水や、気体の量、あるいは気体圧等
が当該鋳造中制御される。
In the present invention, information on the type of steel to be cast is input from the work instruction device 10 to the secondary cooling control device 9 which calculates and determines the amount of cooling water, the amount of gas, the pressure, etc. The secondary cooling control device 9 determines the amount of cooling water, gas, pressure, etc. based on the permissible limit mixture ratio determined in advance based on the information from the work instruction device 10, and then Emit each control signal. The control device 6.8 controls the cooling water, the amount of gas, the gas pressure, etc. during the casting process based on the control signal.

この場合、気体の必要量に応じて気体の圧縮機12で昇
圧すべき圧力が異なる。具体的には気体の必要量が少量
であれば、圧縮機で昇圧する圧力が低くても気体の供給
が可能であるが、気体の必要量が多量であれば前述と同
一の圧力とした場合、バルブ7を全開にしても必要な気
体量が確保できないことにもなる。逆に、気体の必要量
が少量な時に、必要以上に昇圧すると、圧縮機に必要以
上のエネルギーを与えることになりエネルギーの浪費と
なる。
In this case, the pressure to be increased by the gas compressor 12 differs depending on the required amount of gas. Specifically, if the required amount of gas is small, it is possible to supply gas even if the pressure raised by the compressor is low, but if the required amount of gas is large, the pressure is the same as above. , even if the valve 7 is fully opened, the necessary amount of gas cannot be secured. Conversely, if the pressure is increased more than necessary when the required amount of gas is small, more energy than necessary will be given to the compressor, resulting in wasted energy.

この状況を第6図に基づきさらに詳述する。この第6図
(a)は、前記第1図の連続鋳造設備における2次冷却
装置の気体供給系の一部を拡大して表すものであり、第
6図(b)は前記第6図(a)の各装置位置における気
体の圧力と、冷却水量の関係を示した図である。
This situation will be further explained in detail based on FIG. FIG. 6(a) is an enlarged view of a part of the gas supply system of the secondary cooling device in the continuous casting equipment shown in FIG. It is a figure showing the relationship between the gas pressure and the amount of cooling water at each device position in a).

第6図(b)において線P2は気体の供給量が多い(混
合比の大きい)場合であり、線P21は気体の供給量が
少ない(混合比の小さい)場合を表す、気体の供給量あ
るいは圧を制御するバルブ7の直前の気体の圧力P1は
当然のことながら実操業で必要となるP2で示した圧力
カーブよりさらに高い圧力が必要である。また圧縮機1
2およびレシーバ−タンク13における圧力はバルブ7
までの配管内によって生じる圧力損失ΔP1よりも高い
圧力PCとする必要がある。このように各装置位置にお
ける圧力を考慮しないと末端での気体の供給が満足にさ
れなくなる。
In FIG. 6(b), the line P2 represents the case where the gas supply amount is large (the mixing ratio is large), and the line P21 represents the case where the gas supply amount is small (the mixing ratio is small). Naturally, the pressure P1 of the gas immediately before the valve 7 that controls the pressure needs to be higher than the pressure curve shown by P2, which is required in actual operation. Also compressor 1
2 and receiver tank 13 is controlled by valve 7.
It is necessary to set the pressure PC to be higher than the pressure loss ΔP1 caused by the inside of the piping. If the pressure at each device position is not considered in this way, the gas supply at the end will not be satisfactory.

さて気体の供給量が少ないと例えば前述したように第6
図(b)の線P21で示した如く前記P2のカーブより
下方になる。前述した配管内の圧力損失は流れる流量、
圧力によって変化するが、気体の量が少ない場合におい
ては少なくとも前述の圧力損失ΔP1を加えた圧力を圧
縮機12およびレシーバ−タンク13の圧力PCIとす
れば気体の供給は満足できる。つまり気体の量を少なく
することによって本実施例においては第6図(b)のΔ
P1分だけ気体の元圧を低下することができる。言い換
えれば気体の量を減少させても気体の元圧を変化させず
にPCのままとしておくと、前述のΔPiの圧力を上昇
させるために必要な分の圧縮機のエネルギーが浪費され
ることとなる。
Now, if the amount of gas supplied is small, for example, as mentioned above, the sixth
As shown by line P21 in Figure (b), it is below the curve P2. The pressure loss in the piping mentioned above is the flow rate,
Although it varies depending on the pressure, when the amount of gas is small, the gas supply can be satisfied if the pressure PCI of the compressor 12 and receiver tank 13 is set to the pressure added to at least the above-mentioned pressure loss ΔP1. In other words, by reducing the amount of gas, in this example, Δ
The original pressure of the gas can be reduced by P1 minute. In other words, if the original pressure of the gas remains unchanged even if the amount of gas is reduced, the compressor energy required to increase the pressure of ΔPi mentioned above will be wasted. Become.

そのため、決定された必要な気体の量に基づい7.2二
賃′、9却制泡p装置9から圧縮機12の昇圧制御を行
う昇圧制御装置11に昇圧すべき設定圧力が設定され、
それに基づいて圧縮機12の昇圧制御を行い、レシーバ
−タンク13を介して2次冷却装置に気体を供給するこ
とによりエネルギーロスの少ない効率的なストランドの
冷却が可能となった。
Therefore, based on the determined required amount of gas, a set pressure to be increased is set from the bubble control device 9 to the boost control device 11 that controls the pressure increase of the compressor 12.
Based on this, the pressure increase of the compressor 12 is controlled and gas is supplied to the secondary cooling device via the receiver tank 13, thereby making it possible to efficiently cool the strands with less energy loss.

実施例 連鋳機能力、月産18万屯、機長37mの連鋳機におい
て本発明を実施した。
EXAMPLE The present invention was carried out in a continuous casting machine with a continuous casting function, a monthly production of 180,000 tons, and a machine length of 37 m.

予め実際の鋳造時に、鋳造される鋼種全てについて、噴
霧パターンと鋳造欠陥発生率との相関を求め、前述の欠
陥の発生しない許容限界の混合比を設定した。
During actual casting, the correlation between the spray pattern and the casting defect occurrence rate was determined in advance for all steel types to be cast, and a mixing ratio within the permissible limit at which the above-mentioned defects would not occur was determined.

鋳造条件は第1表、および以下に示す通りである。The casting conditions are as shown in Table 1 and below.

鋳造速度: 1.8m/win、鋳造幅: 1000m
m鋳造厚み: 250m1 鋼種A:中炭素アルミギルド鋼 鋼種B:低炭素アルミギルド鋼 第1表 欠陥の発生し易い鋼種Aについては気体の量は130m
″/winと多量を必要とするが、鋼種Bについては限
界の混合比が低くても良いことが予め求めてあり、その
限界の混合比を基に決定された気体の量の55m″/s
inを本発明法においては採用し、従来法においては鋼
種Aと同一の130m″/sinを採用した。上記鋳造
条件で鋳造したところ、従来法、本発明法どちらにおい
ても鋳造鋳片には欠陥が無く良好な鋳片が製造できた。
Casting speed: 1.8m/win, casting width: 1000m
m Casting thickness: 250 m1 Steel type A: Medium carbon aluminum guild steel Steel type B: Low carbon aluminum guild steel Table 1 For steel type A, which is prone to defects, the amount of gas is 130 m
However, for steel type B, it has been determined in advance that the limit mixing ratio may be low, and the amount of gas determined based on the limit mixing ratio is 55m''/s.
In the method of the present invention, 130 m''/sin, which is the same as steel type A, was used in the conventional method.When casting under the above casting conditions, there were no defects in the cast slabs in both the conventional method and the method of the present invention. Good quality slabs were produced without any problems.

一方、両鋳造条件下での気体の供給に要したエネルギー
を第7図に示す、第7図から明らかなように本発明法を
適用することにより、従来法の約50%の消費エネルギ
ーでストランドの冷却ができることが判明した。
On the other hand, the energy required to supply gas under both casting conditions is shown in Fig. 7. As is clear from Fig. 7, by applying the method of the present invention, the strands can be made with approximately 50% of the energy consumption of the conventional method. It was found that cooling can be achieved.

発明の効果 以上の説明から明らかのように、本発明はストランドの
冷却を行う上で、製造鋳片の欠陥が発生しない限界の冷
却条件を予め求めておき、それに基づいてストランドの
冷却を行うことにより、エネルギーロスの少ない効率的
な冷却方法を可能にし、その実用的効果は非常に多大で
ある。
Effects of the Invention As is clear from the above explanation, the present invention involves determining in advance the limit cooling conditions in which defects do not occur in manufactured slabs when cooling the strands, and cooling the strands based on that. This enables an efficient cooling method with little energy loss, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本的な構成を説明するための図、
第2図は、気体と冷却水の混合比と噴霧パターンの関係
を示す図、第3図は、製造した鋳片の欠陥発生と気水の
混合比の関係を示す図、第4図は、気体の量と圧縮機に
必要なエネルギーの関係を示す図、第5図は、圧縮後の
気体の圧力と圧縮機に必要なエネルギーの関係を示す図
、第6図(a) 、(b)は、気体の量と昇圧後の圧力
の関係を示す図、第7図は、本発明法を適用した際の効
果を示す図である。 1・・・鋳型、2・・・案内ロール、3・拳・ストラン
ド、4.40.41、・・112次冷却帯、5・・・冷
却水制御バルブ、6拳・・冷却水制御装置、7・・拳気
体制御バルブ、8・−・気体制御装置、9・・02次冷
却制御装置、10・・Φ作業指示装置、lle拳・昇圧
制御装置、12・・・圧縮機、13−・・レシーバタン
ク、21・舎・溶t14.22・・・凝固殻。
FIG. 1 is a diagram for explaining the basic configuration of the present invention,
FIG. 2 is a diagram showing the relationship between the mixture ratio of gas and cooling water and the spray pattern, FIG. 3 is a diagram showing the relationship between the occurrence of defects in manufactured slabs and the mixture ratio of air and water, and FIG. Figure 5 shows the relationship between the amount of gas and the energy required by the compressor, and Figure 6 shows the relationship between the pressure of gas after compression and the energy required by the compressor, Figures 6 (a) and (b). FIG. 7 is a diagram showing the relationship between the amount of gas and the pressure after increasing the pressure, and FIG. 7 is a diagram showing the effect when the method of the present invention is applied. 1... Mold, 2... Guide roll, 3. Fist/strand, 4.40.41,... 112nd cooling zone, 5... Cooling water control valve, 6 Fist... Cooling water control device, 7... fist gas control valve, 8... gas control device, 9... secondary cooling control device, 10... Φ work instruction device, lle fist pressure boost control device, 12... compressor, 13-...・Receiver tank, 21・molten t14.22... solidified shell.

Claims (1)

【特許請求の範囲】[Claims]  鋳型より引き抜かれた高温鋳片に、冷却水と圧縮気体
の混合気水を噴射して冷却する連続鋳造における2次冷
却方法において、前記冷却水に対する圧縮気体の混合比
(気体/水)から決定される噴霧パターンと、予め求め
られた鋼種毎の前記噴霧パターンと鋳造欠陥発生率との
相関から当該鋳造時の前記気水混合比の許容限界値を設
定し、連続鋳造中前記許容限界混合比を維持するよう圧
縮気体の供給量、もしくは供給量に加えて供給圧を制御
して鋳片の冷却を行うことを特徴とする連続鋳造におけ
る2次冷却方法。
In a secondary cooling method in continuous casting, in which a mixture of cooling water and compressed gas is injected into a high-temperature slab pulled from a mold to cool it, it is determined from the mixture ratio (gas/water) of compressed gas to the cooling water. The permissible limit value of the air-water mixture ratio during the casting is set based on the correlation between the spray pattern determined in advance for each steel type and the casting defect occurrence rate, and the permissible limit mixture ratio during continuous casting is set. A secondary cooling method in continuous casting, characterized in that the slab is cooled by controlling the supply amount of compressed gas, or the supply pressure in addition to the supply amount, so as to maintain the following.
JP9818988A 1988-04-22 1988-04-22 Secondary cooling method in continuous casting Expired - Fee Related JP2598298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9818988A JP2598298B2 (en) 1988-04-22 1988-04-22 Secondary cooling method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9818988A JP2598298B2 (en) 1988-04-22 1988-04-22 Secondary cooling method in continuous casting

Publications (2)

Publication Number Publication Date
JPH01271049A true JPH01271049A (en) 1989-10-30
JP2598298B2 JP2598298B2 (en) 1997-04-09

Family

ID=14213067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9818988A Expired - Fee Related JP2598298B2 (en) 1988-04-22 1988-04-22 Secondary cooling method in continuous casting

Country Status (1)

Country Link
JP (1) JP2598298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306058A (en) * 1988-06-02 1989-12-11 Sumitomo Metal Ind Ltd Method for controlling mist cooling to cast slab in continuous casting
KR100456774B1 (en) * 2002-01-05 2004-11-10 동부제강주식회사 A manufacturing method of the Hot-Dip Aluminized Steel Sheet which has a excellent surface appearance
WO2009097977A1 (en) * 2008-02-06 2009-08-13 Sms Siemag Ag Method and devices for controlling manipulated variables in metallurgical installations
US8651168B2 (en) 2007-05-07 2014-02-18 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
JP2014050873A (en) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal Secondary cooling method for continuous casting
EP3238857A1 (en) * 2016-04-29 2017-11-01 SMS Group GmbH Two material secondary cooling for a continuous casting plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890486B (en) * 2010-07-22 2012-07-18 东北大学 Multiple cooling methods integrated cooling system in strip casting process
KR101623261B1 (en) * 2014-08-08 2016-05-23 주식회사 포스코 Manufacturing method for coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306058A (en) * 1988-06-02 1989-12-11 Sumitomo Metal Ind Ltd Method for controlling mist cooling to cast slab in continuous casting
JPH0555222B2 (en) * 1988-06-02 1993-08-16 Sumitomo Metal Ind
KR100456774B1 (en) * 2002-01-05 2004-11-10 동부제강주식회사 A manufacturing method of the Hot-Dip Aluminized Steel Sheet which has a excellent surface appearance
US8651168B2 (en) 2007-05-07 2014-02-18 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
WO2009097977A1 (en) * 2008-02-06 2009-08-13 Sms Siemag Ag Method and devices for controlling manipulated variables in metallurgical installations
CN101939121A (en) * 2008-02-06 2011-01-05 Sms西马格股份公司 Method and devices for controlling manipulated variables in metallurgical installations
JP2014050873A (en) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal Secondary cooling method for continuous casting
EP3238857A1 (en) * 2016-04-29 2017-11-01 SMS Group GmbH Two material secondary cooling for a continuous casting plant

Also Published As

Publication number Publication date
JP2598298B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US4658882A (en) Machine for direct rolling of steel casting and producing steel product therefrom
US4424855A (en) Method for cooling continuous casting
CN104525885B (en) A kind of strong cold water spray system of cast steel and strong refrigerating technology
CN109940140A (en) A method of improving hypo-peritectic steel center segregation of casting blank quality
CA2254654C (en) Method for water-cooling slabs and cooling water vessel
JPH01271049A (en) Secondary cooling method in continuous casting
KR20040046126A (en) A uniform laminar flow system to width direction of strip
JP6461357B2 (en) Continuous casting method for slabs
JPH06344089A (en) Device and method for cooling web continuously
TW202039115A (en) Method for continuous casting of slab
CN1281358C (en) Control of heat flux in continuous metal casters
CN1022174C (en) Method for controlling expansion of metal mould and continuous metal casting machine
CN1631575A (en) Method for controlling continuous casting slab trigon crack
KR20120087526A (en) Device for preventing crack of strand in continuous casting process and method therefor
KR101862146B1 (en) Method for casting
JPS59229268A (en) Descaling method of continuous casting billet
JPS58116905A (en) Producing device for steel material by direct rolling
KR100405515B1 (en) Steel Ingot Casting Method using Auxiliary Mold
JPH0790340B2 (en) Optimal air flow control method for mist cooling
KR101303048B1 (en) Apparatus for setting cutting speed and method for operating the same
JP3083726B2 (en) Manufacturing method of thin cast slab by belt type continuous casting method
JPH0484651A (en) Method for directly rolling steel
JP2007118042A (en) Secondary cooling method for continuously cast slab
KR101623261B1 (en) Manufacturing method for coil
Bolender et al. Continuous casting without secondary spray water cooling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees