JP2014050873A - Secondary cooling method for continuous casting - Google Patents

Secondary cooling method for continuous casting Download PDF

Info

Publication number
JP2014050873A
JP2014050873A JP2012198362A JP2012198362A JP2014050873A JP 2014050873 A JP2014050873 A JP 2014050873A JP 2012198362 A JP2012198362 A JP 2012198362A JP 2012198362 A JP2012198362 A JP 2012198362A JP 2014050873 A JP2014050873 A JP 2014050873A
Authority
JP
Japan
Prior art keywords
continuous casting
slab
water
secondary cooling
cooling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012198362A
Other languages
Japanese (ja)
Other versions
JP6148447B2 (en
Inventor
Masahiro Doki
正弘 土岐
Daiki Kato
大樹 加藤
Satoshi Hayashi
聡 林
Yasuhiko Otani
康彦 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012198362A priority Critical patent/JP6148447B2/en
Publication of JP2014050873A publication Critical patent/JP2014050873A/en
Application granted granted Critical
Publication of JP6148447B2 publication Critical patent/JP6148447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary cooling method for continuous casting, by which cast metal is uniformly cooled by reducing stagnant water at a guide roll position, and consequently cast metal of superior quality is produced.SOLUTION: There is provided a secondary cooling method for cooling a cast metal 3 during continuous casting, by spraying air mist 12 in which fluid and gas are mixed toward cast metal 3 casted by a continuous casting apparatus 1. In the secondary cooling method, a weight mixture ratio A/W of the gas to the fluid in the air mist 12 is set to 0.02 or higher. By increasing an amount of the gas, pressure of the air mist 12 is increased without changing an amount of the fluid, so that collision speed at spraying is increased and stagnant water 13 at a guide roll 4 position is blown away to be removed.

Description

本発明は、連続鋳造機において鋳片を均一に冷却するための、連続鋳造の二次冷却方法に関するものである。   The present invention relates to a secondary cooling method for continuous casting for uniformly cooling a slab in a continuous casting machine.

鉄鋼業において、溶鋼を凝固させて鋳片を製造する際、一般に、連続鋳造設備が用いられる。連続鋳造設備は、図1に示すように、鋳型2で冷却されて表面が凝固した鋳片3を、鋳型2の下方に少しずつ引き出し、ガイドロール4で挟みながら連続して送り出し、これにより鋳片3が連続して生産される。鋳片3がガイドロール4で送り出される間、二次冷却として、鋳片3の表面に冷却水が噴射される。この二次冷却では、鋳片3の幅方向の冷却性能を均一にするために、均一な水量密度分布を有する噴射パターンとなるようにノズルが配置されている。   In the iron and steel industry, when a molten steel is solidified to produce a slab, a continuous casting facility is generally used. As shown in FIG. 1, the continuous casting equipment draws the cast piece 3 cooled by the mold 2 and solidified on the surface little by little below the mold 2 and continuously feeds it while being sandwiched between the guide rolls 4. Pieces 3 are produced continuously. While the slab 3 is fed out by the guide roll 4, cooling water is injected onto the surface of the slab 3 as secondary cooling. In this secondary cooling, in order to make the cooling performance of the slab 3 in the width direction uniform, the nozzles are arranged so as to form an injection pattern having a uniform water density distribution.

従来、鋳片3がほぼ鉛直下方に引き出される部分では、鋳片3の表面に噴射された冷却水の一部は、図5に示すように、排水されずにガイドロール4と鋳片3との間に滞留し、溜まり水13となっていた。   Conventionally, in a portion where the slab 3 is drawn substantially vertically downward, a part of the cooling water sprayed on the surface of the slab 3 is not drained as shown in FIG. The water stayed for a period of time and became accumulated water 13.

一般に、ガイドロール4に滞留する溜まり水は、幅方向中央部で最も少なく、両側方に向かって増加する分布を示す。このように、鋳片3の幅方向で溜まり水13の分布が異なると、均一な冷却ができない要因となる。さらに、ガイドロール4で鋳片3を強く押し付ける必要がある場合には、ガイドロール4の剛性を増すために、図2に示すように、ガイドロール4が鋳片3の幅方向に分割される。このような場合、分割された各ガイドロール4の間の軸受け部21の位置では、冷却水の排水による溜まり水が発生しない。したがって、鋳片3がガイドロール4と接触している位置と軸受け部21の位置とでは、溜まり水13の分布が不均一となり、鋳片3の幅方向に冷却むらができる。   In general, the accumulated water staying in the guide roll 4 is the smallest at the center in the width direction and shows a distribution that increases toward both sides. Thus, if the distribution of the accumulated water 13 is different in the width direction of the slab 3, it becomes a factor in which uniform cooling cannot be performed. Furthermore, when it is necessary to strongly press the slab 3 with the guide roll 4, the guide roll 4 is divided in the width direction of the slab 3 as shown in FIG. 2 in order to increase the rigidity of the guide roll 4. . In such a case, the accumulated water due to the drainage of the cooling water is not generated at the position of the bearing portion 21 between the divided guide rolls 4. Therefore, the distribution of the accumulated water 13 is non-uniform between the position where the slab 3 is in contact with the guide roll 4 and the position of the bearing portion 21, and uneven cooling can occur in the width direction of the slab 3.

このように、ガイドロール4の溜まり水13が、鋳片3の均一な冷却を阻害する大きな要因となっていることが判明した。冷却が不均一になると、鋳片3の表面性状や内部の品質に欠陥が生じる。したがって、ガイドロール4の溜まり水13を無くすか、溜まり水13の影響が幅方向に均一になるように制御して、鋳片3の品質低下を防ぐことが必要である。   Thus, it has been found that the accumulated water 13 of the guide roll 4 is a major factor that hinders uniform cooling of the slab 3. If the cooling becomes uneven, defects occur in the surface properties and internal quality of the slab 3. Therefore, it is necessary to prevent the deterioration of the quality of the slab 3 by eliminating the accumulated water 13 of the guide roll 4 or by controlling the influence of the accumulated water 13 to be uniform in the width direction.

このような冷却むらを低減させるために、特許文献1には、連続鋳造装置内に、高圧気体を噴射する噴射ノズルを設けたものが開示されている。また、特許文献2には、連続鋳造装置内に、残留水を吸引する吸引管を設けたものが開示されている。   In order to reduce such uneven cooling, Patent Document 1 discloses a continuous casting apparatus provided with an injection nozzle for injecting high-pressure gas. Patent Document 2 discloses a continuous casting apparatus provided with a suction pipe for sucking residual water.

特開2010−253528号公報JP 2010-253528 A 特開2010−253529号公報JP 2010-253529 A

しかしながら、上記特許文献1および2はいずれも、噴射ノズルまたは吸引管という新たな装置を取り付けたものであり、設置のためのコストやスペースを要するという問題点がある。   However, both of Patent Documents 1 and 2 are provided with a new device such as an injection nozzle or a suction pipe, and there is a problem that a cost and a space for installation are required.

本発明の目的は、装置等を新設することなく低コストで、ガイドロール位置の溜まり水を低減させて鋳片を均一に冷却し、優れた品質の鋳片を製造するための連続鋳造の二次冷却方法を提供することにある。   The object of the present invention is to reduce the accumulated water at the guide roll position at a low cost without newly installing a device or the like, to uniformly cool the slab, and to produce an excellent quality slab. It is to provide a next cooling method.

上記問題を解決するため、本発明は、連続鋳造装置で鋳造される鋳片に向けて、液体と気体とを混合したエアミストを噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、前記エアミストの液体に対する気体の重量混合比を0.02以上にすることを特徴とする、連続鋳造の二次冷却方法を提供する。   In order to solve the above problems, the present invention provides a secondary cooling method in which air mist mixed with liquid and gas is sprayed toward a slab cast by a continuous casting apparatus to cool the slab during continuous casting. A secondary cooling method for continuous casting is provided, wherein a weight mixing ratio of a gas to a liquid of the air mist is 0.02 or more.

前記エアミストの気体量を増やすことにより、液体量を変えずに前記エアミストの圧力を高めることが好ましい。   It is preferable to increase the pressure of the air mist without changing the liquid amount by increasing the gas amount of the air mist.

前記液体が水であり、前記気体が空気であってもよい。   The liquid may be water and the gas may be air.

本発明によれば、冷却水の噴射時の衝突速度が増し、ガイドロール位置の溜まり水が吹き飛ばされる。つまり、冷却水の噴射とともに溜まり水を排除することができるので、専用の装置等を設けることなく、鋳片の幅方向の冷却むらを低減して均一に冷却し、優れた品質の鋳片を製造することができる。   According to the present invention, the collision speed at the time of injection of cooling water increases, and the accumulated water at the guide roll position is blown away. In other words, since the accumulated water can be removed together with the cooling water injection, the cooling unevenness in the width direction of the slab is reduced and uniformly cooled without providing a dedicated device or the like, and an excellent quality slab can be obtained. Can be manufactured.

連続鋳造設備の概要を示す側面図である。It is a side view which shows the outline | summary of a continuous casting installation. ガイドロールの配置例を示す正面図である。It is a front view which shows the example of arrangement | positioning of a guide roll. 本発明の冷却水噴射の様子を示す側面図である。It is a side view which shows the mode of the cooling water injection of this invention. 気水比による溜まり水の高さを示すグラフである。It is a graph which shows the height of the accumulated water by the air-water ratio. 従来の冷却水噴射の様子を示す側面図である。It is a side view which shows the mode of the conventional cooling water injection.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明にかかる連続鋳造設備1の概要を示す。鋳型2の上側から、タンディッシュ(図示せず)内の溶鋼が注入され、鋳型2で一次冷却されて表面が凝固した状態の鋳片3が、鋳型2の下方から少しずつ引き出される。鋳型2の下方において、鋳片3は、それぞれ対向して設置された複数対のガイドロール4で挟み込まれながら連続的に送り出され、これにより、連続した鋳片3が生産される。図1は連続鋳造設備1の一例であり、鋳片3の両側のガイドロール4により、鋳片3が鋳型2のほぼ鉛直下方へ引き抜かれた後、徐々に90度程度曲げられて、水平方向へ移動していく彎曲型である。本発明は、彎曲型の連続鋳造設備に限らず、垂直型などでも同様に適用できる。   FIG. 1 shows an outline of a continuous casting facility 1 according to the present invention. Molten steel in a tundish (not shown) is poured from the upper side of the mold 2, and the slab 3 in a state where the surface is first cooled by the mold 2 and solidified is pulled out little by little from the lower side of the mold 2. Below the mold 2, the slab 3 is continuously fed out while being sandwiched between a plurality of pairs of guide rolls 4 disposed to face each other, whereby a continuous slab 3 is produced. FIG. 1 shows an example of a continuous casting facility 1. After the slab 3 is pulled out substantially vertically downward of the mold 2 by guide rolls 4 on both sides of the slab 3, the slab 3 is gradually bent by about 90 degrees and horizontally It is a fold type that moves to. The present invention is not limited to a curved-type continuous casting facility, but can be similarly applied to a vertical type.

ガイドロール4は、鋳片3の幅方向全体を押さえ付ける幅を有するものでもよいが、鋳片3を強く拘束するために剛性が必要な場合には、図2に示すように、幅方向に分割され、軸受け部21で各ガイドロール4が連結される。   The guide roll 4 may have a width for pressing the entire width of the slab 3, but when rigidity is required to strongly restrain the slab 3, as shown in FIG. The guide rolls 4 are divided and connected to each other at the bearing portion 21.

鋳片3は、冷却水を噴射する二次冷却手段によって冷却されながら、ガイドロール4で連続的に送り出される。二次冷却手段は、図3に示すように、各ガイドロール4同士の隙間から鋳片3に向けてエアミスト12を噴射する二流体ノズル11からなり、二流体ノズル11内で空気と水が混合されて、エアミスト12が噴射される。二流体ノズル11は、鋳片3の幅方向に均一な水量密度分布を有する噴射パターンとなるように、鋳片3の幅方向に適宜間隔で複数、例えば2200mm程度の幅の鋳片3に対して幅方向に7〜8本配置される。そして、通常、1本の二流体ノズル当たり5〜20リットル/分程度の水量が噴射される。   The slab 3 is continuously sent out by the guide roll 4 while being cooled by a secondary cooling means for injecting cooling water. As shown in FIG. 3, the secondary cooling means includes a two-fluid nozzle 11 that injects air mist 12 from the gap between the guide rolls 4 toward the slab 3, and air and water are mixed in the two-fluid nozzle 11. Then, the air mist 12 is injected. The two-fluid nozzle 11 applies to a plurality of slabs 3 having a width of about 2200 mm, for example, at appropriate intervals in the width direction of the slabs 3 so as to form an injection pattern having a uniform water density distribution in the width direction of the slabs 3. 7 to 8 are arranged in the width direction. Usually, a water amount of about 5 to 20 liters / minute is ejected per one two-fluid nozzle.

このとき、エアミストの圧力が弱いと、図5に示すように、鋳片3に接触しているガイドロール4の上部に、エアミスト12の排水が滞留して溜まり水13ができる。ガイドロール4が、図2に示すように鋳片3の幅方向に分割されている場合には、ガイドロール4と鋳片3とが接触する部分のみに溜まり水13ができるが、軸受け部21には溜まり水ができない。その結果、鋳片3の幅方向に温度むらが生じ、均一な冷却ができなくなる。   At this time, if the pressure of the air mist is weak, as shown in FIG. 5, the waste water of the air mist 12 stays on the upper portion of the guide roll 4 that is in contact with the slab 3, and the accumulated water 13 is formed. When the guide roll 4 is divided in the width direction of the slab 3 as shown in FIG. 2, the water 13 is collected only at the portion where the guide roll 4 and the slab 3 are in contact with each other. Does not collect water. As a result, temperature unevenness occurs in the width direction of the slab 3, and uniform cooling cannot be performed.

そこで、本発明では、二流体ノズル内で生成されるエアミストの、水に対する空気の比率である気水比(重量混合比)A/Wを高くすることで、エアミストの圧力を高くし、溜まり水13を吹き飛ばすこととした。具体的には、従来はA/Wが0.005〜0.015程度であったが、本発明では0.02以上とした。図4は、気水比毎の、ガイドロール4の溜まり水13の高さを調べた結果を示すグラフである。図4に示すように、水量密度が0.05〜0.30m/min・mの範囲において、気水比0.02前後を境界とし、空気量を多くすると、溜まり水13の高さが急激に少なくなった。すなわち、空気量を増加し、エアミスト12を高圧噴射すると、エアミスト12の噴射面が図3に示すように広がるため、エアミスト12を噴射させることで溜まり水13を吹き飛ばすことができた。気水比A/Wの上限は特に定めないが、図4に示すように、0.20を超えても溜まり水の高さは大きく変化せず、また、従来の0.005〜0.015の範囲と比較すれば、0.20または0.10程度で十分な効果が期待できるため、0.10〜0.20以下でよい。 Therefore, in the present invention, by increasing the air / water ratio (weight mixing ratio) A / W, which is the ratio of air to water, in the air mist generated in the two-fluid nozzle, the pressure of the air mist is increased, and the accumulated water 13 was blown away. Specifically, A / W was conventionally about 0.005 to 0.015, but in the present invention, it was set to 0.02 or more. FIG. 4 is a graph showing the results of examining the height of the accumulated water 13 of the guide roll 4 for each air / water ratio. As shown in FIG. 4, when the water density is in the range of 0.05 to 0.30 m 3 / min · m 2 , the air / water ratio is around 0.02, and the amount of air is increased to increase the height of the accumulated water 13. Suddenly decreased. That is, when the air amount is increased and the air mist 12 is injected at a high pressure, the injection surface of the air mist 12 expands as shown in FIG. 3, so that the accumulated water 13 can be blown off by injecting the air mist 12. The upper limit of the air / water ratio A / W is not particularly defined, but as shown in FIG. 4, the height of the accumulated water does not change greatly even if it exceeds 0.20, and the conventional 0.005 to 0.015. In comparison with the above range, since a sufficient effect can be expected at about 0.20 or 0.10, it may be 0.10 to 0.20 or less.

以上のように、本発明によれば、気水比を従来よりも大きくすることにより、従来と同じ水量を噴射すれば、エアミストの圧力を高くすることができ、溜まり水の排出が促進される。したがって、溜まり水が要因となる二次冷却むらが低減し、優れた品質の鋳片を製造することができる。また、鋳片の進行方向に配置された各ガイドロール間の隙間の限られたスペースに、新たな装置を設けることなく、二次冷却手段としての二流体ノズルを利用して、二次冷却と同時に、溜まり水の排出を行うことができる。   As described above, according to the present invention, by increasing the air / water ratio as compared with the prior art, if the same amount of water as before is injected, the pressure of the air mist can be increased and the discharge of accumulated water is promoted. . Therefore, the secondary cooling unevenness caused by the accumulated water is reduced, and an excellent quality slab can be manufactured. Further, without providing a new device in the space where the gap between the guide rolls arranged in the traveling direction of the slab is limited, secondary cooling can be performed using a two-fluid nozzle as a secondary cooling means. At the same time, the accumulated water can be discharged.

本発明は、二流体ノズルにより冷却水を噴射する冷却方法に適用できる。   The present invention can be applied to a cooling method in which cooling water is injected by a two-fluid nozzle.

1 連続鋳造装置
2 鋳型
3 鋳片
4 ガイドロール
11 二流体ノズル
12 エアミスト
13 溜まり水
21 軸受け部
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Mold 3 Slab 4 Guide roll 11 Two-fluid nozzle 12 Air mist 13 Pool water 21 Bearing part

Claims (3)

連続鋳造装置で鋳造される鋳片に向けて、液体と気体とを混合したエアミストを噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、
前記エアミストの液体に対する気体の重量混合比を0.02以上にすることを特徴とする、連続鋳造の二次冷却方法。
In the secondary cooling method of injecting air mist mixed with liquid and gas toward the slab casted by the continuous casting apparatus and cooling the slab during continuous casting,
A secondary cooling method for continuous casting, wherein a weight mixing ratio of gas to liquid of the air mist is 0.02 or more.
前記エアミストの気体量を増やすことにより、液体量を変えずに前記エアミストの圧力を高めることを特徴とする、請求項1に記載の連続鋳造の二次冷却方法。   The secondary cooling method for continuous casting according to claim 1, wherein the pressure of the air mist is increased without increasing the amount of liquid by increasing the gas amount of the air mist. 前記液体が水であり、前記気体が空気であることを特徴とする、請求項1または2に記載の連続鋳造の二次冷却方法。   The secondary cooling method for continuous casting according to claim 1 or 2, wherein the liquid is water and the gas is air.
JP2012198362A 2012-09-10 2012-09-10 Secondary cooling method for continuous casting Active JP6148447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198362A JP6148447B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198362A JP6148447B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Publications (2)

Publication Number Publication Date
JP2014050873A true JP2014050873A (en) 2014-03-20
JP6148447B2 JP6148447B2 (en) 2017-06-14

Family

ID=50609859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198362A Active JP6148447B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Country Status (1)

Country Link
JP (1) JP6148447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471558A (en) * 1987-09-09 1989-03-16 Sumitomo Metal Ind Method for controlling optimum air quantity for mist cooling
JPH01271049A (en) * 1988-04-22 1989-10-30 Nippon Steel Corp Secondary cooling method in continuous casting
JPH079101A (en) * 1993-06-28 1995-01-13 Kawasaki Steel Corp Method for cooling cast slab in continuous casting
JP2001262220A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for cooling steel material
JP2010253525A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Secondary cooling method for continuously cast slab by two fluid mist spray nozzle
JP2011224607A (en) * 2010-04-19 2011-11-10 Nippon Steel Corp Continuous casting method of metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471558A (en) * 1987-09-09 1989-03-16 Sumitomo Metal Ind Method for controlling optimum air quantity for mist cooling
JPH01271049A (en) * 1988-04-22 1989-10-30 Nippon Steel Corp Secondary cooling method in continuous casting
JPH079101A (en) * 1993-06-28 1995-01-13 Kawasaki Steel Corp Method for cooling cast slab in continuous casting
JP2001262220A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Method for cooling steel material
JP2010253525A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Secondary cooling method for continuously cast slab by two fluid mist spray nozzle
JP2011224607A (en) * 2010-04-19 2011-11-10 Nippon Steel Corp Continuous casting method of metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel
KR20210082225A (en) * 2018-12-10 2021-07-02 닛폰세이테츠 가부시키가이샤 Method of continuous casting of steel
CN113165060A (en) * 2018-12-10 2021-07-23 日本制铁株式会社 Method for continuously casting steel
JPWO2020122061A1 (en) * 2018-12-10 2021-09-27 日本製鉄株式会社 Continuous steel casting method
JP7020568B2 (en) 2018-12-10 2022-02-16 日本製鉄株式会社 Continuous steel casting method
KR102493098B1 (en) 2018-12-10 2023-01-31 닛폰세이테츠 가부시키가이샤 Continuous casting method of steel

Also Published As

Publication number Publication date
JP6148447B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US10207316B2 (en) Method for continuous-casting slab
CN103464708B (en) A kind of cooling twice arrangement of nozzles method that blank plates of silicon steels continuous casting is produced
JP5817689B2 (en) Secondary cooling method for continuous casting
JP2008055454A (en) Method for producing cast slab excellent in surface and inner qualities
JP2010253529A (en) Secondary cooling method for continuous casting
CA3006369A1 (en) Secondary cooling method and secondary cooling device for casting product in continuous casting
JP6148447B2 (en) Secondary cooling method for continuous casting
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP4998666B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2016032836A (en) Width direction uniform cooling casting method for continuously cast piece and continuous casting equipment
JP5609199B2 (en) Secondary cooling method in continuous casting
JP6570738B2 (en) Steel vertical continuous casting equipment
JP2011224607A (en) Continuous casting method of metal
JP2013094828A (en) Secondary cooling method in continuous casting
JP4272601B2 (en) Continuous casting equipment and continuous casting method
KR20110010462A (en) Hot rolling facilities having cooler
KR20100005445A (en) An apparatus for meniscus shield weir shifting
JP2007111772A (en) Cooling grid facility for continuous caster and method for producing continuously cast slab
JP2011173131A (en) Continuous casting method using cooling method of roller arranged at air cooling zone
JP2010221237A (en) Cast slab supporting device directly below mold of continuous casting machine
KR101377510B1 (en) Rolling mill
KR101316149B1 (en) Twin roll strip casting method for reducing scum input
KR101280946B1 (en) Segment for continous casting and continous casting method using same
JP4862718B2 (en) Cooling grid apparatus for continuous casting machine and method for producing continuous cast slab
KR101244322B1 (en) Shroud Nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170519

R150 Certificate of patent or registration of utility model

Ref document number: 6148447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350