JPH01270386A - Manufacture of printed wiring board - Google Patents

Manufacture of printed wiring board

Info

Publication number
JPH01270386A
JPH01270386A JP9956088A JP9956088A JPH01270386A JP H01270386 A JPH01270386 A JP H01270386A JP 9956088 A JP9956088 A JP 9956088A JP 9956088 A JP9956088 A JP 9956088A JP H01270386 A JPH01270386 A JP H01270386A
Authority
JP
Japan
Prior art keywords
conductive paste
hole
electron beam
substrate
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9956088A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nagata
永田 秀俊
Tadatsugu Tagami
忠嗣 田上
Takashi Kobayashi
敬 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP9956088A priority Critical patent/JPH01270386A/en
Publication of JPH01270386A publication Critical patent/JPH01270386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates

Abstract

PURPOSE:To enable conductor circuits formed on both the sides of a board to be electrically connected easily with each other and decrease the board in thermal deterioration by a method wherein an electron ray setting conductive paste is applied onto a side wall of a through-hole so as to make a central axis section of the through-hole provided to an insulating board hollow, and the conductive paste is irradiated with electron rays from both the sides of the board to be set. CONSTITUTION:A conductive paste is composed of a fine conductive powder, an electron ray setting binder, and an additive, and a solvent is added, if necessary. And, the operating condition basing on the fluidity and the adhesion of the conductive paste is adequately adjusted corresponding to the diameter and the length of a through-hole so as to enable the paste to adhere uniformly to the inner wall of the through-hole preventing the through-hole from being filled with the paste. Next, the conductive paste is irradiated with electron rays in such a manner that a board is irradiated with electron rays at least once from the front and then from the rear once. By these processes, the conductive paste can be sufficiently set even if an electron ray accelerator of a low voltage is employed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子機器等に使用される印刷配線板の製造方
法であり、さらに詳しくは、絶縁基板の両面にある導電
回路の間の電気的接続を、該基板に設乙」られた貫通孔
(スルーホール)の側壁部に塗布し、硬化せしめた導電
ペーストによって行なう印刷配線板の製造方法に関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is a method for manufacturing a printed wiring board used in electronic equipment, etc. The present invention relates to a method of manufacturing a printed wiring board in which electrical connections between circuits are made using a conductive paste that is applied to the side walls of through holes formed in the board and cured.

(従来の技術) 従来、絶縁基板の両面に導電回路を有する印刷配線板、
すなわち、両面印刷配線板において表裏の4体回路を電
気的に接続するために、基板に設けられた貫通孔の壁面
にメツキを施すことは、よく知られている。し7かしな
がら、この方法は(1)!:l!造プロセスが複雑であ
る、(2)高度の技術を必要とする、(3)製造コスト
が高くなるなどの欠点があった。
(Prior Art) Conventionally, printed wiring boards having conductive circuits on both sides of an insulating substrate,
That is, it is well known that in order to electrically connect four circuits on the front and back sides of a double-sided printed wiring board, the walls of through holes provided in the board are plated. However, this method is (1)! :l! The manufacturing process is complicated, (2) it requires advanced technology, and (3) the manufacturing cost is high.

これに代わる方法として、昭和45年頃より、貫通孔内
に導電ペーストを埋め込み表裏の導体を接続する方法が
採用され、主として民生機器用の印刷配線板に使用され
ている。この方法に用いられる導電ペーストは、i艮、
銅、金、カーボンブラックなどの導電粉と熱硬化性樹脂
と溶剤とを主成分とするものであり、通常、孔埋め後溶
剤除去のための加熱と、樹脂硬化のための熱処理(20
0℃前後で数十分)とが必要である。しかし、この熱硬
化性導電ペーストによる孔埋め法を以てしても、(1)
硬化後のペースト中に残存する気泡が電気的接続の信鯨
性を低下させる、(2)加熱により基板が損傷または変
形するなどの問題があり、その解決が久しく待たれてい
た。この等の欠点を補うため、近年紫外線硬化型樹脂、
あるいは電子線硬化型樹脂をベースとする導電ペースト
の利用が検討されているが、前者は、導電性粒子による
反射のため紫外線が内部まで浸透せず、電ペーストの完
全硬化が困難である。また、後者の圧の電子線照射設備
が必要であり、設備の大きさおよび価格の面からその工
業化が阻まれていた。すなわち、−船釣な厚さ(1,6
mm)の基板に設けられた貫通孔に充填された銀ペース
トを硬化させるには、少なくとも1メガボルト以上の加
速電圧が理論上必要であり、極めて大型で、かつ厳重な
放射線遮蔽設備の付随した高電圧の電子線加速器によっ
てのみこの目的を達することができるのであり、基板の
劣化の問題もあって実質上工業化は困難である。
As an alternative method, a method of embedding conductive paste in the through-hole and connecting the front and back conductors has been adopted since around 1970, and this method is mainly used for printed wiring boards for consumer electronics. The conductive paste used in this method is
The main ingredients are conductive powder such as copper, gold, or carbon black, thermosetting resin, and a solvent. After filling the hole, it usually requires heating to remove the solvent and heat treatment to harden the resin.
(several tens of minutes at around 0°C) is required. However, even with this hole filling method using thermosetting conductive paste, (1)
There are problems such as air bubbles remaining in the paste after hardening deteriorate the reliability of electrical connections, and (2) the substrate is damaged or deformed by heating, and solutions to these problems have been long awaited. In order to compensate for these drawbacks, in recent years ultraviolet curable resins,
Alternatively, the use of a conductive paste based on an electron beam curable resin is being considered, but in the former case, the ultraviolet rays do not penetrate into the interior due to reflection by conductive particles, making it difficult to completely cure the paste. Further, electron beam irradiation equipment with the latter pressure is required, and its industrialization has been hindered due to the size and cost of the equipment. That is, - boat thickness (1,6
In order to harden the silver paste filled in the through holes provided in the substrate (mm), an accelerating voltage of at least 1 megavolt or more is theoretically required. This purpose can only be achieved using a voltage electron beam accelerator, and industrialization is practically difficult due to the problem of substrate deterioration.

(発明が解決しようとする課題) 本発明者等は、電子線によって硬化する各種ペーストを
研究中に、中心軸部が中空とするように貫通孔側壁部に
電子線硬化型導電ペーストを付着させた場合には、すで
に塗膜の硬化等に広く実用されている低電圧の電子線加
速器を用いても、導電ペーストの硬化が十分に可能であ
ることを見出し本発明に至った。
(Problem to be Solved by the Invention) While researching various types of pastes that are cured by electron beams, the present inventors attached electron beam-curable conductive paste to the side wall of the through-hole so that the central axis was hollow. In such cases, the present inventors have discovered that it is possible to sufficiently cure the conductive paste even by using a low-voltage electron beam accelerator, which has already been widely used for the purpose of curing paint films.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、絶縁基板に設けた貫通孔の中心軸部が中空と
なるように、側壁部に電子線硬化型導電ペーストを施し
、次いで該基板の両面より電子線を照射して上記導電ペ
ーストを硬化させることにより、基板両面の導電回路の
電気的接続を得る工程を含むことを特徴とする印刷配線
板の製造方法であり、必要に応じて溶剤を含有する電子
線硬化型導電ペーストを用いてもよい。
(Means for Solving the Problems) The present invention applies an electron beam curing type conductive paste to the side wall part so that the central axis part of a through hole provided in an insulating substrate becomes hollow, and then applies an electron beam hardening type conductive paste from both sides of the substrate. A method for manufacturing a printed wiring board, comprising a step of obtaining electrical connection between conductive circuits on both sides of the board by curing the conductive paste by irradiating the wire with a wire, and optionally containing a solvent. An electron beam curable conductive paste may also be used.

この工程は、すでに両面に導電回路を形成した絶縁基板
を設けた後、あるいは設ける前であってもよい。
This step may be performed after or before providing the insulating substrate on which conductive circuits are already formed on both sides.

本発明において、絶縁基板としては、祇/フェノール樹
脂、ガラス基布/エポキシ樹脂、祇/ポリエステル樹脂
などからなる樹脂積層板、ポリイミドあるいはポリエス
テルなどのフレキシブル基板、セラミック基板、絶縁被
覆した金属基板などの電子機器工業界で通常用いられて
いる基板であれば何れのものでも使用できる。また、こ
れ等絶縁基板の表裏面に導電回路を形成する方法として
は、予めラミネートされた銅箔をエツチングする方法、
無電解およびまたは電解メツキによる方法、導電ペース
トを印刷する方法、絶縁被覆された導線を布線する方法
、などが知られているが、これ等の中の何れかの方法、
あるいはこれ等の方法の2種以上を組み合わせた方法の
何れであっても差支えない。
In the present invention, insulating substrates include resin laminates made of phenolic resin, glass base cloth/epoxy resin, polyester resin, flexible substrates made of polyimide or polyester, ceramic substrates, metal substrates coated with insulation, etc. Any substrate commonly used in the electronics industry can be used. In addition, methods for forming conductive circuits on the front and back surfaces of these insulating substrates include etching a copper foil laminated in advance;
Methods using electroless plating and/or electrolytic plating, methods of printing conductive paste, methods of wiring conductor wires covered with insulation, etc. are known, and any of these methods,
Alternatively, any combination of two or more of these methods may be used.

本発明において、絶縁基板に設けられた貫通孔としては
、モールディング、パンチング、ドリリングなど一般的
に知られた方法の何れによって作られた貫通孔であって
もよい。
In the present invention, the through-hole provided in the insulating substrate may be a through-hole made by any generally known method such as molding, punching, drilling, etc.

本発明において使用される導電ペーストは、導電性微粉
末、電子線硬化型バインダー、添加剤より構成され、必
要に応じて溶剤が添加される。導電性微粉末としては特
に制限はなく、金、銀、白金、銅、ニッケル、クロム、
パラジウム、アルミニウム、タングステン、モリブデン
などの金属微粉末もしくはこれ等の合金微粉末、または
これ等の金属または合金で被覆された無機もしくは有機
微粉末、錫、チタン、鉄などの酸化物の微粉末、アセチ
レンブラック、ファーネスブラック、サーマルブラック
、チャンネルブラックなどのカーボンブラック、鱗片状
黒鉛、土状黒鉛などの天然黒鉛を精製したグラファイト
、あるいは人造黒鉛など、またはこれ等に表面処理を施
したものもしくはビニルモノマーをグラフト重合させた
ものあるいはこれ等の混合物を用いることができる。電
子線硬化型バインダーとしては特に制限はなく、ジアリ
ルオルトフタレート、ジアリルイソフタレートなどのポ
リアリル化合物、不飽和ポリエステル類、ビスフェノー
ルA型エポキシ化合物のポリ (メタ)アクリレート、
ノボラックフェノール型エポキシ化合物のポリ (メタ
)アクリレートなどのエポキシポリ (メタ)アクリレ
ート類、ポリウレタン化合物とβ−ヒドロキシエチル(
メタ)アクリレートなどとの反応生成物、ポリ (メタ
)アクリレート類、ポリエステルポリオールポリ (メ
タ)アクリレート類、ポリエーテルポリオールポリ (
メタ)アクリレート類、ジビニル化合物、フェノキシエ
チル(メタ)アクリレート、テトラヒドロフルフリル(
メタ)アクリレート、(メタ)アクリル酸アルキルエス
テル、スチレン、α−アルキルスチレン等のエチレン性
不飽和二重結合を有する化合物の中から選ばれる1種も
しくは2種以上の化合物を用いることができる。添加剤
としては特に制限はなく、電子線に対して不活性な高分
子化合物、シリカ、タルクなどの非導電性の無機微粉末
、流動特性改良剤、接着便進剤、酸化防止剤、分散剤な
どが目的に応じて用いられる。流動特性の調節のために
必要に応じて添加される溶剤としては、特に制限はなく
、メチルエチルケトン、エチルセロソルブ、エチルセロ
ソルブアセテート、酢酸エチル、トルエン、キシレン、
イソプロピルアルコール、エタノール、アセトン、ブチ
ルカルピトール、ブチルカルピトールアセテート、カル
ピトールアセテート、ブチルセロソルブ、ブチルセロソ
ルブアセテートあるいはこれ等の混合物を使用すること
ができる。
The conductive paste used in the present invention is composed of conductive fine powder, an electron beam curable binder, and additives, and a solvent is added as necessary. There are no particular restrictions on the conductive fine powder, including gold, silver, platinum, copper, nickel, chromium,
Fine metal powders such as palladium, aluminum, tungsten, molybdenum or alloys thereof, or inorganic or organic fine powders coated with these metals or alloys, fine powders of oxides such as tin, titanium, iron, etc. Carbon black such as acetylene black, furnace black, thermal black, channel black, graphite refined from natural graphite such as flaky graphite and earthy graphite, or artificial graphite, or surface-treated materials or vinyl monomers. or a mixture thereof can be used. There are no particular restrictions on the electron beam curable binder, and polyallyl compounds such as diallyl orthophthalate and diallyl isophthalate, unsaturated polyesters, poly(meth)acrylates of bisphenol A type epoxy compounds,
Epoxy poly(meth)acrylates such as poly(meth)acrylate of novolak phenolic epoxy compounds, polyurethane compounds and β-hydroxyethyl (
Reaction products with meth)acrylates, poly(meth)acrylates, polyester polyols poly(meth)acrylates, polyether polyols poly(
meth)acrylates, divinyl compounds, phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (
One or more compounds selected from compounds having an ethylenically unsaturated double bond such as meth)acrylate, (meth)acrylic acid alkyl ester, styrene, and α-alkylstyrene can be used. There are no particular restrictions on additives, including polymer compounds inert to electron beams, non-conductive inorganic fine powders such as silica and talc, fluidity improvers, adhesion promoters, antioxidants, and dispersants. etc. are used depending on the purpose. There are no particular restrictions on the solvents that may be added as necessary to adjust fluidity properties, and include methyl ethyl ketone, ethyl cellosolve, ethyl cellosolve acetate, ethyl acetate, toluene, xylene,
Isopropyl alcohol, ethanol, acetone, butyl carpitol, butyl carpitol acetate, carpitol acetate, butyl cellosolve, butyl cellosolve acetate or mixtures thereof can be used.

本発明において貫通孔内壁に、導電ペーストを付着させ
る方法としては、一般には導電ペーストを付着させたビ
ンを貫通孔に挿入し、次いでビンを引き抜く方法、ある
いは通常のスクリーン印刷法によって導電ペーストを貫
通孔の一端に印刷した後他端の開口部から減圧吸引する
方法、の何れかの方法が用いられる。また、必要に応じ
て前記の操作を表裏の両面から行うことも可能である。
In the present invention, the conductive paste is generally applied to the inner wall of the through-hole by inserting a bottle with the conductive paste attached into the through-hole and then pulling the bottle out, or by penetrating the conductive paste by a normal screen printing method. One of the methods used is to print on one end of the hole and then vacuum suction from the opening at the other end. Moreover, it is also possible to perform the above-mentioned operation from both the front and back sides, if necessary.

何れの場合にあっても、導電ペーストが貫通孔内壁に均
一に付着し、貫通孔が閉塞されていないことが重要であ
り、そのためには、貫通孔の内径、孔長に応じて導電ペ
ーストの流動性および付着のための操作条件を適宜調節
することが必要である。導電ペーストの流動特性の選定
を誤った場合には、例えば、硬化前にペーストが流動し
て基板あるいは装置を汚染したり、ビン引き抜き時に糸
を曳くなどの好ましくない現象を生じる。−船釣に言っ
て、本発明のためのペーストとしては50〜5000セ
ンチボイズ(25℃)程度の粘度が望ましい。
In either case, it is important that the conductive paste adheres uniformly to the inner wall of the through hole and that the through hole is not blocked. It is necessary to adjust the operating conditions for flowability and deposition accordingly. If the flow characteristics of the conductive paste are incorrectly selected, undesirable phenomena may occur, such as the paste flowing before hardening, contaminating the substrate or equipment, or strings being pulled when the bottle is pulled out. - For boat fishing, the paste for the present invention preferably has a viscosity of about 50 to 5000 centivoise (25°C).

本発明における電子線の照射のための装置としては、加
速電圧150〜300キロボルトのいわゆる低いエネル
ギー型の電子線加速器が用いられる。電子線の照射は、
通常、不活性ガス雰囲気中で、また電子線の入射方向は
特に制限されないが、本発明者等の研究によると貫通孔
の軸と平行になるような状態であっても十分に硬化する
。照射は、少なくとも表面から1回、次いで裏面から1
回行われる。照射する電子線の線量は、1回当たり5〜
30メガラツドが好ましい。少ない線量の電子線では導
電ペーストの硬化が不完全となり、また、過剰な線量・
照射回数では効率、基板の劣化などの点から好ましくな
い。使用する導電ペーストに溶剤が含まれる場合には、
電子線の照射に先だって、溶剤除去のための乾燥を行う
必要がある。溶剤除去のための乾燥方法としては、常温
乾燥、熱風乾燥、遠赤外線乾燥などの方法が考えられる
が、効率、基板に与える熱的な影響を考慮すれば、遠赤
外線乾燥が好ましい、また、遠赤外線乾燥の場合には、
表面および裏面より各1回宛の照射を行う方がよい結果
が得られる。
As a device for electron beam irradiation in the present invention, a so-called low energy type electron beam accelerator with an accelerating voltage of 150 to 300 kilovolts is used. The electron beam irradiation is
Normally, the electron beam is not particularly limited in the inert gas atmosphere and the incident direction is not limited, but according to research by the present inventors, it is sufficiently cured even in a state parallel to the axis of the through hole. Irradiation is carried out at least once from the front side and then once from the back side.
It will be held twice. The dose of the electron beam to be irradiated is 5 to 5 per time.
30 megarads is preferred. A small dose of electron beam will result in incomplete curing of the conductive paste, and an excessive dose or
The number of irradiations is not preferable from the viewpoint of efficiency, substrate deterioration, etc. If the conductive paste you use contains solvent,
Prior to electron beam irradiation, it is necessary to perform drying to remove the solvent. Possible drying methods for solvent removal include room temperature drying, hot air drying, and far-infrared drying, but far-infrared drying is preferable in consideration of efficiency and thermal effects on the substrate. In the case of infrared drying,
Better results can be obtained by irradiating the front and back surfaces once each.

以下、実施例および比較例により本発明を更に詳しく説
明するが、本発明はこれ等の実施例によって何ら限定さ
れるものではない。例中部とは重量部を示す。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples in any way. Example "Central part" refers to parts by weight.

(実施例1) 銀粉および電子線硬化型バインダーを下記に示す割合で
混合し、次いで3本ロールで混練することにより電子線
硬化型導電ペーストを製造した。
(Example 1) An electron beam curable conductive paste was manufactured by mixing silver powder and an electron beam curable binder in the proportions shown below, and then kneading with three rolls.

成     分             配合量銀粉
(粒径0.5〜10μ゛)28部 シリカ粉(日本アエロジル■製)      2部エチ
レン性二重結合を有するスピラン樹脂 10部(昭和高
分子■製スピラ・ツクll−3000)トリメチロール
プロパントリアクリレート  2部シランカップリング
剤          1.5部(信越化学工業fiK
BM−503) 別途、厚さ1.6mmの両面銅張ガラスエポキシ基板の
’d4 ffaをエツチングすることにより表裏両面に
導体回路を形成し、表裏の銅箔回路および中間のガラス
エポキシ基板を貫通するように、直径1.0+vの、貫
通孔をドリリングにより設けた。この基板の貫通孔の一
端に導電ペーストが印刷されるように180メツシユの
ステンレススクリーンを用いて上記の導電ペーストを印
刷した。次に、貫通孔の反射側の端より減圧で吸引する
ことにより導電ペーストによる貫通孔の閉塞を解き、貫
通孔の内壁に導電ペーストを施すようにした。なお、こ
の際、スクリーン印刷並びに減圧吸引の条件を適宜調節
することによって、表裏の銅箔回路と導電ペーストとの
接触を十分にとることが可能であった。
Ingredients Quantity Silver powder (particle size 0.5-10 μ゛) 28 parts Silica powder (manufactured by Nippon Aerosil ■) 2 parts Spirane resin with ethylenic double bonds 10 parts (Spira Tsukull-3000 manufactured by Showa Kobunshi ■) ) Trimethylolpropane triacrylate 2 parts Silane coupling agent 1.5 parts (Shin-Etsu Chemical fiK
BM-503) Separately, conductive circuits are formed on both the front and back surfaces by etching the 'd4 ffa of a 1.6 mm thick double-sided copper-clad glass epoxy board, and the conductor circuits are passed through the front and back copper foil circuits and the intermediate glass epoxy board. A through hole with a diameter of 1.0+v was provided by drilling. The above conductive paste was printed using a 180 mesh stainless steel screen so that the conductive paste was printed on one end of the through hole of this substrate. Next, the through hole was unblocked by the conductive paste by vacuum suction from the reflective end of the through hole, and the conductive paste was applied to the inner wall of the through hole. In addition, at this time, by appropriately adjusting the conditions of screen printing and vacuum suction, it was possible to make sufficient contact between the front and back copper foil circuits and the conductive paste.

引き続いて、この基板を水平にし、エナージー・サイエ
ンス社製150B−15型電子線照射装置を用い、窒素
ガス雰囲気中で加速電圧160キロボルトの条件で垂直
方向から電子線の照射を行った。表側より20メガラフ
ト、続いて裏面から20メガラ硬化した。導電ペースト
処理後の貫通孔の両端の間の抵抗値は50mΩ/hol
eであり、これを、260℃の半田浴槽に10秒間浸漬
することを5回繰り返した後の抵抗値は100mΩ/h
oleであった。
Subsequently, this substrate was held horizontally and irradiated with an electron beam from the vertical direction using an electron beam irradiation device Model 150B-15 manufactured by Energy Science Co., Ltd. under conditions of an accelerating voltage of 160 kilovolts in a nitrogen gas atmosphere. It was cured by 20 megaraft from the front side, and then by 20 megaraft from the back side. The resistance value between both ends of the through hole after conductive paste treatment is 50mΩ/hol
e, and after immersing it in a solder bath at 260°C for 10 seconds 5 times, the resistance value is 100 mΩ/h.
It was ole.

(実施例2) 銀粉、電子線硬化型バインダーおよび溶剤を下記に示す
割合で混合し、次いで3本ロールで混練することにより
電子線硬化型導電ペーストを製造した。
(Example 2) An electron beam curable conductive paste was manufactured by mixing silver powder, an electron beam curable binder, and a solvent in the proportions shown below, and then kneading with three rolls.

成     分            配合量銀粉(
粒径0.5〜10μ)38部 ジアリルイソフタレートオリゴマー   3部トリス−
2−アクリロイルエチルエステル3部−イソシアヌレー
ト トリメチロールプロパントリアクリレート5部エポキシ
アクリレート樹脂       3部(昭和高分子■製
9#$シ5P−4010)シランカフプリング剤   
       2部(信越化学工業■KBM−503) カルピトールアセテート         9部別途、
厚さ1.6 mn+の両面銅張紙フエノール基板の所定
の位置にパンチングによって直径0.8 nunの貫通
孔を設け、次に銅箔をエツチングすることにより表裏両
面に導体回路を形成させた。次いで孔の直径よりも小さ
い直径を有するピンに上記の導電ペーストを付着させた
ものをこの基板の貫通孔に挿入し、続いてピンを引き抜
くことにより、貫通孔の側壁部に導電ペーストを付着さ
せることができた。ピンの操作を適宜調節することによ
り、貫通孔を閉塞させることなく、また表裏の銅箔回路
と導電ペーストの密着を十分に確保することは容易であ
った。
Ingredients Amount Silver powder (
Particle size 0.5-10μ) 38 parts diallyl isophthalate oligomer 3 parts Tris-
2-acryloyl ethyl ester 3 parts-isocyanurate trimethylolpropane triacrylate 5 parts Epoxy acrylate resin 3 parts (Showa Kobunshi 9#$5P-4010) Silane cuff pulling agent
2 parts (Shin-Etsu Chemical ■KBM-503) Carpitol acetate 9 parts separately,
Through holes with a diameter of 0.8 nun were punched at predetermined positions on a double-sided copper-clad paper phenol substrate having a thickness of 1.6 mm+, and conductor circuits were formed on both the front and back surfaces by etching the copper foil. Next, a pin having a diameter smaller than the diameter of the hole with the conductive paste attached thereto is inserted into the through-hole of this substrate, and then the pin is pulled out to adhere the conductive paste to the side wall of the through-hole. I was able to do that. By appropriately adjusting the operation of the pins, it was easy to ensure sufficient adhesion between the copper foil circuits on the front and back sides and the conductive paste without blocking the through holes.

引き続いて、この基板の表面、続いて裏面を遠赤外線ラ
ンプで加熱することにより溶剤を乾燥させた。
Subsequently, the front surface and then the back surface of this substrate were heated with a far-infrared lamp to dry the solvent.

この時の雰囲気温度は180℃、乾燥時間は1分であっ
た。更に、この基板を実施例1と同様の条件下で電子線
照射を行った。
At this time, the atmospheric temperature was 180° C. and the drying time was 1 minute. Further, this substrate was subjected to electron beam irradiation under the same conditions as in Example 1.

以上の処理により貫通孔内部の導電ペーストが十分に硬
化していることは、貫通孔内壁の顕微鏡観察およびメチ
ルエチルケトンを用いた超音波処理によって確認され、
また貫通孔両端の抵抗値は50mΩ/holeであった
It was confirmed by microscopic observation of the inner wall of the through hole and ultrasonic treatment using methyl ethyl ketone that the conductive paste inside the through hole was sufficiently hardened by the above treatment.
Further, the resistance value at both ends of the through hole was 50 mΩ/hole.

(実施例3) 厚さ1.611の片面銅張り紙フエノール樹脂積層基板
の所定位置に、直径1. Owmの貫通孔をドリリング
により設け、次に銅箔をエツチングすることにより片面
に導体回路を形成させた。この基板の貫通孔に対し、実
施例2と同じ導電ペーストを施して硬化させた。次いで
スクリーン法により、実施例1と同じ導電ペーすとをl
R箔導体回路の反対面に印刷し同じ面より実施例1に示
した方法により10メガランドの電子線を照射した。硬
化後の表面銅箔導体回路と裏面の導電ビースト回路の間
の貫通孔の抵抗値は50mΩ/holeであった。
(Example 3) At a predetermined position on a one-sided copper-clad paper phenolic resin laminated substrate with a thickness of 1.61 mm, a diameter of 1.6 cm was placed. A conductive circuit was formed on one side by drilling a through hole and then etching the copper foil. The same conductive paste as in Example 2 was applied to the through-holes of this substrate and cured. Next, using the screen method, l of the same conductive paste as in Example 1 was applied.
It was printed on the opposite side of the R foil conductor circuit and irradiated with a 10 megaland electron beam from the same side by the method shown in Example 1. After curing, the resistance value of the through hole between the copper foil conductor circuit on the front surface and the conductive beast circuit on the back surface was 50 mΩ/hole.

(比較例) 実施例2と同じ導電ペーストを、実施例2と同じ基板の
貫通孔にピンを用いて充填した。ただし、本比較例にお
いては、貫通孔がペーストにより完全に閉塞するように
した以外は実施例2と同様の条件で遠赤外線加熱および
電子線の照射を行った。貫通孔内の導電ペーストは、露
出した部分が硬化するのみであり、内部は未硬化のまま
であった。
(Comparative Example) The same conductive paste as in Example 2 was filled into the through hole of the same substrate as in Example 2 using a pin. However, in this comparative example, far-infrared heating and electron beam irradiation were performed under the same conditions as in Example 2, except that the through holes were completely closed with paste. The conductive paste inside the through-hole was only cured at the exposed portion, and the inside remained uncured.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明では、絶縁基板に設けた貫通孔の
内壁に施した導電ペーストを、低エネルギーの加速器を
用いた電子線照射によって硬化させ、該基板の両面にあ
る導体回路の電気的接続を容易に可能とするものであり
、熱的劣化の少ない両面印刷配線板を少ない工程で製造
できるという点において、その実用的価値が大である。
As described above, in the present invention, a conductive paste applied to the inner wall of a through hole provided in an insulating substrate is hardened by electron beam irradiation using a low-energy accelerator, and electrical connection between conductive circuits on both sides of the substrate is made. It is of great practical value in that it enables the production of double-sided printed wiring boards with little thermal deterioration in a small number of steps.

Claims (4)

【特許請求の範囲】[Claims] 1.絶縁基板に設けた貫通孔の中心軸部が中空となるよ
うに、側壁部に電子線硬化型導電ペーストを施し、次い
で該基板の両面より電子線を照射して上記導電ペースト
を硬化させることにより、基板両面の導電回路の電気的
接続を得る工程を含むことを特徴とする印刷配線板の製
造方法。
1. By applying an electron beam curing type conductive paste to the side wall so that the central axis of the through hole provided in the insulating substrate is hollow, and then curing the conductive paste by irradiating electron beams from both sides of the substrate. A method for manufacturing a printed wiring board, comprising the steps of: obtaining electrical connection between conductive circuits on both sides of the substrate.
2.絶縁基板の貫通孔の側壁部に、溶剤を含有する電子
線硬化型導電ペーストを施した後、第1段階で溶剤を除
去し、次に第2段階として、基板の両面より電子線を照
射し、該ペーストを硬化させることにより、基板両面の
導電回路の電気的接続を得る工程を含むことを特徴とす
る印刷配線板の製造方法。
2. After applying an electron beam curing conductive paste containing a solvent to the side wall of the through hole of the insulating substrate, the solvent is removed in the first step, and then, in the second step, an electron beam is irradiated from both sides of the substrate. A method for manufacturing a printed wiring board, comprising the step of curing the paste to obtain electrical connection between conductive circuits on both sides of the board.
3.両面に導電回路を形成した絶縁基板に設けた貫通孔
の中心軸部が中空となるように、側壁部に電子線硬化型
導電ペーストを施し、次いで該基板の両面より電子線を
照射して上記導電ペーストを硬化させることにより、基
板両面の導電回路の電気的接続を得ることを特徴とする
印刷配線板の製造方法。
3. Electron beam curable conductive paste is applied to the side walls of an insulating substrate with conductive circuits formed on both sides so that the center axis of the through hole is hollow, and then an electron beam is irradiated from both sides of the substrate to form the above-mentioned A method for manufacturing a printed wiring board, characterized in that electrical connection between conductive circuits on both sides of the substrate is obtained by curing a conductive paste.
4.前記絶縁基板の貫通孔の側壁部に、溶剤を含有する
電子線硬化型導電ペーストを施した後、第1段階で溶剤
を除去し、次に第2段階として、基板の両面より電子線
を照射し、該ペーストを硬化させることにより、基板両
面の導電回路の電気的接続を得ることを特徴とする印刷
配線板の製造方法。
4. After applying an electron beam curable conductive paste containing a solvent to the side wall of the through hole of the insulating substrate, the solvent is removed in a first step, and then an electron beam is irradiated from both sides of the substrate in a second step. A method for manufacturing a printed wiring board, characterized in that electrical connection between conductive circuits on both sides of the substrate is obtained by curing the paste.
JP9956088A 1988-04-22 1988-04-22 Manufacture of printed wiring board Pending JPH01270386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9956088A JPH01270386A (en) 1988-04-22 1988-04-22 Manufacture of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9956088A JPH01270386A (en) 1988-04-22 1988-04-22 Manufacture of printed wiring board

Publications (1)

Publication Number Publication Date
JPH01270386A true JPH01270386A (en) 1989-10-27

Family

ID=14250533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9956088A Pending JPH01270386A (en) 1988-04-22 1988-04-22 Manufacture of printed wiring board

Country Status (1)

Country Link
JP (1) JPH01270386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054178A (en) * 2017-09-19 2019-04-04 パナソニックIpマネジメント株式会社 Component mounting method and manufacturing method of component mounting substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054178A (en) * 2017-09-19 2019-04-04 パナソニックIpマネジメント株式会社 Component mounting method and manufacturing method of component mounting substrate

Similar Documents

Publication Publication Date Title
JP2643099B2 (en) Method of attaching conductive metal to substrate
US4888450A (en) Circuit board fabrication leading to increased capacity
US4783247A (en) Method and manufacture for electrically insulating base material used in plated-through printed circuit panels
EP0096701B1 (en) Circuit board fabrication leading to increased capacity
GB2090476A (en) Electrical conductors arranged in multiple layers and preparation thereof
JPH01270386A (en) Manufacture of printed wiring board
JPS6258395B2 (en)
JP2758432B2 (en) Electron beam curable conductive paste
JP2847563B2 (en) Electron beam-curable conductive paste composition
JP2919817B2 (en) Manufacturing method of printed wiring board
JPH02199179A (en) Curing of paint
JPH02177388A (en) Manufacture of printed wiring board
JP2842631B2 (en) Manufacturing method of printed wiring board
JP2967117B2 (en) Electron beam-curable conductive paste composition
JPS5834958B2 (en) Through-hole printed circuit board
JPS61224491A (en) Formation of conductor circuit pattern
JPH0419971A (en) Electrically connecting member and electric circuit member
JPS63228525A (en) Electron beam hardening type conducting paste
JPH07113178A (en) Method for depositing metal
JPH03137174A (en) Electron radiation curing type electrically conductive paste composition
JPS6236895A (en) Manufacture of flexible circuit board
JPH0143475B2 (en)
JP2002299821A (en) Method of manufacturing multilayered substrate
JPS63189477A (en) Electron radiation curing electrically conductive paste
JPH09326564A (en) Manufacture of circuit board