JPH0126521B2 - - Google Patents

Info

Publication number
JPH0126521B2
JPH0126521B2 JP58186414A JP18641483A JPH0126521B2 JP H0126521 B2 JPH0126521 B2 JP H0126521B2 JP 58186414 A JP58186414 A JP 58186414A JP 18641483 A JP18641483 A JP 18641483A JP H0126521 B2 JPH0126521 B2 JP H0126521B2
Authority
JP
Japan
Prior art keywords
resistance value
resistance
electrode
resistive layer
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58186414A
Other languages
Japanese (ja)
Other versions
JPS6077403A (en
Inventor
Eiichiro Imaoka
Tsuneaki Uema
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP58186414A priority Critical patent/JPS6077403A/en
Publication of JPS6077403A publication Critical patent/JPS6077403A/en
Publication of JPH0126521B2 publication Critical patent/JPH0126521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】 この発明は膜抵抗器の抵抗値調整方法に係り、
更に詳しく言えば、ガラス又はセラミツクなどの
絶縁基板上に金属蒸着膜等によつて形成された微
小抵抗ネツトワーク素子の抵抗値調整方法に関す
るものである。
[Detailed Description of the Invention] The present invention relates to a method for adjusting the resistance value of a membrane resistor.
More specifically, the present invention relates to a method of adjusting the resistance value of a microresistance network element formed by a metal vapor deposition film or the like on an insulating substrate such as glass or ceramic.

金属系の膜抵抗器は周囲温度の変化等に対して
抵抗値の安定度が良く、経年変化も小さいので、
電子機器などの重要な回路の抵抗素子として従来
から使用されている。これらの膜抵抗器のうち抵
抗値合わせを必要とするものに対してはレーザ加
工機などによつてトリミングが施される。
Metal film resistors have good resistance value stability against changes in ambient temperature, etc., and change over time is small.
It has traditionally been used as a resistance element in important circuits such as electronic equipment. Among these film resistors, those that require resistance value matching are trimmed using a laser processing machine or the like.

第1図にはレーザ加工機によつてトリミングさ
れた膜抵抗器の従来例が示されている。同図を参
照すると、上記膜抵抗器1は、絶縁基板2上に形
成された金属蒸着膜からなる抵抗素子3と、その
両端部に同様に金属蒸着膜で形成された抵抗値の
小さい1対の電極4,4とを有している。上記抵
抗素子3には図示しないレーザ加工機によつてト
リミングされた例えば3個の切り込み5,6,7
等が形成されている。上記電極4,4には図示し
ないリード線がボンデイングされており、上記抵
抗素子3の抵抗値は、上記リード線に接続される
図示しない外部機器等によつて読み取られるよう
になつている。上記各切り込み5ないし7は抵抗
素子3の抵抗値を高めるためのものであり、一般
には、同図に示されているように両電極4,4を
結ぶ電流路に対して直角方向となるように施され
る。この場合、その位置と幅、長さ等はレーザ加
工機で正確に制御され、抵抗素子3の抵抗値を所
定の値に対して精密に合わせることができるよう
になつている。
FIG. 1 shows a conventional example of a film resistor trimmed by a laser beam machine. Referring to the figure, the film resistor 1 includes a resistance element 3 made of a metal vapor deposited film formed on an insulating substrate 2, and a pair of resistive elements 3 having a low resistance value similarly formed of a metal vapor deposited film on both ends of the resistance element 3. It has electrodes 4, 4. The resistive element 3 has, for example, three notches 5, 6, 7 trimmed by a laser processing machine (not shown).
etc. are formed. Lead wires (not shown) are bonded to the electrodes 4, 4, and the resistance value of the resistance element 3 is read by an external device (not shown) connected to the lead wires. The above-mentioned cuts 5 to 7 are for increasing the resistance value of the resistance element 3, and are generally arranged in a direction perpendicular to the current path connecting the two electrodes 4, 4, as shown in the figure. It is applied to In this case, its position, width, length, etc. are accurately controlled by a laser processing machine, so that the resistance value of the resistance element 3 can be precisely adjusted to a predetermined value.

このような膜抵抗器1をフオトリト技術等によ
つて形成する際には、例えば抵抗素子3の幅Wを
一定にしておき、その長さ寸法Lは、切り込みを
入れる前の抵抗値すなわち初期抵抗値の大小に応
じて設定することが従来から一般的に行なわれて
いる。この場合、初期抵抗値が比較的高い抵抗素
子については特に問題はないが、初期抵抗値が低
くなると長さ寸法Lも小さくなるので切り込みを
入れるにしてもその数が限定される。このため、
低抗値の調整範囲や調整精度に制限を受け、調整
可能な低抵抗の膜抵抗器を製作することが困難で
あつた。また、レーザビーム等によつてトリミン
グすると、切り込み5ないし7の周りには、いわ
ゆるヒートアフエクテドゾーンと称される熱変質
層5′ないし7′が同時に形成されるが、これらの
熱変質層5′ないし7′は電気的に必ずしも安定状
態を保持するものとは限らないので、例えば図示
の点線のような電流路に対して熱変質層の近接部
分がより少ない膜抵抗器が望まれていた。
When forming such a film resistor 1 by photolithography technology or the like, for example, the width W of the resistance element 3 is kept constant, and its length L is set to the resistance value before making the notch, that is, the initial resistance. Conventionally, it has been common practice to set according to the magnitude of the value. In this case, there is no particular problem with a resistor element having a relatively high initial resistance value, but as the initial resistance value decreases, the length dimension L also decreases, so the number of cuts is limited even if they are made. For this reason,
It has been difficult to manufacture an adjustable low-resistance film resistor due to limitations in the adjustment range and adjustment accuracy of the low resistance value. Furthermore, when trimming with a laser beam or the like, thermally altered layers 5' to 7', called so-called heat affected zones, are simultaneously formed around the cuts 5 to 7, but these thermally altered layers Since 5' to 7' do not necessarily maintain an electrically stable state, it is desirable to have a film resistor with fewer thermally altered layers in the vicinity of the current path, such as the dotted line in the figure. Ta.

この発明は上記の点に鑑みなされたもので、そ
の目的は、膜抵抗器の有する抵抗値をステツプ状
に変化させる粗調整とわずかずつ変化させる微調
整とを簡単に行なうことができるとともに、熱変
質層の影響が少なくなるようにトリミングし得る
膜抵抗器の抵抗値調整方法を提供することにあ
る。
This invention was made in view of the above points, and its purpose is to easily perform coarse adjustment that changes the resistance value of a film resistor in steps and fine adjustment that changes it little by little, and to It is an object of the present invention to provide a method for adjusting the resistance value of a film resistor that can be trimmed so as to reduce the influence of a deteriorated layer.

以下、この発明を添付図面に示された実施例に
より詳細に説明する。
Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the accompanying drawings.

まず、第2図を参照しながら、この発明による
抵抗値調整方法が適用される膜低抗器の構成につ
いて説明する。同図イおよびロに示されているよ
うに、この膜低抗器10は例えばセラミツク基板
11上にそれぞれフオトリト技術等によつて膜状
に形成された抵抗層12と、その上に同様な方法
で重ねるように形成された膜状の電極層13とを
有している。この実施例においては、セラミツク
基板11上に形成される上記抵抗層12の構成材
料としては例えば窒化タンタル(Ta2N)が用い
られており、そのパターンは同図ハに示されてい
るように例えば2つの切り欠き部14,15と20
個の窓孔16ないし35とを備えている。このう
ちの10個の窓孔16ないし25は切り欠き部14
を通る仮想の直線A上に等間隔で配設され、他の
10個の窓孔26ないし35は、同様に切り欠き部
15を通る仮想の直線B上に等間隔で配設されて
いる。
First, with reference to FIG. 2, the structure of a membrane resistor to which the resistance value adjustment method according to the present invention is applied will be explained. As shown in FIG. It has a film-like electrode layer 13 formed so as to overlap with each other. In this embodiment, tantalum nitride (Ta 2 N), for example, is used as the constituent material of the resistance layer 12 formed on the ceramic substrate 11, and its pattern is as shown in FIG. For example, two notches 14, 15 and 20
window holes 16 to 35. Of these, ten window holes 16 to 25 are cut out portions 14.
are arranged at equal intervals on an imaginary straight line A passing through the
Similarly, the ten window holes 26 to 35 are arranged at equal intervals on an imaginary straight line B passing through the notch 15.

この抵抗層12に重ね合わせるように形成され
る上記電極層13の構成材料には例えばニクロム
(NiCr)―金(Au)などが用いられており、そ
のパターンは、同図ニに示されているように、上
記抵抗層12の切り欠き部14,15と各窓孔1
6ないし35の位置にそれぞれ対応して設けられた
例えば2つの切り欠き部36,37と20個のスリ
ツト38ないし57とを備えている。上記抵抗層
12と、この電極層13とがフオトリト技術等に
よつてセラミツク基板11上に一体的に形成され
ると上記図面イおよびロに示されるような膜抵抗
器10が得られる。この場合、例えば同図ホに示
されるようにセラミツク基板11に電極層13を
形成し、この電極層13の各スリツト内に抵抗層
12を形成することもできる。
For example, nichrome (NiCr)-gold (Au) is used as the constituent material of the electrode layer 13 formed so as to overlap this resistance layer 12, and its pattern is shown in FIG. As shown, the notches 14 and 15 of the resistance layer 12 and each window hole
For example, two notches 36 and 37 and 20 slits 38 to 57 are provided corresponding to positions 6 to 35, respectively. When the resistance layer 12 and the electrode layer 13 are integrally formed on the ceramic substrate 11 by photolithography or the like, a film resistor 10 as shown in FIGS. 1 and 2 is obtained. In this case, it is also possible to form an electrode layer 13 on a ceramic substrate 11 and form a resistance layer 12 in each slit of this electrode layer 13, as shown in FIG.

次に、第3図および第4図を参照しながら、レ
ーザビームによるこの膜抵抗器10の抵抗値調整
方法を説明する。
Next, a method for adjusting the resistance value of the film resistor 10 using a laser beam will be described with reference to FIGS. 3 and 4.

まず、図示しないレーザ加工機に膜抵抗器10
を取付け、レーザビーム58のスタート位置を切
り欠き部14,36内にセツトする。この場合、
レーザビームの強度や焦点調整はあらかじめ済ま
せておく。上記第3図および第4図に示された実
施例は、例えばスタート位置Cから実線矢印で示
す方向へ向け位置Dまでレーザビーム58を移動
させて窓孔16に切り込みを入れた後、窓孔17
を経由して点線矢印で示す方向に移動させてスリ
ツト39に切り込みを施す場合のものである。抵
抗層12と電極層13とは上下に一体的に形成さ
れているから、抵抗層12にはスリツト39とと
もに切り込みが施される。この場合、レーザービ
ーム58によるスリツト39上のトリミングパタ
ーンは、オーバーラツプ部分を有する円状にされ
る。これらの各スリツト内における抵抗層12の
抵抗値をそれぞれrとし、スリツトとスリツトの
間を抵抗値がきわめて小さい1つの電極部と見な
して第5図イに示すように参照符号61ないし8
2を与えると、その等価回路は同図ロに示される
ようになる。上記第3図におけるレーザビーム5
8の点Cおよび点Dを第5図に示すと図示のよう
になる。この場合、電極部61と71間の抵抗R
1は、トリミングによつてステツプ状に加わるス
リツト38内の抵抗rと、同じく微調トリミング
によりスリツト39内の抵抗rが変化して形成さ
れた抵抗r′との直列合成抵抗で、 R1=r+r′ なる式で表わされる。また、上記第6図において
例えば仮想直線Aに沿つて電極部61から電極部
68の点Eまで7つの電極部に切り込みを施し、
次にこの点Eからスリツト45に沿つて上記同様
に微調用の切り込みを施し、その抵抗がr″である
とすれば、全体の直列合成抵抗R1′は、 R1′=7×r+r″ となる。更に、上記第1のトリミングの例、すな
わち、R1=r+r′の次に、引き続いて上記点Eま
で仮想直線Aに沿つて切り込みを施し、上記第2
のトリミングの例と同様にスリツト45に沿つて
微調用の切り込みを施し、その抵抗がr″であると
すれば、全体の直列合成抵抗R1″は、 R1″=r+r′+5×r+r″ となることは容易に理解できる。なお、例えば電
極部61と71との間に電位差を与えると、第4
図および第5図に点線で示すような仮想の電流路
に沿つて電流が流れるが、この場合、上記電流路
に面している熱変質層は参照符号12aが付され
た1箇所のみでほかは全く関係がない。したがつ
て、この発明によれば、熱変質層の影響を少なく
することができる。
First, a film resistor 10 is placed in a laser processing machine (not shown).
is attached, and the starting position of the laser beam 58 is set within the notches 14 and 36. in this case,
Adjust the intensity and focus of the laser beam in advance. In the embodiment shown in FIGS. 3 and 4, for example, the laser beam 58 is moved from the start position C in the direction shown by the solid line arrow to the position D to cut into the window hole 16, and then the window hole 16 is cut. 17
This is a case where the slit 39 is cut by moving in the direction shown by the dotted line arrow. Since the resistance layer 12 and the electrode layer 13 are integrally formed vertically, the resistance layer 12 is cut along with the slit 39. In this case, the trimming pattern on the slit 39 by the laser beam 58 is circular with an overlapping portion. The resistance value of the resistance layer 12 in each of these slits is defined as r, and the space between the slits is regarded as one electrode portion having an extremely small resistance value, and is designated by reference numerals 61 to 8 as shown in FIG. 5A.
2, the equivalent circuit becomes as shown in FIG. Laser beam 5 in Figure 3 above
When points C and D of No. 8 are shown in FIG. 5, they become as shown. In this case, the resistance R between the electrode parts 61 and 71
1 is a series composite resistance of the resistance r in the slit 38 added in steps by trimming and the resistance r' formed by changing the resistance r in the slit 39 by fine trimming, R1=r+r' It is expressed by the following formula. In addition, in FIG. 6, for example, seven electrode parts are cut along the virtual straight line A from the electrode part 61 to the point E of the electrode part 68,
Next, from this point E, cut for fine adjustment is made in the same manner as above along the slit 45, and assuming that the resistance is r'', the total series combined resistance R1' is R1' = 7 x r + r''. . Furthermore, following the first trimming example, that is, R1=r+r', a cut is made along the imaginary straight line A to the point E, and the second trimming is performed.
As in the trimming example, if a cut for fine adjustment is made along the slit 45 and the resistance is r'', the overall series combined resistance R1'' is R1'' = r + r' + 5 x r + r''. This is easy to understand. Note that, for example, if a potential difference is applied between the electrode parts 61 and 71, the fourth
A current flows along an imaginary current path as shown by the dotted line in the figure and FIG. is completely unrelated. Therefore, according to the present invention, the influence of the thermally altered layer can be reduced.

上記抵抗値の調整例はこの膜抵抗器10の右側
半分、すなわち10個のスリツト38ないし47内
における10個の各抵抗rと、11個の電極部61な
いし71とを組み合わせた場合であるが、左側の
半分すなわち10個のスリツト48ないし57内に
おける各抵抗rと11個の電極部72ないし82と
を組み合わせた場合も同様に調整ができることは
明らかである。
The above example of adjusting the resistance value is a case where the right half of the film resistor 10, that is, the 10 resistors r in the 10 slits 38 to 47 are combined with the 11 electrode parts 61 to 71. It is clear that the adjustment can be made in the same way when each resistor r in the left half, that is, the ten slits 48 to 57 is combined with the eleven electrode parts 72 to 82.

更に、上記第5図イにおいて、この膜抵抗器1
0の中央橋絡部83に点線で示すような切り込み
84を施して左右を電気的に分離し、右側半分の
直列合成抵抗をR1、左側半分の直列合成抵抗を
R2とすると、第6図の等価回路に示されるよう
な2種類の組合せ回路を構成することができる。
同図イに示された回路は、電極部71と72とを
共通接続とし電極部61と82の両端から見た左
右の合成抵抗R1とR2を直列接続にしたもので
あり、同図ロは電極部61と82、電極部71と
72をそれぞれ共通接続にし、左右の合成抵抗R
1とR2とを並列接続したものである。
Furthermore, in FIG. 5A above, this film resistor 1
A notch 84 as shown by the dotted line is made in the center bridging portion 83 of 0 to electrically separate the left and right sides, and if the series combined resistance of the right half is R1 and the series combined resistance of the left half is R2, the result shown in FIG. Two types of combinational circuits as shown in the equivalent circuit can be constructed.
The circuit shown in Figure A is a circuit in which the electrode parts 71 and 72 are connected in common, and the left and right combined resistances R1 and R2 viewed from both ends of the electrode parts 61 and 82 are connected in series. The electrode parts 61 and 82 and the electrode parts 71 and 72 are connected in common, respectively, and the left and right combined resistance R is
1 and R2 are connected in parallel.

以上詳細に説明したように、こね膜抵抗器10
はセラミツク等の絶縁基板11上の右側半分と左
側半分とにそれぞれ抵抗層12とスリツトを有す
る電極層13とが上下に層をなして、又は上記ス
リツト内に抵抗層12が介在するようにフオトリ
ト技術等によつて形成され、これら左右の電極層
はそれぞれ互いに中央部へ延在して橋絡されてい
る。そして、これら左側の抵抗層と電極層とによ
つて得られる各合成抵抗R1およびR2は、中央
部と各電極部との橋絡を断つように切り込みを施
すことによりステツプ状にその抵抗値を変化させ
ることができ、また、スリツトに沿つて切り込み
を施すことにより抵抗値を微細に変化させること
ができる。これら左右の合成抵抗R1およびR2
はそれぞれ単独に利用することができるが、電極
部を適宜共通接続することにより上記抵抗R1,
R2を直列接続又は並列接続の回路に構成するこ
とも可能である。これにより、同一の膜抵抗器を
用いて比較的高抵抗から低抵抗まで広い範囲に亘
る抵抗値調整が簡単にできる。
As explained in detail above, the twisted film resistor 10
The resistive layer 12 and the electrode layer 13 having slits are layered vertically on the right half and the left half of an insulating substrate 11 made of ceramic or the like, or a photolithography is carried out so that the resistive layer 12 is interposed in the slit. These left and right electrode layers extend toward the center and are bridged. Each of the combined resistances R1 and R2 obtained by the left-side resistance layer and the electrode layer has its resistance value increased in steps by making cuts to break the bridge between the center part and each electrode part. Furthermore, by cutting along the slit, the resistance value can be changed minutely. These left and right combined resistances R1 and R2
can be used individually, but by appropriately connecting the electrode parts in common, the above-mentioned resistors R1,
It is also possible to configure R2 in a series-connected or parallel-connected circuit. Thereby, resistance values can be easily adjusted over a wide range from relatively high resistance to low resistance using the same film resistor.

上記実施例においては抵抗層12に窓孔16な
いし35等が形成された場合が示されているが、
これらの窓孔は必ずしも設けなくてもよい。な
お、因みにこの膜抵抗器10の大きさは縦横寸法
が1.5mm程度であつて、数cmの基板にマトリツク
ス状に形成されたものからカツター等によつて切
り取られる。上記膜抵抗器10の寸法は抵抗値や
経済性などによつて任意に設定できることは当然
である。
In the above embodiment, the case where the window holes 16 to 35 etc. are formed in the resistance layer 12 is shown.
These window holes do not necessarily have to be provided. Incidentally, the size of this film resistor 10 is about 1.5 mm in length and width, and is cut out with a cutter or the like from a substrate formed in a matrix shape of several centimeters. It goes without saying that the dimensions of the film resistor 10 can be arbitrarily set depending on the resistance value, economic efficiency, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の膜抵抗器の例を示す平面図、第
2図ないし第6図はいずれもこの発明に関する実
施例に係り、第2図イは膜抵抗器の平面図、ロは
上記イのX―X断面図、ハは抵抗層のパターンの
平面図、ニは電極層のパターンの平面図、ホは上
記イにおいて抵抗層を電極層のスリツト内に形成
した変形実施例を示すX―X断面図、第3図はレ
ーザビームを用いてこの膜抵抗器に切り込みを施
す場合の一部斜視図、第4図は同じくその一部平
面図、第5図および第6図はこの膜抵抗器に切り
込みを入れる場合の組合せ例を示し、第5図イは
その平面図、同図ロおよび第6図イ,ロはそれら
の等価回路である。 図中、10は膜抵抗器、11は絶縁基板、12
は抵抗層、13は電極層、38ないし57はスリツ
ト、58はレーザビーム、83は橋絡部である。
Figure 1 is a plan view showing an example of a conventional membrane resistor, Figures 2 to 6 all relate to embodiments of the present invention, Figure 2A is a plan view of the membrane resistor, and Figure 2B is the above-mentioned example. C is a plan view of the resistive layer pattern, D is a plan view of the electrode layer pattern, and E is a modified example of the above A in which the resistive layer is formed in the slit of the electrode layer. 3 is a partial perspective view of cutting into this membrane resistor using a laser beam, 4 is a partial plan view of the same, and 5 and 6 are views of this membrane resistor. An example of a combination for making a cut in a vessel is shown; FIG. 5A is a plan view thereof, and FIG. 5B and FIGS. 6A and 6B are equivalent circuits thereof. In the figure, 10 is a film resistor, 11 is an insulating substrate, 12
13 is a resistive layer, 13 is an electrode layer, 38 to 57 are slits, 58 is a laser beam, and 83 is a bridge portion.

Claims (1)

【特許請求の範囲】 1 電気絶縁基板上に抵抗層を形成するととも
に、該抵抗層を所定の分割抵抗値を有する小片に
分割し得る複数の電極部およびこれらの各電極部
間に形成された橋絡部を有する電極層を設けてな
る膜抵抗器の抵抗値をレーザートリミングにより
調整するにあたつて、前記任意の電極部間の橋絡
部にレーザービームによる切込みを入れて前記抵
抗層を所定の分割抵抗値を有する小片に分離する
とともに、前記電極部を介して前記小片間に直列
的な電流路を形成して全体としての抵抗値をステ
ツプ状に変化させる粗調整工程と、前記電極部間
に露出している前記抵抗層にレーザービームを照
射してその抵抗層を削除することにより全体とし
ての抵抗値を微調整する微調整工程とを含む抵抗
値の調整方法において、 前記微調整工程時、前記レーザービームを前記
抵抗層の両側に位置する電極部の一方からこの抵
抗層を介して他方の電極部にかけて照射し、さら
に前記抵抗層を経由して前記電極間を往復するよ
うに前記レーザービームを所定の部位にまで連続
的に照射することを特徴とする膜抵抗体の抵抗値
調整方法。
[Claims] 1. A resistive layer formed on an electrically insulating substrate, a plurality of electrode parts capable of dividing the resistive layer into small pieces having predetermined dividing resistance values, and a plurality of electrode parts formed between these electrode parts. When adjusting the resistance value of a film resistor provided with an electrode layer having a bridging portion by laser trimming, the bridging portion between the arbitrary electrode portions is cut with a laser beam to remove the resistance layer. a coarse adjustment step in which the electrodes are separated into small pieces having a predetermined divided resistance value, and a series current path is formed between the small pieces via the electrode portions to change the resistance value as a whole in a stepwise manner; A method for adjusting a resistance value including a fine adjustment step of finely adjusting the resistance value as a whole by irradiating the resistive layer exposed between portions with a laser beam to remove the resistive layer, During the process, the laser beam is irradiated from one of the electrode portions located on both sides of the resistive layer to the other electrode portion through the resistive layer, and further travels back and forth between the electrodes via the resistive layer. A method for adjusting the resistance value of a film resistor, characterized in that the laser beam is continuously irradiated to a predetermined region.
JP58186414A 1983-10-05 1983-10-05 Method of adjusting resistance value of film resistor Granted JPS6077403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186414A JPS6077403A (en) 1983-10-05 1983-10-05 Method of adjusting resistance value of film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186414A JPS6077403A (en) 1983-10-05 1983-10-05 Method of adjusting resistance value of film resistor

Publications (2)

Publication Number Publication Date
JPS6077403A JPS6077403A (en) 1985-05-02
JPH0126521B2 true JPH0126521B2 (en) 1989-05-24

Family

ID=16187999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186414A Granted JPS6077403A (en) 1983-10-05 1983-10-05 Method of adjusting resistance value of film resistor

Country Status (1)

Country Link
JP (1) JPS6077403A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204653A (en) * 2012-01-27 2017-11-16 ローム株式会社 Method for manufacturing chip resistor
JP2018037693A (en) * 2012-02-03 2018-03-08 ローム株式会社 Chip resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103152A (en) * 1973-02-07 1974-09-30
JPS5375463A (en) * 1976-12-16 1978-07-04 Yokogawa Electric Works Ltd Method of manufacturing plate resistor
JPS55120108A (en) * 1979-03-12 1980-09-16 Nippon Electric Co Semiifixed resistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169808U (en) * 1979-05-24 1980-12-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103152A (en) * 1973-02-07 1974-09-30
JPS5375463A (en) * 1976-12-16 1978-07-04 Yokogawa Electric Works Ltd Method of manufacturing plate resistor
JPS55120108A (en) * 1979-03-12 1980-09-16 Nippon Electric Co Semiifixed resistor

Also Published As

Publication number Publication date
JPS6077403A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
US5206623A (en) Electrical resistors and methods of making same
EP0795880B1 (en) Ladder-like resistor and method of manufacturing the same
US20030062984A1 (en) Thin film thermistor and method of adjusting reisistance of the same
JP2001044001A (en) Structure of thin-film resistor and resistance value adjusting method
JPH0126521B2 (en)
JP2003173901A (en) Thin film thermistor and method of adjusting its resistance value
JPH1032110A (en) Laser-trimming method for thick-film resistor
JPH04209501A (en) Substrate for semiconductor device
US3659339A (en) Method of making a film resistor
JP2002270402A (en) Chip resistor
KR20060069350A (en) Chip resistor and method of manufacturing the same
JP2004039882A (en) Chip type thermistor and its manufacturing method
JP2000030902A (en) Chip type resistor and its manufacture
JP2002279883A (en) Chip type fuse resistor and manufacturing method of same
JP3449300B2 (en) Method for trimming a circuit formed on a substrate
JPS644655B2 (en)
TW200847332A (en) Semiconductor device and trimming method therefor
JP3476849B2 (en) Fuze resistor and method of manufacturing the same
JPH09190905A (en) Thick film thermistor
JPS62174902A (en) Trimming of thick film resistance element
JPH0636675A (en) Fuse resistor and manufacture thereof
JPH04225201A (en) Manufacture of resistor element
JP4084157B2 (en) Fuse resistor
JPH0274001A (en) Thick film resistor
JPS63278361A (en) Semiconductor device and resistance trimming method for semiconductor