JPH01265112A - Noncontact displacement sensor - Google Patents

Noncontact displacement sensor

Info

Publication number
JPH01265112A
JPH01265112A JP9351088A JP9351088A JPH01265112A JP H01265112 A JPH01265112 A JP H01265112A JP 9351088 A JP9351088 A JP 9351088A JP 9351088 A JP9351088 A JP 9351088A JP H01265112 A JPH01265112 A JP H01265112A
Authority
JP
Japan
Prior art keywords
movable body
displacement
leg
iron core
magnetic path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9351088A
Other languages
Japanese (ja)
Inventor
Eiji Shimomura
英二 霜村
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9351088A priority Critical patent/JPH01265112A/en
Publication of JPH01265112A publication Critical patent/JPH01265112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect displacement with low power and high accuracy by setting the end surface shape of at least one of leg parts of an iron core so that the rate of variation in its opposition area to a movable body accompanying the displacement of the movable body is different. CONSTITUTION:When a magnetic circuit is viewed from the center leg part 13 of the iron core 11, said circuit 11 passes the movable body 20 across a slight gap and returns to the center leg part 13 through leg parts 12 and 14 on both sides. When the movable body 20 is displaced to either side of an arrow A, both leg parts 12 and 14 face the movable body 20 and its area varies according to the quantity of the displacement. Consequently, the quantities of magnetic flux passing through a closed magnetic path C passing through the leg part 14 increases at the time of the displacement and that of a close magnetic path B passing through the leg part 12 decreases; and variation in the quantity of magnetic flux is outputted between detection terminals (a) and (b) as the sum of the outputs of detection coils wound around the leg parts 12 and 14 and the polarity and value of the output are proportional to the direction and value of the displacement of the movable body 20.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は可動体の変位を検出する非接触型変位センサに
関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a non-contact displacement sensor that detects displacement of a movable body.

(従来の技術) 物体の変位量や変位方向を磁気的に検出する変位センサ
として差動変圧器がある。その構成と検出原理を第4図
及び第5図により説明すると、共用ボビン1に夫々励磁
コイル2及び検出コイル3を巻装して、2つの空心変圧
器4及び5を形成し、その共通空心内に短い円柱状の鉄
片6を軸方向に移動可能に納め、被測定物7を棒状の連
結部材8を介して鉄片6の一端側に連結する構成となっ
ている。そして、第5図の如く2つの励磁コイル2a、
2bを直列接続し、2つの検出コイル3a、3bを逆直
列に接続し、被測定物7の変位のない状態のときに、2
つの検出コイル3a、3bに生じる誘導起電力が互に打
ち消されて検出コイル3の出力端子a−b間には電圧が
生じないように鉄片6の位置を調整しておく。被測定物
7が例えば第5図中に矢印で示した方向に変位したとき
には、両度圧器4及び5内に夫々存在する鉄片6の長さ
の割合に差異が生じるため、雨検出コイル3a、3bに
発生する電圧には差異が生じて、その差値に相当する電
圧が出力端子a−b間に現れる。従って、この端子間電
圧の変化量と極性に基づいて被測定物7の変位量及び変
位方向を検出できる。
(Prior Art) A differential transformer is a displacement sensor that magnetically detects the amount and direction of displacement of an object. To explain its configuration and detection principle with reference to FIGS. 4 and 5, an excitation coil 2 and a detection coil 3 are respectively wound around a common bobbin 1 to form two air-core transformers 4 and 5. A short cylindrical iron piece 6 is housed therein so as to be movable in the axial direction, and the object to be measured 7 is connected to one end of the iron piece 6 via a rod-shaped connecting member 8. Then, as shown in FIG. 5, two exciting coils 2a,
2b are connected in series, and the two detection coils 3a and 3b are connected in anti-series, and when the object to be measured 7 is not displaced,
The position of the iron piece 6 is adjusted so that the induced electromotive force generated in the two detection coils 3a and 3b cancel each other out and no voltage is generated between the output terminals a and b of the detection coil 3. When the object to be measured 7 is displaced, for example, in the direction shown by the arrow in FIG. A difference occurs between the voltages generated at the terminals 3b, and a voltage corresponding to the difference value appears between the output terminals a and b. Therefore, the amount and direction of displacement of the object to be measured 7 can be detected based on the amount of change and polarity of the voltage between the terminals.

また、別の変位センサとして、1つの空心コイルの空心
内に鉄片が出入りするのに伴うこのコイルのインダクタ
ンスの変化量から、被測定物としての鉄片またはこの鉄
片に連結した被測定物の変位量を求めるものもある。
In addition, as another displacement sensor, the amount of change in the inductance of an iron piece as the iron piece moves in and out of the air core of one air-core coil is measured, and the displacement of the iron piece as the object to be measured or the object to be measured connected to this iron piece is measured. There are some that seek.

(発明が解決しようとする課題) しかしながら、上記の変位センサはいずれも検出コイル
に誘導起電力の変化またはインダクタンスの変化を生じ
させる源となる磁気の通路が開磁路をなしていて磁気抵
抗の大なる空隙部分が大きく占有する関係上、検出精度
を上げるために電源のパワーを多く必要とする欠点があ
った。
(Problem to be Solved by the Invention) However, in all of the above displacement sensors, the magnetic path that causes a change in induced electromotive force or a change in inductance in the detection coil is an open magnetic path, and the magnetic resistance is small. Since the large air gap occupies a large area, there is a drawback that a large amount of power is required to improve detection accuracy.

また、被測定物が磁性体である場合において、これを直
接鉄片6のように利用してその変位を検出しようとすれ
ば、各々の被測定物の大きさに対応させて各被測定物専
用の大きさの差動変圧器または検出コイルを作る必要が
あり、装置が大型のものになる欠点があった。
In addition, when the object to be measured is a magnetic material, if you try to directly use it like the iron piece 6 to detect its displacement, it is necessary to use a magnetic material specifically designed for each object to be measured, corresponding to the size of the object to be measured. It was necessary to create a differential transformer or a detection coil with a size of

本発明は上記の事情に鑑みなされたものであり、従って
、本発明の第1の目的は、従来のセンサに比べて低いパ
ワーで高精度の検出を行い得る非接触型変位センサを提
供するにある。
The present invention has been made in view of the above circumstances, and therefore, a first object of the present invention is to provide a non-contact displacement sensor that can perform highly accurate detection with lower power than conventional sensors. be.

また、本発明の第2の目的は、被測定物が磁性体である
場合において、その大きさに合わせて作り変えることな
く直接検出できる非接触型変位センサを提供するにある
A second object of the present invention is to provide a non-contact displacement sensor that can directly detect an object to be measured, which is a magnetic material, without having to be modified to suit its size.

[発明の構成〕 (課題を解決するための手段) 本発明による非接触型変位センサは、変位が検出される
磁性体製の可動体と協働して閉磁路を形成させる鉄心を
有しており、この鉄心はその先端が所定の隙間を存して
可動体に対向される複数個の脚部を有し、そのうち少な
くと1個の端面形状を、その脚部の端面と可動体との対
向面積が可動体の変位量と異る割合で変化するように設
定し、且つ前記鉄心に前記閉磁路を通る磁束の変化によ
って変化する電気的特性値を生じるコイルを巻装したと
ころに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) A non-contact displacement sensor according to the present invention has an iron core that forms a closed magnetic path in cooperation with a movable body made of a magnetic material whose displacement is detected. This iron core has a plurality of legs whose tips face the movable body with a predetermined gap, and the end face shape of at least one of the legs is formed so that the end face of the leg and the movable body meet. The feature is that the facing area is set to change at a rate different from the amount of displacement of the movable body, and the iron core is wound with a coil that produces an electrical characteristic value that changes depending on the change in the magnetic flux passing through the closed magnetic path. have

(作用) 本発明による非接触型変位センサは、鉄心の複数個の脚
部のうち少なくとも1個の端面形状が、可動体の変位に
伴う可動体との対向面積の変化割合が異るように設定さ
れているので、可動体が変位したときには閉磁路を通る
磁束が変化することになる。この磁束の変化を鉄心に巻
装されたコイルよって電圧、電流、インダクタンス等の
電気的特性値の変化でもって検出することにより、可動
体の変位量または変位方向を検出できる。
(Function) The non-contact displacement sensor according to the present invention has an end face shape of at least one of the plurality of legs of the iron core such that the rate of change in the area facing the movable body as the movable body is displaced is different. Therefore, when the movable body is displaced, the magnetic flux passing through the closed magnetic path changes. By detecting changes in this magnetic flux as changes in electrical characteristic values such as voltage, current, and inductance using a coil wound around the iron core, the amount or direction of displacement of the movable body can be detected.

そして、この非接触型変位センサは、従来のものが開磁
路をなしていたのとは異なり、鉄心と可動体との協働に
より閉磁路を構成して磁束の洩れがなくなるので、コイ
ルを動作させる電源は小容量で済む。また、被測定物が
磁性体の場合には、その大きさが種々変っても直接可動
体として用いて変位量を検出し得る。
Unlike conventional displacement sensors, which have an open magnetic path, this non-contact displacement sensor forms a closed magnetic path through the cooperation of the iron core and the movable body, eliminating leakage of magnetic flux. The power supply required for operation is small. Furthermore, if the object to be measured is a magnetic material, the amount of displacement can be detected by directly using it as a movable object even if its size varies.

(実施例) 以下、本発明の第一の実施例を第1図及び第2図を参照
′して説明する。
(Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

11は鉄心であり、これは全体としてE字形をなして3
個の脚部12.13及び14を有している。一端側(第
1図の右端側)の脚部12はその下端面12aが直角三
角形をなしており、脚部12の側面にはこの三角形の斜
辺12bを底辺とする三角形の斜面12cが形成されて
いる。また、他端側(第1図の左端側)の脚部14は脚
部12と逆対称の直角三角形をなしていて、その下端面
14aの斜辺14bは脚部12の斜辺12bと平行状に
なっている。中央の脚部13は下端面が長方形をなして
いる。この中央の脚部13には励磁コイル15が巻回し
てあり、この励磁コイル15は、直流電源16に接続さ
れて鉄心11を励磁す  ・るようになっている。17
は一端側の脚部12に巻回した第1の検出コイル、18
は他端側の脚部14に巻回した第2の検出コイルであっ
て、この雨検出フィル17及び18は第1図の如く逆直
列に接続されている。a及びbはこの検出回路19に生
じた誘起電圧の検出端子である。20は被測定物として
の磁性体製の可動体であって、これは例えば角形の鉄板
にて構成されている。そして、この可動体20はその上
面を鉄心11の各脚部12.13及び14の各端面12
a、13a及び14aに所定の隙間を存して夫々対向し
、且つ通常位置(以下原位置という)においては、可動
体20の一方の端縁部20aが各脚部12.13及び1
4の端面12a、13a及び14aの夫々の略中央部を
結ぶ線上に合致する位置にセットされる(第1図、第2
図に実線で示す)。
11 is an iron core, which is E-shaped as a whole and 3
It has two legs 12, 13 and 14. The lower end surface 12a of the leg portion 12 on one end side (the right end side in FIG. 1) forms a right triangle, and a triangular slope 12c whose base is the hypotenuse side 12b of this triangle is formed on the side surface of the leg portion 12. ing. The leg 14 at the other end (the left end in FIG. 1) has a right triangle shape that is inversely symmetrical to the leg 12, and the oblique side 14b of the lower end surface 14a is parallel to the oblique side 12b of the leg 12. It has become. The lower end surface of the central leg portion 13 is rectangular. An excitation coil 15 is wound around this central leg portion 13, and this excitation coil 15 is connected to a DC power source 16 to excite the iron core 11. 17
18 is a first detection coil wound around the leg 12 at one end;
is a second detection coil wound around the leg portion 14 on the other end side, and the rain detection filters 17 and 18 are connected in anti-series as shown in FIG. A and b are detection terminals for the induced voltage generated in this detection circuit 19. Reference numeral 20 denotes a movable body made of a magnetic material as an object to be measured, which is made of, for example, a square iron plate. The upper surface of this movable body 20 is connected to each end surface 12 of each leg portion 12, 13 and 14 of the iron core 11.
a, 13a, and 14a, respectively, facing each other with a predetermined gap, and in the normal position (hereinafter referred to as the original position), one end edge 20a of the movable body 20 is connected to each of the legs 12, 13, and 14a.
4 (Fig. 1, Fig. 2).
(shown as a solid line in the figure).

このような原位置に置かれた可動体20は、この場合、
図中に矢印Aで示した前後方向即ち端縁部20aと直角
な方向に変位される。
In this case, the movable body 20 placed at such an original position is
It is displaced in the front-rear direction indicated by arrow A in the figure, that is, in the direction perpendicular to the end edge 20a.

次に」二記構成の作用を説明する。励磁コイル15に流
す電流が交流であるなら、検出コイル17゜18は出力
を互に相殺した値が零になるように巻線数の比を変える
などの処置を施した方が後の処理は簡単である。ここで
は直流電流による励磁について説明する。鉄心11の中
央の脚部13から見ると、磁気回路は伜かなギャップを
介して可動体20を通り両側の脚部12.14を通って
中央の脚部13に戻るようになっており、これを第1図
に二点鎖線で閉磁路B、Cとして表わしている。
Next, the operation of the second configuration will be explained. If the current flowing through the excitation coil 15 is alternating current, it is better to take measures such as changing the ratio of the number of windings in the detection coils 17 and 18 so that the value that cancels out each other's output becomes zero. It's easy. Here, excitation by direct current will be explained. When viewed from the central leg 13 of the iron core 11, the magnetic circuit passes through the movable body 20 through a large gap, passes through the legs 12.14 on both sides, and returns to the central leg 13. are shown as closed magnetic circuits B and C by two-dot chain lines in FIG.

これらの磁気回路B、Cはギャップが僅がで殆ど閉じた
形態であるから、磁気抵抗は小さい。
These magnetic circuits B and C have a small gap and are almost closed, so their magnetic resistance is small.

さて、可動体20が矢印A方向のいずれかに変位すると
、脚部12.14のいずれも可動体2゜に対向する面積
がその可動体2oの変位量に応じて増減する。変位零時
の断面積に対して可動体20が前方に変位される時の増
加率は、脚部14の方が脚部12よりも大きいために、
磁気抵抗は相対的に脚部14を通る閉磁路Cでは低下し
、逆に脚部12を通る閉磁路Bでは増加することになる
Now, when the movable body 20 is displaced in either direction of the arrow A, the area of each leg portion 12.14 facing the movable body 2° increases or decreases in accordance with the amount of displacement of the movable body 2o. Since the rate of increase when the movable body 20 is displaced forward with respect to the cross-sectional area when the displacement is zero is larger for the leg portions 14 than for the leg portions 12,
The magnetic resistance relatively decreases in the closed magnetic path C passing through the legs 14, and increases in the closed magnetic path B passing through the legs 12.

この結果、変位前後に各閉磁路B、Cを通る磁束量は脚
部14を通る閉磁路Cでは増加し、逆に脚部12を通る
閉磁路Bでは減少することになり、この磁束量の変化は
脚R12,14に巻装された検出コイル17.18の各
出力を重畳したもの(この実施例では差)として検出端
子a−b間に出力され、この出力の極性及び値は可動体
2oの変位方向及び変位の値に比例することになる。
As a result, the amount of magnetic flux that passes through each of the closed magnetic paths B and C before and after the displacement increases in the closed magnetic path C that passes through the legs 14, and conversely decreases in the closed magnetic path B that passes through the legs 12. The change is output between the detection terminals a and b as a superimposed output (in this example, a difference) of the respective outputs of the detection coils 17 and 18 wound around the legs R12 and 14, and the polarity and value of this output are determined by the movable body. It is proportional to the displacement direction and displacement value of 2o.

このようにして、電磁誘導現象に基づいて端子a−b間
に電圧を生じさせる磁路は、従来のものが開磁路をなし
ていたのとは異って、鉄心11と可動体20との協働に
よって構成された2つの閉磁路B及びCから成り立って
いるので、磁気回路における磁気漏洩は従来のものとは
比べものにならない程の低レベルにまで低下する。その
ため、端子a−b間に所要レベルの電位を生じさせるた
めに励磁コイル15に流す電力量(電源のパワー)は従
来に比べてかなり少くて足りるようになり、コンパクト
にできる。そのうえ、被測定物が磁性体である場合には
、被測定物自体を可動体として用いることができ、しか
もその被測定物の大きさの如何にかかわりなく同じ変位
センサを用いて検出を行うことができる。
In this way, the magnetic path that generates the voltage between terminals a and b based on the electromagnetic induction phenomenon is different from the conventional one, which is an open magnetic path. Since it is composed of two closed magnetic circuits B and C formed by the cooperation of the two, magnetic leakage in the magnetic circuit is reduced to an incomparably low level compared to conventional magnetic circuits. Therefore, the amount of electric power (power of the power supply) passed through the excitation coil 15 to generate a required level of potential between the terminals a and b can be considerably smaller than in the past, and the device can be made more compact. Furthermore, if the object to be measured is a magnetic material, the object to be measured itself can be used as a movable object, and detection can be performed using the same displacement sensor regardless of the size of the object. I can do it.

次に、本発明の第二の実施例を第3図を参照して説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIG.

21は略コ字形の鉄心で、複数個この場合は2個の脚部
のうち一方の脚部22は、その下端面22aが直角三角
形をなしており、脚部22の側面にはこの三角形の斜辺
22bを底辺とする三角形の斜面22cが形成されてい
る。他方の脚部23は下端面が長方形をなす角柱状であ
る。24は対向する2個の脚部22及び23を橋絡する
継鉄部25に巻回された検出コイル、C及びdはその端
子である。26は磁性体製の可動体でありで、これは角
形鉄板から成る。可動体26はその上面が両脚部22及
び23の各端面22a及び23aに所定の隙間を存して
対向されている。そして、この可動体26が変位のない
通常位置(原位置)においては、可動体26の一方側の
端縁部26aが一方の脚部22の端面22aの底辺22
dと頂点との間の略中間位置に対向し、また、他方の脚
部23の端面23aはその全面が可動体26と対向する
ように配置されている。この場合、可動体26は端縁部
26aがその底辺22dに対して直交方向即ち図中の矢
印Aで示した前後方向に変位される。このような配置の
もとでは、鉄心21と可動体26とは協働して図中に二
点鎖線で示した如き閉磁路りを構成する。
Reference numeral 21 denotes a substantially U-shaped iron core, and one of the two legs in this case, one leg 22, has a lower end surface 22a in the form of a right triangle, and the side surface of the leg 22 has a shape of this triangle. A triangular slope 22c whose base is the hypotenuse 22b is formed. The other leg portion 23 has a prismatic shape with a rectangular lower end surface. 24 is a detection coil wound around a yoke 25 bridging the two opposing legs 22 and 23, and C and d are its terminals. 26 is a movable body made of magnetic material, which is made of a square iron plate. The upper surface of the movable body 26 faces the end surfaces 22a and 23a of the legs 22 and 23 with a predetermined gap therebetween. In the normal position (original position) where the movable body 26 is not displaced, one end edge 26a of the movable body 26 is connected to the base 22a of the end surface 22a of one leg 22.
d and the apex, and the end face 23a of the other leg 23 is disposed so that its entire surface faces the movable body 26. In this case, the end edge 26a of the movable body 26 is displaced in the direction orthogonal to the bottom side 22d, that is, in the front-rear direction indicated by arrow A in the figure. Under such an arrangement, the iron core 21 and the movable body 26 cooperate to form a closed magnetic path as shown by the two-dot chain line in the figure.

次に上記構成の作用を説明する。Next, the operation of the above configuration will be explained.

可動体26を上記の原位置にセットしたうえ、検出コイ
ル24の端子c−d間に、図示しないブリッジを介して
電源を与えると、この変位センサは使用状態に入る。そ
して、可動体26が矢印Aで示した前後いづれかの方向
に変位すると、この変位に伴って、閉磁路りの磁気抵抗
を増減させるのに関与する、図中に斜線で示した可動体
26と脚部22の端面22aとの対向面積Eが、可動体
26の変(iLQとは異る割合で変化する。そのため、
閉磁路りの磁気抵抗が変化し、検出コイル24のインダ
クタンスは、可動体26の変位量を増幅させる割合をも
って増減し、ブリッジの検流計に生ずる電流変化の値に
基づいて可動体26の変位量を高い精度をもって検出す
ることができる。この場合、検出コイル24のインダク
タンスを変化させる磁路は、閉磁路をなしていて磁気抵
抗の大なる空隙部分が少ないので、検出コイル24に与
える電力が少なくて済み、しかもインダクタンスを可動
体26の変位割合とは異る割合で変化させるようにして
いるから、検出精度が著しく向上できる。
When the movable body 26 is set at the above-mentioned original position and power is applied between the terminals c and d of the detection coil 24 via a bridge (not shown), this displacement sensor enters into use. When the movable body 26 is displaced in either the forward or backward direction indicated by the arrow A, the movable body 26 shown with diagonal lines in the figure, which is involved in increasing or decreasing the magnetic resistance of the closed magnetic path, The facing area E of the leg portion 22 with the end surface 22a changes at a rate different from the change of the movable body 26 (iLQ. Therefore,
The magnetic resistance of the closed magnetic path changes, and the inductance of the detection coil 24 increases or decreases at a rate that amplifies the amount of displacement of the movable body 26, and the displacement of the movable body 26 is determined based on the value of the current change occurring in the galvanometer of the bridge. amount can be detected with high accuracy. In this case, the magnetic path for changing the inductance of the detection coil 24 is a closed magnetic path and there are few air gaps with large magnetic resistance, so less power is required to be applied to the detection coil 24, and the inductance of the movable body 26 is reduced. Since the change is made at a rate different from the displacement rate, detection accuracy can be significantly improved.

尚、第3図に示した構成において、他方の脚部23に励
磁コイルを巻装しておき、可動体26の変位量を検出コ
イル24に生ずる誘起電圧の増減度合から検出するよう
にしてもよい。
In the configuration shown in FIG. 3, an excitation coil may be wound around the other leg 23, and the amount of displacement of the movable body 26 may be detected from the degree of increase/decrease in the induced voltage generated in the detection coil 24. good.

また、検出コイル24に代えて励磁コイルを設け、これ
に定電圧電源を接続して可動体26の変位量を励磁回路
の電流値の増減度合から検出するようにしてもよい。
Further, an excitation coil may be provided in place of the detection coil 24, and a constant voltage power source may be connected to the excitation coil, so that the amount of displacement of the movable body 26 may be detected from the degree of increase or decrease in the current value of the excitation circuit.

尚、上記各実施例において、可動体との対向面積がその
可動体の変位量と異る割合で変化する脚部の端面形状は
、例えば二等辺三角形や双曲線形状などのような山形形
状であってもよい。この山形の斜面の角度等を任意に変
化させることによって、可動体の変位量に対してコイル
に生ずる電気的特性値の出力レベルの変動割合を増減さ
せ、これにより変位センサの検出精度の調節を行うこと
ができる。
In each of the above embodiments, the end face shape of the leg whose area facing the movable body changes at a rate different from the amount of displacement of the movable body is, for example, a chevron shape such as an isosceles triangle or a hyperbolic shape. You can. By arbitrarily changing the angle of the slope of this chevron, the rate of change in the output level of the electrical characteristic value generated in the coil can be increased or decreased with respect to the amount of displacement of the movable body, thereby adjusting the detection accuracy of the displacement sensor. It can be carried out.

[発明の効果] 本発明による非接触型変位センサは、複数個の脚部を有
し、これら各脚部の端面に所定の隙間を存して対置され
る可動体との協働により閉磁路を形成すると共に、少な
くとも1個の脚部の端面の形状を、可動体との対向面積
がこの可動体の変位量と異る割合で変化するように設定
した鉄心と、この鉄心に巻装され閉磁路の磁束の変化に
よって電圧、電流、インダクタンス等の電気的特性値に
変化を生じるコイルとを具備する構成としたので、可動
体の変位を検出する磁路の磁気漏洩は従来のものが著し
く多かったのとは異って殆どなくなり、少ない電源パワ
ーで高精度の検出を行うことができ、しかも被測定物が
磁性体の場合には、その大、きさにかかわりなく被測定
物を可動体として用いることができる。
[Effects of the Invention] The non-contact displacement sensor according to the present invention has a plurality of legs, and forms a closed magnetic path by cooperating with a movable body placed opposite to each other with a predetermined gap between the end faces of each leg. and an iron core in which the shape of the end face of at least one leg is set such that the area facing the movable body changes at a rate different from the amount of displacement of the movable body; Since the configuration includes a coil that causes changes in electrical characteristic values such as voltage, current, and inductance due to changes in magnetic flux in the closed magnetic path, magnetic leakage in the magnetic path that detects the displacement of the movable body is significantly lower than in conventional methods. Unlike in the past, there are almost no more, and high-precision detection can be performed with less power supply.Moreover, if the object to be measured is a magnetic material, the object to be measured can be moved regardless of its size. It can be used as a body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第一の実施例を示すもので
あり、第1図は斜視図、第2図は底面図、第3図は本発
明の第二の実施例を示す斜視図である。 第4図及び第5図は従来例の斜視図及び概略説明図であ
る。 図中、11.21は鉄心、12,13,14゜2′2及
び23は夫々脚部、15は励磁コイル、17.18及び
24は夫々検出コイル、20.26は夫々可動体、12
 a、  13 a、  14 a及び22aは夫々端
面、B、C,及びDは夫々閉磁路である。 代理人 弁理士  則 近  憲 信 置        第  子  丸   健第1 図
1 and 2 show a first embodiment of the present invention, FIG. 1 is a perspective view, FIG. 2 is a bottom view, and FIG. 3 is a second embodiment of the invention. FIG. FIGS. 4 and 5 are a perspective view and a schematic explanatory view of a conventional example. In the figure, 11.21 is an iron core, 12, 13, 14°2'2 and 23 are legs, 15 is an excitation coil, 17.18 and 24 are detection coils, 20.26 is a movable body, 12
a, 13a, 14a, and 22a are end faces, respectively, and B, C, and D are closed magnetic circuits, respectively. Agent Patent Attorney Nobuaki Chika Ken Maru Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、変位が与えられる磁性体製の可動体に対し、先端部
が所定の隙間を存して対向する複数個の脚部を有し、前
記可動体と協働して閉磁路を構成するとともに前記脚部
のうち少なくとも1個の端面形状をその脚部の端面と前
記可動体との対向面積がその可動体の変位量と異る割合
で変化するように設定した鉄心と、この鉄心に巻装され
前記閉磁路を通る磁束の変化によって変化する電気的特
性値を生じるコイルとを具備してなる非接触型変位セン
サ。
1. A movable body made of a magnetic material that is subjected to displacement has a plurality of legs whose tips face each other with a predetermined gap, and cooperates with the movable body to form a closed magnetic path. An iron core whose end face shape of at least one of the legs is set such that the area facing the end face of the leg and the movable body changes at a rate different from the amount of displacement of the movable body, and a winding around the iron core. A non-contact displacement sensor comprising: a coil that is mounted on a coil and produces an electrical characteristic value that changes depending on a change in magnetic flux passing through the closed magnetic path.
JP9351088A 1988-04-18 1988-04-18 Noncontact displacement sensor Pending JPH01265112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9351088A JPH01265112A (en) 1988-04-18 1988-04-18 Noncontact displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9351088A JPH01265112A (en) 1988-04-18 1988-04-18 Noncontact displacement sensor

Publications (1)

Publication Number Publication Date
JPH01265112A true JPH01265112A (en) 1989-10-23

Family

ID=14084344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9351088A Pending JPH01265112A (en) 1988-04-18 1988-04-18 Noncontact displacement sensor

Country Status (1)

Country Link
JP (1) JPH01265112A (en)

Similar Documents

Publication Publication Date Title
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JPH0769130B2 (en) Magnetic displacement sensor
JP3445362B2 (en) AC current sensor
US7145321B2 (en) Current sensor with magnetic toroid
US3742357A (en) Noncontact electric apparatus for magnetically measuring strains
JPH01265112A (en) Noncontact displacement sensor
JP4385340B2 (en) Displacement sensor using Helmholtz coil
RU2023235C1 (en) Magneto-modulated induction pickup of linear movement
JPH02280007A (en) Position sensor
JPH0334691Y2 (en)
US3379969A (en) Magnetic bridge means for detecting the electrical properties of substances
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JPH03296615A (en) Detecting apparatus of position of moving body
JPH0477268B2 (en)
JPH0232567B2 (en) JIKISHIKIORYOKUSOKUTEISOCHI
JPS5633521A (en) Device for measuring stress
RU2138011C1 (en) Variable-induction differential-transformer transducer
JPS6229036B2 (en)
JP3534484B2 (en) Magnetic position sensor
SU1742745A1 (en) Device for non-contact measurement of electrical conduction of active systems
JPH0296661A (en) Clamp-type ammeter
JPH0432724A (en) Noncontact type displacement detector
JPS61223564A (en) Speed sensor
JPS58158502A (en) Position detecting device
RU2105969C1 (en) Device for measuring of electrical conductance of liquid media