JPH0432724A - Noncontact type displacement detector - Google Patents

Noncontact type displacement detector

Info

Publication number
JPH0432724A
JPH0432724A JP14039390A JP14039390A JPH0432724A JP H0432724 A JPH0432724 A JP H0432724A JP 14039390 A JP14039390 A JP 14039390A JP 14039390 A JP14039390 A JP 14039390A JP H0432724 A JPH0432724 A JP H0432724A
Authority
JP
Japan
Prior art keywords
coil
displacement
magnetic field
detected
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14039390A
Other languages
Japanese (ja)
Inventor
Atsushi Kenjo
見城 篤
Tatsuo Komori
小森 竜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP14039390A priority Critical patent/JPH0432724A/en
Publication of JPH0432724A publication Critical patent/JPH0432724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase S/N and to improve the resolution by providing a short- circuit current path on a plane perpendicular to the axis of a coil which detects the displacement of a body to be detected while the axis is surrounded, making the whole structure compact, and reducing the influence of a disturbing high frequency magnetic field. CONSTITUTION:When the body 1 to be detected is displaced, magnetic flux PHIis varied and the displacement detector detects the quantity of the displacement of the object body 1 from variation of a current flowing to the detection coil 2 corresponding to the variation of the magnetic flux PHI. When a disturbind magnetic field is applied to the coil 2 and a stabilizing coil 4 provided covering the coil 2, lines of magnetic force cross-link with the coil 4, where an electromotive force is induced. The coil 4 is short-circuited, so the current based upon the electromagnetic force flows to generate the lines of magnetic force canceling the applied lines of magnetic force with the current. The lines of magnetic force due to the disturbing magnetic field, however, do not cross-link with the coil 2 and the coil 2 is therefore shielded from the disturbing magnetic field, so that the quantity of displacement of the object body 1 can be detected with the high S/N.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軸振動測定器や磁気軸受などの振動制御等に
用いる非接触式の変位検出装置に関し、特に変位検出装
置に外乱磁界が加わっても、その磁界に影響されずに変
位検出が可能な非接触式変位検出装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a non-contact displacement detection device used for vibration control of shaft vibration measuring instruments, magnetic bearings, etc., and particularly when a disturbance magnetic field is applied to the displacement detection device. The present invention relates to a non-contact displacement detection device that can detect displacement without being affected by the magnetic field.

(従来の技術) 従来のこの種の変位検出装置としては、第4図に示すよ
うに、被検出体である軸体lに夫々対向して該軸体lの
変位方向上に配された検出器ハ。
(Prior art) As shown in FIG. 4, a conventional displacement detection device of this type includes a detection device arranged in the direction of displacement of the shaft body l, which is the object to be detected, and facing each other. Vessel Ha.

Aのコア3b、3cと、該コアに軸線を前記変位方向に
合わせて巻装される検出用コイル2e、  2dとから
構成される装置が提案されている。該装置によれば、図
示しない発振器から互に逆位相の励磁電圧により検出用
コイル2c、2dが励磁されるとコア3b、3cと軸体
lとを通る磁束Φ1゜Φ2が形成され、1111体lの
変位置に応じた電圧がセンザ出力として0;I記コイル
2c、’2dの中点Mから出力される。
A device has been proposed that includes cores 3b and 3c of A, and detection coils 2e and 2d that are wound around the cores with their axes aligned with the displacement direction. According to this device, when the detection coils 2c and 2d are excited by excitation voltages of mutually opposite phases from an oscillator (not shown), magnetic fluxes Φ1°Φ2 passing through the cores 3b, 3c and the shaft l are formed, and 1111 bodies are generated. A voltage corresponding to the changed position of l is output as a sensor output from the midpoint M of the coils 2c and '2d.

こうした変位検出装置において、変位検出器の近くに外
乱磁界発生源が存在した場合に、外乱磁界の影響によっ
て検出器のS/N比の低下が生じる。そこで変位検出器
のS/N比の低下を防ぐために、例えば検出器と外乱磁
界発生源との距離を離したり、検出器と外乱磁界発生源
との間に磁性体壁を装入する対策が施されている。
In such a displacement detection device, when a disturbance magnetic field generation source exists near the displacement detector, the S/N ratio of the detector decreases due to the influence of the disturbance magnetic field. Therefore, in order to prevent the S/N ratio of the displacement detector from decreasing, measures such as increasing the distance between the detector and the source of the disturbance magnetic field, or inserting a magnetic wall between the detector and the source of the disturbance magnetic field are taken. It has been subjected.

(発明が解決しようとする課題) しかしながら上記従来装置においては、」1記の対策を
施すことにより、装置全体の構造が大型化せざるを得ず
、また磁性体壁を取り付けることができる構造にしなく
てはならないという問題があった。また、高周波の外乱
磁1界では0;J記の対策によっても、その影響を少な
くすることは困難であった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional device, by taking the measures described in 1, the overall structure of the device has to be enlarged, and the structure is not designed to be able to attach a magnetic wall. There was a problem that it was indispensable. In addition, in the case of one high-frequency disturbance magnetic field, it is difficult to reduce the influence even by taking the countermeasures described in J.

本発明は、かかる従来の問題点を解決する為になされた
もので、変位検出器の全体構造をコンパクトにすると共
に、外乱高周波磁界の影響をも低減し、検出器のS/N
比を高めもって変位検出分解能を向」ニさせることを図
った非接触式変位検出装置を提供することを目的とする
The present invention has been made to solve these conventional problems, and it not only makes the overall structure of the displacement detector compact, but also reduces the influence of disturbance high-frequency magnetic fields, and the S/N of the detector.
It is an object of the present invention to provide a non-contact type displacement detection device which aims to improve the displacement detection resolution by increasing the ratio.

(課題を解決するだめの手段) 上記目的を達成するために本発明は、磁性体又は導電体
から成る被検出体の変位を磁気変化を利用して検出する
検出器を有する非接触式変位検出装置において、01j
記被検出体に対向して該被検出体の変位を検出するコイ
ルと、該コイルの軸線に垂直な平面内に該軸線を囲むよ
うにして設けられた短絡電流路とを有することを特徴と
する非接触式変位検出装置を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a non-contact displacement detection system having a detector that detects the displacement of a detected object made of a magnetic material or a conductive material using magnetic changes. In the device, 01j
A non-contact device characterized by having a coil that faces the detected object and detects the displacement of the detected object, and a short-circuit current path provided in a plane perpendicular to the axis of the coil so as to surround the axis. A contact displacement detection device is provided.

(作用) 外乱磁界が加わったとき、該外乱磁界によって短絡電流
路に誘起される電流に対応して発生する磁界がIYj記
外社外乱磁界殺することにより、外乱磁界の影響なしに
検出l!Hが被検出体の変位を検知することができる。
(Function) When a disturbance magnetic field is applied, the magnetic field generated in response to the current induced in the short-circuit current path by the disturbance magnetic field kills the disturbance magnetic field, so it can be detected without the influence of the disturbance magnetic field. H can detect the displacement of the object to be detected.

(実施例) 以下、図面に基いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は、本発明の一実施例を示す非接触式変位検出装
置の基本構成図である。例えば、珪素鋼板から成る被検
出体lの変位量を検出する検出器ハはE字状の例えば珪
素鋼板から成るコア3と、該コア3の内側中央部に、そ
の軸線がn;j記被検出体lの対向する而1aと垂直に
なるように巻装される検出用コイル2とから構成される
FIG. 1 is a basic configuration diagram of a non-contact displacement detection device showing an embodiment of the present invention. For example, a detector C for detecting the amount of displacement of a detected object l made of a silicon steel plate has an E-shaped core 3 made of a silicon steel plate, for example, and an axis line n; It is composed of a detection coil 2 that is wound perpendicularly to the body 1a facing the detection body 1.

また、前記コア3の一端部には、両端子間が短絡された
ループ状の安定化コイル(短絡電流路)4がその軸線を
前記検出用コイル2と一致させて。
Further, at one end of the core 3, a loop-shaped stabilizing coil (short-circuit current path) 4 whose terminals are short-circuited has its axis aligned with the detection coil 2.

すなわち該コイル2が発生する磁束Φとは鎖交しないよ
うにコア3を囲んで配設される。検出用コイル2には図
示しない変位検出装置から交流電流が供給され、該電流
によって発生する磁束Φにより第1図に示すような2個
の閉回路が形成される。
That is, it is disposed surrounding the core 3 so as not to interlink with the magnetic flux Φ generated by the coil 2. An alternating current is supplied to the detection coil 2 from a displacement detection device (not shown), and two closed circuits as shown in FIG. 1 are formed by magnetic flux Φ generated by the current.

被検出体1が検出用コイル2に接近又は離間する方向に
変位するとその変位量に応じて11;j記磁束Φが変化
し、該磁束Φの変化に応じて検出用コイル2を流れる電
流が変化し、その変化から被検出体1の変位量を検知す
るようになっている。
When the detected object 1 is displaced in the direction toward or away from the detection coil 2, the magnetic flux Φ 11; The amount of displacement of the detected object 1 is detected from the change.

安定化コイル4には、外乱磁界によって起電力が誘起さ
れるとき1);j記コイル4が短絡されているために前
記起電力に起因する電流が流れ、該電流により前記外乱
磁界を相殺する磁界が発生する。
When an electromotive force is induced in the stabilizing coil 4 by a disturbance magnetic field, 1): Since the coil 4 is short-circuited, a current caused by the electromotive force flows, and the disturbance magnetic field is canceled by the current. A magnetic field is generated.

従って安定化コイル4は]);ノ記検出用コイル2を外
乱磁界から保護することができる。
Therefore, the stabilizing coil 4 can protect the detection coil 2 from disturbance magnetic fields.

次に、上記実施例の作動を説明する。外乱磁界が存在し
ない通常時には、被検出体1が変位すると、その変位量
に応じて磁束Φが変化し、該磁束Φの変化に応じて生じ
る検出用コイル2に流れる電流の変化により図示しない
変位検出装置によって被検出体jの変位風を検知する。
Next, the operation of the above embodiment will be explained. In normal times when there is no disturbance magnetic field, when the detected object 1 is displaced, the magnetic flux Φ changes according to the amount of displacement, and the change in the current flowing through the detection coil 2 that occurs in response to the change in the magnetic flux Φ causes a displacement (not shown). The displacement wind of the detected object j is detected by the detection device.

一方、外乱磁界が検出用コイル2及び該コイル2を覆っ
た安定化コイル4に加わったときには、安定化コイル4
にその磁力線が鎖交し、該コイル4に起電力が誘起され
るが、コイル4が短絡されているために、該コイル4に
前記起電力に起因する電流が流れ、該電流によりmJ記
磁力線を相殺する磁力線が発生される。しかして、外乱
磁界による磁力線は検出用コイル2とは鎖交けず、従っ
て検出用コイル2は外乱磁界に対してシールド状態とな
り、被検出体1の変位量を高S/N比にて検出すること
ができる。
On the other hand, when the disturbance magnetic field is applied to the detection coil 2 and the stabilizing coil 4 covering the coil 2, the stabilizing coil 4
The lines of magnetic force interlink with each other, and an electromotive force is induced in the coil 4. However, since the coil 4 is short-circuited, a current due to the electromotive force flows through the coil 4, and the current causes the lines of magnetic force in mJ. Magnetic field lines are generated that offset the Therefore, the lines of magnetic force caused by the disturbance magnetic field do not interlink with the detection coil 2, and therefore the detection coil 2 is in a shielded state against the disturbance magnetic field, and the displacement amount of the detected object 1 is detected with a high S/N ratio. be able to.

この時、検出用コイル2によって発生ずる磁束は安定化
コイル4と鎖交(貫通)することなく該安定化コイル4
内の内側で閉回路を構成しているため、被検出体lの変
位によって前記閉回路の磁束が変化しても安定化コイル
4にとっての磁束変化はプラスマイナス零となって検出
用コイル2による安定化コイル4への影響はなく、従っ
て前記検出用コイル2は被検出体1の変位による磁束変
化のみを確実に検出できる。
At this time, the magnetic flux generated by the detection coil 2 does not interlink (penetrate) with the stabilizing coil 4.
Since a closed circuit is formed inside the coil, even if the magnetic flux of the closed circuit changes due to the displacement of the detected object l, the magnetic flux change for the stabilizing coil 4 will be plus or minus zero, and the magnetic flux will change due to the detection coil 2. There is no influence on the stabilizing coil 4, and therefore the detection coil 2 can reliably detect only changes in magnetic flux due to displacement of the detected object 1.

第2図は上述した第1図の実施例の変形例を示し、この
変形例は第1図の実施例と比べ、コア3aがコ字状に形
成され、該コア3aに2個の検出用コイル2a、2bが
、それらの軸線が被検出体Iの対向する而1aと垂直と
なるように巻装され、両コイル2a、2bが直列に接続
されている点が異なる。その他の構成は上記第1実施例
と同じである。
FIG. 2 shows a modification of the embodiment shown in FIG. The difference is that the coils 2a and 2b are wound so that their axes are perpendicular to the opposing body 1a of the object to be detected I, and both coils 2a and 2b are connected in series. The other configurations are the same as those of the first embodiment.

次に、この実施例の作動を説明する。通常時は、被検出
体lの変位量に応じて変化する磁束Φの変化により、直
列に接続された2個の検出用コイル2a、2bに流れる
電流が変化し被検出体lの変位を検知するので、上記第
1図で示した実施例と同等の感度で被検出体1の変位量
を検出できる。
Next, the operation of this embodiment will be explained. Normally, the current flowing through the two detection coils 2a and 2b connected in series changes due to changes in the magnetic flux Φ that changes according to the amount of displacement of the detected object l, and the displacement of the detected object l is detected. Therefore, the amount of displacement of the object to be detected 1 can be detected with the same sensitivity as in the embodiment shown in FIG. 1 above.

−力、外乱磁界が加わったときには、上記第1図の実施
例と同じように安定化コイル4の作用により、検出用コ
イル2a、2bは外乱磁界に対してシールド状態となり
被検出体lの変位量を高S/N比にて検出することがで
きる。
- When a force or a disturbance magnetic field is applied, the detection coils 2a and 2b become shielded from the disturbance magnetic field due to the action of the stabilizing coil 4, similar to the embodiment shown in FIG. amount can be detected with a high S/N ratio.

第3図は、第4図に示した従来装置に安定化コイル/l
、4を設けたもので、1−述した第1.第2実施例と同
様に安定化コイル4,4が検出用コイル2c、2dを外
乱磁界に対してシールド状態にすることにより、外乱磁
界の影響を受けずに軸体lの変位量に応じた出力がコイ
ル2c、2dの中点Mから得られる。
Figure 3 shows the conventional device shown in Figure 4 with a stabilizing coil/l.
, 4 is provided, and 1-the above-mentioned 1st. As in the second embodiment, the stabilizing coils 4, 4 shield the detection coils 2c, 2d from the disturbance magnetic field, thereby responding to the amount of displacement of the shaft l without being affected by the disturbance magnetic field. The output is obtained from the midpoint M between the coils 2c, 2d.

尚、上記安定化コイル4はその内部1フ(抗が小さい程
外乱磁界の相殺効果は大きく超電導材を用いる事が最も
りfましいが、通常の導電材から成るコイルを短絡する
だけでも十分の効果が得られる。
The above-mentioned stabilizing coil 4 is made of a superconducting material (the smaller the resistance, the greater the canceling effect of the disturbance magnetic field, and the more effective it is to cancel the disturbance magnetic field), but it is also sufficient to short-circuit a coil made of a normal conductive material. The effect of this can be obtained.

又、実施例に於ては、安定化コイルとして細線を複数回
巻回したコイルの例について示したが、薄い導体を筒状
に形成して安定化コイルとしても良い。
Further, in the embodiment, an example of a coil in which a thin wire is wound multiple times as a stabilizing coil is shown, but a thin conductor may be formed into a cylindrical shape to serve as a stabilizing coil.

(発明の効果) 以」二詳述したように、本発明によれば、磁性体又は導
電体から成る被検出体の変位を磁気変化を利用して検出
する検出器を有する非接触式変位検11装置において、
1111記被検出体に対向して該被検出体の変位を検出
するコイルと、該コイルの軸線に垂直な平面内に該@I
t線を囲むようにして設けられた短絡電流路とを有する
ことを特徴とするので、外乱高周波磁界の影響を低減し
変位検出器のS/N比を高めると共に、検出装置全体を
コンバクI・にすると云う優れた効果を奏することがで
きる。
(Effects of the Invention) As described in detail below, the present invention provides a non-contact displacement detector having a detector that detects the displacement of a detected object made of a magnetic or conductive material using magnetic changes. In 11 devices,
1111 A coil that faces the detected object and detects the displacement of the detected object, and the @I in a plane perpendicular to the axis of the coil.
Since it is characterized by having a short-circuit current path provided so as to surround the t-line, it reduces the influence of a disturbance high-frequency magnetic field and increases the S/N ratio of the displacement detector. This excellent effect can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のJ1接触式変位検出装置の実施例を示
す基本j1が成因、第2図は木jd明のJ1接触式変位
検出装置の池の実施例を示す基本構成図、第3図は第4
図に示した従来装置に安定化コイルを配置した第3の実
施例を示ず構成図、第41ツ1は従来装置の構成図であ
る。 l・・・被検出体、A・・検出器、2,2a、、2b。 2c、2d・・検出用コイル(コイル)、4・・安定化
コイル(短絡電流路)。 第1図 第2図
Fig. 1 is a basic configuration diagram showing an embodiment of the J1 contact type displacement detection device of the present invention, Fig. 2 is a basic configuration diagram showing an embodiment of the J1 contact type displacement detection device of Mizuki JD Akira, and Fig. 3 The figure is number 4
A configuration diagram of a third embodiment in which a stabilizing coil is arranged in the conventional device shown in the figure is not shown, and No. 41 is a configuration diagram of the conventional device. l...Object to be detected, A...Detector, 2, 2a, 2b. 2c, 2d...Detection coil (coil), 4...Stabilizing coil (short circuit current path). Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、磁性体又は導電体から成る被検出体の変位を磁気変
化を利用して検出する検出器を有する非接触式変位検出
装置において、前記被検出体に対向して該被検出体の変
位を検出するコイルと、該コイルの軸線に垂直な平面内
に該軸線を囲むようにして設けられた短絡電流路とを有
することを特徴とする非接触式変位検出装置。
1. In a non-contact displacement detection device having a detector that detects the displacement of a detected object made of a magnetic material or an electric conductor using magnetic change, a sensor is used to detect the displacement of the detected object by facing the detected object. A non-contact displacement detection device characterized by having a coil to be detected and a short circuit current path provided in a plane perpendicular to the axis of the coil so as to surround the axis.
JP14039390A 1990-05-30 1990-05-30 Noncontact type displacement detector Pending JPH0432724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14039390A JPH0432724A (en) 1990-05-30 1990-05-30 Noncontact type displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14039390A JPH0432724A (en) 1990-05-30 1990-05-30 Noncontact type displacement detector

Publications (1)

Publication Number Publication Date
JPH0432724A true JPH0432724A (en) 1992-02-04

Family

ID=15267760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14039390A Pending JPH0432724A (en) 1990-05-30 1990-05-30 Noncontact type displacement detector

Country Status (1)

Country Link
JP (1) JPH0432724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024979A1 (en) * 2012-08-08 2014-02-13 東海旅客鉄道株式会社 Device for detecting damage to support structure for armature shaft
JP2017181065A (en) * 2016-03-28 2017-10-05 日立オートモティブシステムズ株式会社 Inspection equipment of cylinder unit and inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024979A1 (en) * 2012-08-08 2014-02-13 東海旅客鉄道株式会社 Device for detecting damage to support structure for armature shaft
JP2014036498A (en) * 2012-08-08 2014-02-24 Central Japan Railway Co Breakage detection device for armature shaft support structure
US9389202B2 (en) 2012-08-08 2016-07-12 Central Japan Railway Company Damage detecting device for supporting structure for armature shaft
JP2017181065A (en) * 2016-03-28 2017-10-05 日立オートモティブシステムズ株式会社 Inspection equipment of cylinder unit and inspection method

Similar Documents

Publication Publication Date Title
US5438257A (en) Reduced magnetic flux current sensor
US5442280A (en) Device for measuring an electrical current in a conductor using a Rogowski coil
JP3445362B2 (en) AC current sensor
EP0740796B1 (en) Current sensor including magnetic sensors
JPH0325329A (en) Torque meter
US5055771A (en) Faulted current indicators with improved signal to noise ratios
US7148679B2 (en) Transformer probe
US4030085A (en) Nonferromagnetic linear variable differential transformer
EP0360574B1 (en) Current sensor having an element made of amorphous magnetic metal
JPH0432724A (en) Noncontact type displacement detector
US5416408A (en) Current sensor employing a mutually inductive current sensing scheme with a magnetic field substantially uniform in angular direction
US5453681A (en) Current sensor employing a mutually inductive current sensing scheme
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JPH11237411A (en) Dc current sensor and dc current measurement system
JPH0618568A (en) Current sensor
Takayama et al. Integrated thin film magneto-impedance sensor head using plating process
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JPS58139053A (en) Measuring device for nuclear magnetic resonance
Barlow et al. An experimental impedance relay using the Hall effect in a semiconductor
JP4158542B2 (en) Zero phase current transformer
JPH0261710B2 (en)
EP4303579A1 (en) Detection device
JPS6050429A (en) Torque sensor
JPH03269330A (en) Torque sensor
JPH022544B2 (en)