JP3534484B2 - Magnetic position sensor - Google Patents

Magnetic position sensor

Info

Publication number
JP3534484B2
JP3534484B2 JP10347295A JP10347295A JP3534484B2 JP 3534484 B2 JP3534484 B2 JP 3534484B2 JP 10347295 A JP10347295 A JP 10347295A JP 10347295 A JP10347295 A JP 10347295A JP 3534484 B2 JP3534484 B2 JP 3534484B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic path
movable
coil
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10347295A
Other languages
Japanese (ja)
Other versions
JPH08297007A (en
Inventor
哲朗 連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP10347295A priority Critical patent/JP3534484B2/en
Publication of JPH08297007A publication Critical patent/JPH08297007A/en
Application granted granted Critical
Publication of JP3534484B2 publication Critical patent/JP3534484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気式のセンサに関
し、より詳しくは移動体の変位を検出する磁気式位置セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor, and more particularly to a magnetic position sensor for detecting displacement of a moving body.

【0002】[0002]

【従来の技術】この種の磁気式センサ例が、特公昭55
−13286号公報や特公昭55−9818号公報に記
載されている。これらによれば、可動磁心と固定磁心と
が磁気的に結合され2つの閉磁路が形成される。そし
て、被検出体である移動体に連動する可動磁心の変位に
より閉磁路の長さが変化すると、各閉磁路の磁気抵抗が
変化する。これに伴う各閉磁路の磁束密度の変化を、各
閉磁路上に設けられたコイルにて検出することにより、
可動磁心すなわち移動体の変位を示す信号を得るように
している。
2. Description of the Related Art An example of this type of magnetic sensor is disclosed in Japanese Examined Patent Publication Sho 55.
It is described in JP-B-13286 and JP-B-55-9818. According to these, the movable magnetic core and the fixed magnetic core are magnetically coupled to form two closed magnetic paths. Then, when the length of the closed magnetic path changes due to the displacement of the movable magnetic core that interlocks with the moving body that is the detected body, the magnetic resistance of each closed magnetic path changes. By detecting the change in the magnetic flux density of each closed magnetic circuit with this, by detecting the coil provided on each closed magnetic circuit,
A signal indicating the displacement of the movable magnetic core, that is, the moving body is obtained.

【0003】このように移動体の変位に伴う閉磁路長の
変化による磁気抵抗の変化を検出する方式の従来例は、
どれも主としてセンサの検出精度を上げるために磁気回
路を形成する部材の構造的な改善や工夫を施したもので
あるが、センサの検出感度を向上させることについてさ
らなる改善が望まれる。
As described above, the conventional example of the method of detecting the change in the magnetic resistance due to the change in the closed magnetic circuit length due to the displacement of the moving body is as follows.
All of these are mainly structural improvements and ingenuities of the members forming the magnetic circuit in order to improve the detection accuracy of the sensor, but further improvement in improving the detection sensitivity of the sensor is desired.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、セン
サの検出感度を向上させることのできる磁気式位置セン
サを提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnetic position sensor which can improve the detection sensitivity of the sensor.

【0005】[0005]

【課題を解決するための手段】本発明による磁気式位置
センサは、可動な被検出体の相対的位置を検出する磁気
式位置センサであって、交流励磁される少なくとも1つ
の励磁コイルと、前記励磁コイルにより生起された磁束
を通過せしめる少なくとも1つの閉磁路を形成する閉磁
路形成手段と、前記閉磁路における磁束密度を検出する
少なくとも1つの検出コイルとを有し、前記閉磁路形成
手段は磁気抵抗部と、前記被検出体の変位に応動し一
端において前記被検出体の位置に応じた結合位置で前記
磁気抵抗部と磁気的に結合する可動磁性体部を備えた
結磁路形成部とを含み、前記磁気抵抗部は、前記可動磁
性体部の可動範囲に対応する磁気的結合用表面を有し、
前記連結磁路形成部よりも電気伝導率が大きいことを特
徴としている。
A magnetic position sensor according to the present invention is a magnetic position sensor for detecting a relative position of a movable object to be detected, and at least one exciting coil for alternating current excitation, A closed magnetic path forming means that forms at least one closed magnetic path that allows the magnetic flux generated by the exciting coil to pass through; and at least one detection coil that detects the magnetic flux density in the closed magnetic path . Responsive to the displacement of the magnetoresistive part and the object to be detected.
At the coupling position corresponding to the position of the detected object at the end,
And a communicating <br/> forming a magnetic path forming unit provided with a movable magnetic unit which magnetoresistive portion and magnetically coupled, the magnetoresistive portion, the movable magnetic
Having a surface for magnetic coupling corresponding to the movable range of the body part,
It is characterized in that the electric conductivity is higher than that of the connecting magnetic path forming portion.

【0006】[0006]

【作用】本発明の磁気式位置センサによれば、閉磁路の
一部に被検出体の位置に応じた抵抗成分を与える磁気抵
抗部の電気伝導率が、当該閉磁路の他の部分に比べて大
きく、磁気抵抗部において生じる渦電流が磁気抵抗成分
の増大に寄与する。
According to the magnetic position sensor of the present invention, the electric conductivity of the magnetic resistance portion which gives a resistance component corresponding to the position of the object to be detected to a part of the closed magnetic circuit is higher than that of the other parts of the closed magnetic circuit. The eddy current generated in the magnetic resistance portion contributes to an increase in the magnetic resistance component.

【0007】[0007]

【実施例】以下、図面を参照して本発明を詳細に説明す
る。図1は、本発明による一実施例の磁気式位置センサ
の平面図を示し、図2は、図1のA−A断面図を示して
いる。図1及び図2において、被検出体である移動体1
は、回転軸aを中心に回動する。移動体1は長手磁性部
材2の一端部に固着されており、長手磁性部材2は、移
動体1とともに回転軸aを中心に回動自在である。長手
磁性部材2の周りには、内表面において回転軸aを中心
としかつ長手磁性部材2の他端から回転軸aまでの距離
よりも長い半径にて円弧を描く内表面(磁気的結合用表
面)を有する固定の半円環状磁性部材3が配されてお
り、かかる内表面と長手磁性部材2の他端面とは非接触
である。半円環状磁性部材3の2つの脚部と長手磁性部
材2の一端部は、固定のE字状磁性部材4(副磁性体
部)の3つの脚部の各々と対向している。半円環状磁性
部材3の2つの脚部は、E字状磁性部材4の両端の脚部
とそれぞれ接合されている。長手磁性部材2の一端部
は、回転軸aを中心とする円環状であり、移動体1と嵌
合状態となっている。E字状磁性部材4の真ん中の脚部
(固定分岐磁路部材)は、この円環状一端部に対向しか
つ対応した形状を有し、長手磁性部材2の一端部とE字
状磁性部材4の真ん中の脚部との間も非接触である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. 1 is a plan view of a magnetic position sensor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. In FIGS. 1 and 2, the moving body 1 which is the detected body
Rotates about the rotation axis a. The moving body 1 is fixed to one end of the longitudinal magnetic member 2, and the longitudinal magnetic member 2 is rotatable around the rotation axis a together with the moving body 1. Around the longitudinal magnetic member 2, an inner surface that draws an arc centered on the rotation axis a on the inner surface and having a radius longer than the distance from the other end of the longitudinal magnetic member 2 to the rotation axis a (a table for magnetic coupling).
A fixed semi-annular magnetic member 3 having a surface) is arranged, and the inner surface and the other end surface of the longitudinal magnetic member 2 are not in contact with each other. The two legs of the semi-annular magnetic member 3 and one end of the longitudinal magnetic member 2 are provided with a fixed E-shaped magnetic member 4 (sub -magnetic member ).
Section) facing each of the three legs. The two legs of the semi-annular magnetic member 3 are joined to the legs at both ends of the E-shaped magnetic member 4, respectively. One end of the longitudinal magnetic member 2 has an annular shape centered on the rotation axis a and is in a fitted state with the moving body 1. The middle leg of the E-shaped magnetic member 4
The (fixed branch magnetic path member) has a shape facing and corresponding to the one end of the annular shape, and one end of the longitudinal magnetic member 2 and the middle leg of the E-shaped magnetic member 4 are also in non-contact with each other. Is.

【0008】E字状磁性部材4の各脚部にはコイル(第
1〜第3コイル)が配設される。すなわち、E字状磁性
部材4の真ん中の脚部には第3コイルとして、励磁用の
コイル5が巻回され、E字状磁性部材4の両端の脚部に
第1及び第2コイルとして、それぞれ検出用のコイル
6,7が巻回される。励磁コイル5は、交流電源10に
より交流励磁される。これにより励磁コイル5が起磁力
を発すると、図1に点線で示されるような形の磁束が分
布する。ここで誘起された磁束は検出コイル6,7と鎖
交するが、検出コイル6,7に鎖交する磁束の磁束密度
は、長手磁性部材2の位置に応じて変化する。つまり検
出コイル6に鎖交する磁束の磁路Paの長さと検出コイ
ル7に鎖交する磁束の磁路Pbの長さとが、長手磁性部
材2の半円環状磁性部材3への対向位置により相補的に
変わり、各磁路の抵抗成分が変化した分検出コイルに鎖
交する磁束密度が変わるのである。検出コイル6,7
は、鎖交する磁束密度の変化率の大きさに応じた起電力
を発生するので、検出コイル6,7の出力電圧を比較す
ることにより長手磁性部材2すなわち移動体1の位置
(相対的角度)を検知することができる。
Each leg of the E-shaped magnetic member 4 has a coil (first
First to third coils) are provided. That is, the excitation coil 5 is wound as a third coil on the middle leg of the E-shaped magnetic member 4, and the first and second coils are provided on the legs at both ends of the E-shaped magnetic member 4. The coils 6 and 7 for detection are respectively wound. The excitation coil 5 is AC-excited by the AC power supply 10. As a result, when the exciting coil 5 generates a magnetomotive force, magnetic flux having a shape shown by a dotted line in FIG. 1 is distributed. The magnetic flux induced here interlinks with the detection coils 6 and 7, but the magnetic flux density of the magnetic flux interlinking with the detection coils 6 and 7 changes according to the position of the longitudinal magnetic member 2. That is, the length of the magnetic path Pa of the magnetic flux interlinking the detection coil 6 and the length of the magnetic path Pb of the magnetic flux interlinking the detection coil 7 are complementary by the position of the longitudinal magnetic member 2 facing the semi-annular magnetic member 3. That is, the magnetic flux density linked to the detection coil is changed by the change in the resistance component of each magnetic path. Detection coil 6,7
Generates an electromotive force according to the rate of change in the magnetic flux density that interlinks, so by comparing the output voltages of the detection coils 6 and 7, the position of the longitudinal magnetic member 2, that is, the moving body 1 (relative angle ) Can be detected.

【0009】なお、このセンサは、第1磁路形成手段と
第2磁路形成手段の2つに分類することができる。第1
磁路形成手段は、それぞれ固定磁性部材であるE字状磁
性部材4と半円環状磁性部材3の胴部及び両端脚部とか
らなり、これら磁性部は、当該胴部及び磁性部材3の内
表面において互いに対向している。第2磁路形成手段
は、磁性部材3及び4の対向部を磁気的に連結しかつ一
端が半円環状磁性部材3に対して相対的に移動(回動)
可能な可動分岐磁性部材としての長手磁性部材2を有す
る。長手磁性部材2は、磁性部材3及び4のみで形成さ
れる第1閉磁路を2つの閉磁路に分岐する分岐磁路を形
成する。さらに詳しく分析すれば、第2磁路形成手段
は、E字状磁性部材4の中央脚部が固定分岐磁路部を担
い、長手磁性部材2とともに分岐磁路を形成する。
This sensor can be classified into two types, a first magnetic path forming means and a second magnetic path forming means. First
The magnetic path forming means is composed of an E-shaped magnetic member 4 which is a fixed magnetic member, and a body portion and both end legs of the semi-annular magnetic member 3, and these magnetic portions are inside the body portion and the magnetic member 3. Opposite each other on the surface. The second magnetic path forming means magnetically connects the facing portions of the magnetic members 3 and 4 and has one end relatively moved (rotated) with respect to the semi-annular magnetic member 3.
It has a longitudinal magnetic member 2 as a possible movable branch magnetic member. The longitudinal magnetic member 2 forms a branch magnetic path that branches the first closed magnetic path formed by only the magnetic members 3 and 4 into two closed magnetic paths. When analyzed in more detail, in the second magnetic path forming means, the central leg portion of the E-shaped magnetic member 4 serves as the fixed branch magnetic path portion and forms the branch magnetic path together with the longitudinal magnetic member 2.

【0010】磁気抵抗部である半円環状磁性部材3と連
結磁路形成部であるE字状磁性部材4とは、後述する理
由により、互いに電気伝導率の異なる磁路材が採用され
る。すなわち、半円環状磁性部材3は、E字状磁性部材
4よりも電気伝導率の大きい磁性材料により形成され
る。電気伝導率の大きい磁性材は、鉄やニッケル等が挙
げられ、電気伝導率の小さい磁性材は、フェライトや積
層した珪素鋼板等が挙げられる。従って、半円環状磁性
部材3を鉄またはニッケル系の材料で形成し、E字状磁
性部材4をフェライトまたは珪素鋼板で形成するのが好
ましい。他方、フェライトは、珪素鋼板と比べても電気
伝導率が小さいので、半円環状磁性部材3に珪素鋼板を
適用し、E字状磁性部材4にフェライトを適用しても良
い。つまり本発明においては半円環状磁性部材3の電気
伝導率をE字状磁性部材4よりも大きくすれば良いので
あるが、E字状磁性部材4に比べ半円環状磁性部材3の
電気伝導率が大きければ大きい程好ましい。
For the semi-annular magnetic member 3 which is the magnetic resistance portion and the E-shaped magnetic member 4 which is the connecting magnetic path forming portion, magnetic path materials having different electric conductivities are adopted for the reason described later. That is, the semi-annular magnetic member 3 is made of a magnetic material having a larger electric conductivity than the E-shaped magnetic member 4. Examples of magnetic materials having high electric conductivity include iron and nickel, and examples of magnetic materials having low electric conductivity include ferrite and laminated silicon steel sheets. Therefore, it is preferable that the semi-annular magnetic member 3 is made of iron or nickel based material and the E-shaped magnetic member 4 is made of ferrite or silicon steel plate. On the other hand, since ferrite has a smaller electric conductivity than a silicon steel sheet, a silicon steel sheet may be applied to the semi-annular magnetic member 3 and a ferrite may be applied to the E-shaped magnetic member 4. That is, in the present invention, the electrical conductivity of the semi-annular magnetic member 3 may be made larger than that of the E-shaped magnetic member 4, but the electrical conductivity of the semi-annular magnetic member 3 is larger than that of the E-shaped magnetic member 4. The larger is, the more preferable.

【0011】このように半円環状磁性部材3の電気伝導
率をE字状磁性部材4よりも大きくしたことにより、次
のような作用効果が得られる。図3は、かかる本発明特
有の作用効果を説明するための、図1及び図2に示した
センサの等価回路を示している。図3において、半円環
状磁性部材3は電気回路上、等価的に電気抵抗素子3と
して同定される。可動の長手磁性部材2は、移動体1の
回転角に応じた位置において抵抗素子3に一端が接する
摺動子2として同定され、E字状磁性部材4の磁路P
a,Pbを担う部分4a,4bは、抵抗素子3に一端に
おいて接続された電気抵抗素子4a,4bとみなされ
る。抵抗素子4a,4bの他端は、検出コイル6,7と
等価である電流計6,7を介して接地される。摺動子2
の他端は、励磁コイル5と等価である定電流源5の正極
端に接続されるとともに、定電流源5の負極端は接地さ
れる。
By making the electric conductivity of the semi-annular magnetic member 3 larger than that of the E-shaped magnetic member 4, the following operational effects can be obtained. FIG. 3 shows an equivalent circuit of the sensor shown in FIGS. 1 and 2 for explaining the action and effect peculiar to the present invention. In FIG. 3, the semi-annular magnetic member 3 is equivalently identified as the electric resistance element 3 on the electric circuit. The movable longitudinal magnetic member 2 is identified as the slider 2 whose one end is in contact with the resistance element 3 at a position corresponding to the rotation angle of the moving body 1, and the magnetic path P of the E-shaped magnetic member 4 is identified.
The portions 4a and 4b that carry a and Pb are regarded as the electric resistance elements 4a and 4b connected to the resistance element 3 at one end. The other ends of the resistance elements 4a and 4b are grounded via ammeters 6 and 7, which are equivalent to the detection coils 6 and 7. Slider 2
The other end of is connected to the positive end of the constant current source 5 equivalent to the exciting coil 5, and the negative end of the constant current source 5 is grounded.

【0012】この等価回路からも分かるように、半円環
状磁性部材3は、長手磁性部材2との対向位置に応じ
て、検出コイル6を経る磁路Paの抵抗成分と検出コイ
ル7を経る磁路Pbの抵抗成分とを相補的に変え与える
磁路抵抗部の役割を果たしている。ここで本発明は、励
磁コイル5の励磁に伴う磁束変化により、磁路内に発生
する渦電流に着目した。この渦電流は、励磁コイル5か
ら発せられる磁束を減少させる方向に作用する。つま
り、渦電流作用は磁束変化を伴うときの磁路抵抗作用
(鉄損という)と考えられる。この渦電流作用は、磁路
断面に分布する電流、または磁界であるため、集中定数
の式では表せないが、磁束変化の周波数f,電気伝導率
κ,透磁率μの積に比例すると考えられ、
As can be seen from this equivalent circuit, the semi-annular magnetic member 3 has a magnetic component passing through the detection coil 6 and a resistance component of the magnetic path Pa passing through the detection coil 6 depending on the position facing the longitudinal magnetic member 2. It plays the role of a magnetic path resistance portion that complementarily changes the resistance component of the path Pb. Here, the present invention focuses on the eddy current generated in the magnetic path due to the change in magnetic flux accompanying the excitation of the exciting coil 5. This eddy current acts in a direction to reduce the magnetic flux emitted from the exciting coil 5. That is, the eddy current action is considered to be a magnetic path resistance action (called iron loss) when the magnetic flux changes. Since this eddy current action is a current or magnetic field distributed in the magnetic path cross section, it cannot be expressed by the lumped constant equation, but it is considered to be proportional to the product of the magnetic flux change frequency f, electrical conductivity κ, and magnetic permeability μ. ,

【0013】[0013]

【数1】 [Equation 1]

【0014】と書くことができる。よって、電気伝導率
の大きな材料を磁路抵抗部の半円環状磁性部材3に使う
と、その磁路断面積の割に磁路抵抗作用の大きな磁路抵
抗を形成できる。すなわち、励磁コイル5から発せられ
る磁束が検出コイル6,7に作用するとき、磁束変化に
伴って生ずる磁気抵抗3は、磁気抵抗4a,4bに比べ
て大きいと、ロータ2の移動量に対する検出コイル6,
7に生ずる誘起電圧の変化率が大となり、センサの感度
が良くなる。
Can be written as Therefore, when a material having a high electric conductivity is used for the semi-annular magnetic member 3 of the magnetic path resistance portion, a magnetic path resistance having a large magnetic path resistance action can be formed for the magnetic path cross-sectional area. That is, when the magnetic flux generated from the exciting coil 5 acts on the detection coils 6 and 7, if the magnetic resistance 3 caused by the change in the magnetic flux is larger than the magnetic resistances 4a and 4b, the detection coil with respect to the movement amount of the rotor 2 is detected. 6,
The rate of change of the induced voltage generated at 7 becomes large, and the sensitivity of the sensor becomes good.

【0015】かくして、交流磁界による閉磁路中の磁束
が被検出体の変化により変化することを検出する磁気式
位置センサにおいては、当該閉磁路の抵抗部の電気伝導
率を大きくすることによって、磁気抵抗成分を増大せし
める渦電流を大きくさせることができ、被検出体の微小
な変位であっても大きなレベルの検出コイル出力を得る
ことができるので、センサ検出能力を向上させることが
できる。
Thus, in the magnetic position sensor for detecting that the magnetic flux in the closed magnetic circuit due to the AC magnetic field changes due to the change of the object to be detected, the magnetic conductivity is increased by increasing the electric conductivity of the resistance portion of the closed magnetic circuit. The eddy current that increases the resistance component can be increased, and a large level of the detection coil output can be obtained even with a minute displacement of the detected object, so that the sensor detection capability can be improved.

【0016】センサの出力は、検出コイル6及び7の出
力電圧を相互比較することによって得ることができる。
図4は、検出コイル6及び7の出力電圧を入力とするセ
ンサ出力回路の構成を示しており、検出コイル6の両端
は電圧検出器11の入力端と、検出コイル7の両端は電
圧検出器12の入力端とそれぞれ接続され、電圧検出器
11は、検出コイル6の出力電圧の実効値を示す信号を
増幅器13を介し電圧V1 として演算回路15に入力
し、電圧検出器12は、検出コイル7の出力電圧の実効
値を示す信号を増幅器14を介し電圧V2 として演算回
路15に入力する。演算回路15は、各検出コイルの出
力電圧の実効値に応じた入力電圧V1 ,V2 に従い、両
検出コイル起電力の比すなわちV1 /(V1 +V2 )な
る演算を行い、その演算結果に応じたレベルの信号をセ
ンサ出力すなわち被検出体の変位に応じた位置信号とし
て出力する。
The output of the sensor can be obtained by comparing the output voltages of the detection coils 6 and 7 with each other.
FIG. 4 shows the configuration of a sensor output circuit that receives the output voltages of the detection coils 6 and 7, and both ends of the detection coil 6 are the input ends of the voltage detector 11 and both ends of the detection coil 7 are the voltage detectors. Each of the voltage detectors 11 is connected to the input terminals of 12 and inputs a signal indicating the effective value of the output voltage of the detection coil 6 to the arithmetic circuit 15 via the amplifier 13 as the voltage V1. A signal indicating the effective value of the output voltage of No. 7 is input to the arithmetic circuit 15 via the amplifier 14 as the voltage V2. The arithmetic circuit 15 calculates the ratio of the electromotive force of both detection coils, that is, V1 / (V1 + V2) according to the input voltages V1 and V2 corresponding to the effective value of the output voltage of each detection coil, and the level according to the calculation result. Is output as a sensor output, that is, a position signal corresponding to the displacement of the object to be detected.

【0017】このように2つの検出コイルの出力電圧に
基づいてセンサ出力を得ることにより、単一の検出コイ
ルの出力電圧によってセンサ出力を得るものに比べ高精
度の変位検出を達成することができる。図5は、本発明
による他の実施例の磁気式位置センサの平面図を示し、
図6は図5における矢印Bから見た図を示しており、図
1及び図2と同等部分には同一の符号が付されている。
By obtaining the sensor output based on the output voltages of the two detection coils in this way, it is possible to achieve displacement detection with higher precision than that obtained by obtaining the sensor output by the output voltage of a single detection coil. . FIG. 5 is a plan view of a magnetic position sensor according to another embodiment of the present invention,
FIG. 6 shows a view as seen from the arrow B in FIG. 5, and the same parts as those in FIGS. 1 and 2 are designated by the same reference numerals.

【0018】図5及び図6において、第1磁路形成手段
は、互いに対向する直線状磁性部材4a,3´と、これ
ら磁性部材4a,3´を互いに平行に位置決めする円柱
状の磁性連結部材4b,4cとから構成されている。磁
性連結部材4b,4cには、検出コイル6及び7がそれ
ぞれ巻回されている。第2磁路形成手段は、励磁コイル
5が巻回された円柱状磁性部材4dと、磁性部材4a,
3´に平行な直線状の補助分岐磁性部材4eと、磁性部
材3´と磁性部材4eとの間を磁気的に結合しかつ平行
移動する可動分岐磁性部材2´とからなる。磁性部材4
dは、一端が磁性部材4aに固着され他端が磁性部材4
eに固着され、磁性部材4aと補助分岐磁性部材4eと
を磁気的に連結する固定分岐磁性部材を担う。磁性部材
2´は、補助分岐磁性部材4eと磁性部材3´との間に
非接触に配置される。磁性部2´は、図示しない被検出
体の直線変位に応動して磁性部材3´と磁性部材4eと
の対向面間をこれら磁性部材の長手方向(矢印M方向)
に沿って移動自在となっている。
In FIG. 5 and FIG. 6, the first magnetic path forming means comprises linear magnetic members 4a and 3'opposing each other and a columnar magnetic connecting member for positioning the magnetic members 4a and 3'in parallel to each other. It is composed of 4b and 4c. The detection coils 6 and 7 are wound around the magnetic coupling members 4b and 4c, respectively. The second magnetic path forming means includes a cylindrical magnetic member 4d around which the exciting coil 5 is wound, a magnetic member 4a,
It is composed of a linear auxiliary branch magnetic member 4e parallel to 3 ', and a movable branch magnetic member 2'which magnetically couples between the magnetic member 3'and the magnetic member 4e and moves in parallel. Magnetic member 4
d has one end fixed to the magnetic member 4a and the other end fixed to the magnetic member 4a.
It serves as a fixed branch magnetic member that is fixedly attached to e and magnetically connects the magnetic member 4a and the auxiliary branch magnetic member 4e. The magnetic member 2'is arranged in a non-contact manner between the auxiliary branch magnetic member 4e and the magnetic member 3 '. The magnetic part 2'is responsive to a linear displacement of an object to be detected, not shown, between the facing surfaces of the magnetic member 3'and the magnetic member 4e in the longitudinal direction of these magnetic members (direction of arrow M).
It is free to move along.

【0019】このような構成の磁気式位置センサによれ
ば、図示しない交流電源によってコイル5を励磁する
と、これによって発生する磁束は、磁性部材4eを通
り、磁性部材4eと磁性部材2´とのギャップ、磁性部
材2´、及び磁性部材2´と磁性部材3´とのギャップ
をそれぞれ通過し、磁性部材3´に入る。そして磁性部
材3´において磁束は2つに分岐し、磁性連結部材4
b,4cをそれぞれ経由し、磁性部材4aを通って再び
励磁コイル5に戻り合流する。故に、磁性部材3´にお
いて一方に分岐する磁束(磁性連結部材4bを経る磁
束)を通過せしめるループと、他方に分岐する磁束(磁
性連結部材4cを経る磁束)を通過せしめるループの2
つ閉磁路が形成されることとなる。またこうした磁束の
流れの方向は、励磁コイル5に流れる電流の方向に応じ
て順逆方向に変化する。
According to the magnetic position sensor having such a configuration, when the coil 5 is excited by the AC power source (not shown), the magnetic flux generated by the coil 5 passes through the magnetic member 4e and is generated between the magnetic member 4e and the magnetic member 2 '. It passes through the gap, the magnetic member 2 ', and the gap between the magnetic member 2'and the magnetic member 3', and enters the magnetic member 3 '. Then, in the magnetic member 3 ′, the magnetic flux is branched into two, and the magnetic coupling member 4
After passing through b and 4c, the magnetic member 4a is returned to the exciting coil 5 to join again. Therefore, in the magnetic member 3 ', there are two loops, one for passing a magnetic flux branched to one side (a magnetic flux passing through the magnetic coupling member 4b) and a loop passing a magnetic flux branching to the other (a magnetic flux passing through the magnetic coupling member 4c).
A closed magnetic circuit will be formed. Further, the direction of the flow of such magnetic flux changes in the forward and reverse directions according to the direction of the current flowing in the exciting coil 5.

【0020】このセンサにおいては、直線状磁性部材3
´が磁気抵抗部に相当し、他の磁性部材4a,4b,4
c,4d,4e及び2´が連結磁路形成部に相当する。
従って上述と同様、磁性部材3´には、磁性部材4a,
4b,4c,4d,4e及び2´よりも電気伝導率の大
きな材質の磁性材が採用される。可動磁性部材2´が被
検出体の変位に応動して直線移動すると、上記2つの閉
磁路の各々は、互いに相補的にその磁路長(すなわち磁
気抵抗成分)が変化する。これに従い検出コイル6及び
7が生ずる起電力も互いに相補的に変化するので、先述
した図4のセンサ出力回路によって検出コイル6及び7
の出力電圧に基づいた高精度な位置信号が得られること
となる。しかも磁気抵抗部3´は電気伝導率が大きく、
交流磁界による渦電流が生じやすく、見かけ上の磁気抵
抗量よりも大きな磁気抵抗作用を各閉磁路に与えるの
で、上述と同様、センサ検出感度の向上が図られること
となる。
In this sensor, the linear magnetic member 3
′ Corresponds to the magnetic resistance portion, and the other magnetic members 4a, 4b, 4
c, 4d, 4e and 2'correspond to the connecting magnetic path forming portion.
Therefore, similar to the above, the magnetic member 3'includes the magnetic members 4a,
A magnetic material having a larger electric conductivity than 4b, 4c, 4d, 4e and 2'is adopted. When the movable magnetic member 2 ′ moves linearly in response to the displacement of the object to be detected, the magnetic path length (that is, the magnetic resistance component) of each of the two closed magnetic paths changes in a complementary manner. Accordingly, the electromotive forces generated by the detection coils 6 and 7 change complementarily to each other, so that the detection coils 6 and 7 are generated by the sensor output circuit of FIG.
Therefore, a highly accurate position signal based on the output voltage of 1 can be obtained. Moreover, the magnetic resistance portion 3'has a large electric conductivity,
Eddy currents due to the alternating magnetic field are likely to occur, and a magnetic resistance effect larger than the apparent magnetic resistance amount is given to each closed magnetic circuit, so that the sensor detection sensitivity can be improved as in the above case.

【0021】なお、先の図1及び図2の実施例において
は、起磁力源を担う励磁コイル5をE字状磁性部材4の
中央脚部に設けたが、2つの励磁コイルをE字状磁性部
材4の両端脚部に設けそれぞれに適当な交流電流を供給
するようにしても良い。この場合E字状磁性部材4の中
央脚部に検出コイルを設ければ、その検出コイルの出力
電圧から長手磁性部材2すなわち移動体1の相対的位置
を検出することができる。また、E字状磁性部材4に2
つの検出コイルを設けて移動体1の相対的位置を検出す
るようにしたが、基本的には単一の検出コイルを設ける
構成でも移動体1の相対的位置を検出することができ
る。また、一体的にE字状磁性部材4が形成される如く
説明したが、E字状磁性部材4の各脚部を別の部材とし
て構成しても良く、長手磁性部材2や半円環状磁性部材
3についても同様で、要はこれらが磁気回路上果たすべ
き構造ないし形状を有していれば良い。そしてこうした
改変の例は図5及び図6の実施例に対しても同様に当て
はめることができる。
In the embodiment shown in FIGS. 1 and 2, the exciting coil 5 serving as the magnetomotive force source is provided at the central leg of the E-shaped magnetic member 4, but two exciting coils are formed in the E-shape. The magnetic member 4 may be provided at both ends of the magnetic member 4 to supply an appropriate alternating current to each. In this case, if a detection coil is provided on the central leg of the E-shaped magnetic member 4, the relative position of the longitudinal magnetic member 2, that is, the moving body 1 can be detected from the output voltage of the detection coil. In addition, the E-shaped magnetic member 4 has two
Although the two detection coils are provided to detect the relative position of the moving body 1, basically, the relative position of the moving body 1 can be detected even with a configuration in which a single detection coil is provided. Further, although the E-shaped magnetic member 4 is described as being integrally formed, each leg of the E-shaped magnetic member 4 may be configured as a separate member, and the longitudinal magnetic member 2 or the semi-circular magnetic member 2 may be formed. The same applies to the member 3, as long as they have the structure or shape to be achieved in the magnetic circuit. And such an example of modification can be similarly applied to the embodiments of FIGS. 5 and 6.

【0022】[0022]

【発明の効果】以上詳述したように、本発明の磁気式位
置センサによれば、閉磁路の一部に被検出体の位置に応
じた抵抗成分を与える磁気抵抗部の電気伝導率が、当該
閉磁路の他の部分に比べて大きく、磁気抵抗部で生じる
渦電流が当該磁気抵抗部の磁気抵抗を増大させるように
作用するので、センサの検出感度を向上させることがで
きる。
As described in detail above, according to the magnetic position sensor of the present invention, the electric conductivity of the magnetic resistance portion that gives a resistance component corresponding to the position of the object to be detected to a part of the closed magnetic circuit is The detection sensitivity of the sensor can be improved because the eddy current generated in the magnetic resistance portion is larger than the other portions of the closed magnetic circuit and acts to increase the magnetic resistance of the magnetic resistance portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例の磁気式位置センサの構
成を示す平面図。
FIG. 1 is a plan view showing the configuration of a magnetic position sensor according to an embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の磁気式位置センサの等価回路図。3 is an equivalent circuit diagram of the magnetic position sensor of FIG.

【図4】図1の磁気式位置センサのセンサ出力回路を示
すブロック図。
FIG. 4 is a block diagram showing a sensor output circuit of the magnetic position sensor of FIG.

【図5】本発明による他の実施例の磁気式位置センサの
構成を示す平面図。
FIG. 5 is a plan view showing the configuration of a magnetic position sensor according to another embodiment of the present invention.

【図6】図5の矢印Bから見た図。FIG. 6 is a view seen from an arrow B in FIG.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 移動体 2 長手磁性部材 2´ 可動分岐磁性部材 3 半円環状磁性部材(磁気抵抗部) 3´ 直線状磁性部材(磁気抵抗部) 4 E字状磁性部材(連結磁路形成部) 4a,4b,4c,4d,4e 磁性部材(連結磁路形
成部) 5 励磁コイル 6,7 検出コイル a 回転軸 Pa,Pb 閉磁路
DESCRIPTION OF SYMBOLS 1 Moving body 2 Longitudinal magnetic member 2'Movable branch magnetic member 3 Semi-annular magnetic member (magnetic resistance part) 3'Linear magnetic member (magnetic resistance part) 4 E-shaped magnetic member (connection magnetic path formation part) 4a, 4b, 4c, 4d, 4e Magnetic member (connection magnetic path formation part) 5 Excitation coil 6, 7 Detection coil a Rotation axis Pa, Pb Closed magnetic path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 7/30 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 7/30

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可動な被検出体の相対的位置を検出する磁
気式位置センサであって、 交流励磁される少なくとも1つの励磁コイルと、前記励
磁コイルにより生起された磁束を通過せしめる少なくと
も1つの閉磁路を形成する閉磁路形成手段と、前記閉磁
路における磁束密度を検出する少なくとも1つの検出コ
イルとを有し、 前記閉磁路形成手段は磁気抵抗部と、前記被検出体の
変位に応動し一端において前記被検出体の位置に応じた
結合位置で前記磁気抵抗部と磁気的に結合する可動磁性
体部を備えた連結磁路形成部とを含み、 前記磁気抵抗部は、前記可動磁性体部の可動範囲に対応
する磁気的結合用表面を有し、前記連結磁路形成部より
も電気伝導率が大きいことを特徴とする磁気式位置セン
サ。
1. A magnetic position sensor for detecting a relative position of a movable object to be detected, comprising at least one exciting coil excited by an alternating current and at least one passing magnetic flux generated by the exciting coil. It has a closed magnetic circuit forming means for forming a closed magnetic circuit and at least one detection coil for detecting a magnetic flux density in the closed magnetic circuit, wherein the closed magnetic circuit forming means includes a magnetic resistance portion and the detected object.
It responds to the displacement and at one end depends on the position of the object to be detected.
Movable magnetism that is magnetically coupled to the magnetoresistive portion at the coupling position
A connecting magnetic path forming portion having a body portion , wherein the magnetoresistive portion corresponds to a movable range of the movable magnetic body portion.
A magnetic position sensor having a magnetic coupling surface having a higher electric conductivity than that of the coupling magnetic path forming portion.
【請求項2】前記閉磁路形成手段は、少なくとも1つの
第1閉磁路を形成する第1磁路形成手段と前記第1磁路
形成手段に対して非接触で所定範囲に亘って相対的に移
動可能であって前記第1閉磁路を2つの閉磁路に分岐す
る分岐磁路を形成する第2磁路形成手段とからなり、 前記第1磁路形成手段は、少なくとも1対の対向部を形
成する固定磁性部材を有し、 前記第2磁路形成手段は、前記対向部を連結しかつ少な
くとも一部が前記対向部の少なくとも一方に対して相対
的に移動可能な可動分岐磁性部材を有し、 前記磁気抵抗部は、前記可動分岐磁性部材が前記所定範
囲内において移動可能に連結する前記対向部の少なくと
も一方に形成され、 前記連結磁路形成部は、前記固定磁性部材のうちの前記
磁気抵抗部を除く部分と前記可動分岐磁性部材とを有
し、 前記励磁コイルは、前記所定範囲を挟む位置にて前記第
1閉磁路に鎖交する第1コイル及び第2コイル、並びに
前記分岐磁路に鎖交する第3コイルのうちの少なくとも
1つのコイルであり、 前記検出コイルは、前記第1ないし第3コイルのうちの
他のコイルであることを特徴とする請求項1記載の磁気
式位置センサ。
2. The closed magnetic path forming means is a first magnetic path forming means forming at least one first closed magnetic path, and is relatively non-contact with the first magnetic path forming means over a predetermined range. And a second magnetic path forming means that is movable and forms a branch magnetic path that branches the first closed magnetic path into two closed magnetic paths, wherein the first magnetic path forming means includes at least one pair of facing portions. The second magnetic path forming means includes a movable branch magnetic member that connects the facing portions and is at least partially movable relative to at least one of the facing portions. The magnetic resistance portion is formed on at least one of the facing portions to which the movable branch magnetic member is movably coupled within the predetermined range, and the coupling magnetic path forming portion is one of the fixed magnetic members. The part excluding the magnetic resistance part and the movable branch A magnetic member, and the exciting coil includes a first coil and a second coil which are linked to the first closed magnetic path at positions sandwiching the predetermined range, and a third coil which is linked to the branched magnetic path. The magnetic position sensor according to claim 1, wherein the magnetic position sensor is at least one of the coils, and the detection coil is another coil of the first to third coils.
【請求項3】前記第2磁路形成手段は、前記対向部の一
方に一端が固設した固定分岐磁路部材をさらに含み、 前記可動分岐磁路部材は、前記固定分岐磁路部材の他端
の近傍の回転中心軸の回りに回動自在でかつ前記対向部
の他方が前記可動分岐磁性部材の先端の移動軌跡に沿っ
て延在していることを特徴とする請求項記載の磁気式
位置センサ。
3. The second magnetic path forming means further includes a fixed branch magnetic path member having one end fixed to one of the facing portions, wherein the movable branch magnetic path member is the other of the fixed branch magnetic path members. 3. The magnet according to claim 2 , wherein the magnet is rotatable about a rotation center axis near the end and the other of the facing portions extends along a movement locus of the tip of the movable branch magnetic member. Position sensor.
【請求項4】前記第2磁路形成手段は、前記対向部に対
向する補助分岐磁性部材と、一端が前記対向部の一方に
固着されかつ他端が前記補助分岐磁性部材に固着された
固定分岐磁性部材とを有し、 前記可動分岐磁路部材は、前記対向部の他方と前記補助
分岐磁性部材との対向面間を平行移動可能であることを
特徴とする請求項記載の磁気式位置センサ。
4. The second magnetic path forming means includes an auxiliary branch magnetic member facing the facing portion, and a fixing member having one end fixed to one of the facing portions and the other end fixed to the auxiliary branch magnetic member. 4. A magnetic type according to claim 3 , further comprising a branch magnetic member, wherein the movable branch magnetic path member is movable in parallel between facing surfaces of the other of the facing portions and the auxiliary branch magnetic member. Position sensor.
【請求項5】前記第3コイルは、前記固定分岐磁性部材
に巻回されていることを特徴とする請求項または
載の磁気式位置センサ。
Wherein said third coil, magnetic position sensor according to claim 3, wherein that it is wound around the fixed branch magnetic member.
【請求項6】前記第3コイルを交流励磁する手段と、第
1及び第2コイルの起電力の比に応じたレベルの信号を
前記被検出体の相対的位置に応じた信号として出力する
手段とを有することを特徴とする請求項1ないしのう
ちのいずれか1つに記載の磁気式位置センサ。
6. A means for AC-exciting the third coil, and a means for outputting a signal of a level corresponding to the ratio of electromotive forces of the first and second coils as a signal corresponding to the relative position of the object to be detected. magnetic position sensor according to any one of claims 1 to 5, characterized in that it has and.
【請求項7】前記磁気抵抗部は、鉄またはニッケルから
なり、 前記連結磁路形成部は、フェライトまたは珪素鋼板から
なることを特徴とする請求項1ないしのうちのいずれ
か1つの記載の磁気式位置センサ。
Wherein said magneto-resistance portion is made of iron or nickel, the connecting magnetic path forming unit, of any one of claims 1 to 6, characterized in that it consists of ferrite or silicon steel sheet according Magnetic position sensor.
JP10347295A 1995-04-27 1995-04-27 Magnetic position sensor Expired - Fee Related JP3534484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10347295A JP3534484B2 (en) 1995-04-27 1995-04-27 Magnetic position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10347295A JP3534484B2 (en) 1995-04-27 1995-04-27 Magnetic position sensor

Publications (2)

Publication Number Publication Date
JPH08297007A JPH08297007A (en) 1996-11-12
JP3534484B2 true JP3534484B2 (en) 2004-06-07

Family

ID=14354957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10347295A Expired - Fee Related JP3534484B2 (en) 1995-04-27 1995-04-27 Magnetic position sensor

Country Status (1)

Country Link
JP (1) JP3534484B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559818B2 (en) * 1973-07-06 1980-03-12
JPS5513286B2 (en) * 1973-12-27 1980-04-08
JPS60168017A (en) * 1984-02-10 1985-08-31 S G:Kk Linear position detecting device
JPH0665967B2 (en) * 1985-08-27 1994-08-24 株式会社エスジー Absolute rotational position detector
JPH07318304A (en) * 1994-05-26 1995-12-08 Mikuni Corp Magnetic position sensor
JPH07332913A (en) * 1994-06-14 1995-12-22 Mikuni Corp Magnetic positional sensor

Also Published As

Publication number Publication date
JPH08297007A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
US6160395A (en) Non-contact position sensor
US8638092B2 (en) Current sensor
US20050280411A1 (en) GMR sensor with flux concentrators
JPH09508466A (en) Micro coil device made by flattening technology to detect ferromagnetic material
JP3445362B2 (en) AC current sensor
JP6409970B2 (en) Current sensor
US6549003B2 (en) Position detector utilizing two magnetic field sensors and a scale
JPH02102918A (en) Magnetic bearing device
JPH11509638A (en) Hall effect non-contact position sensor
JP3534484B2 (en) Magnetic position sensor
JP2020197381A (en) Gradient magnetic field sensor
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP4385340B2 (en) Displacement sensor using Helmholtz coil
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JP3618425B2 (en) Magnetic sensor
JPS62276454A (en) Method for detecting foreign matter in ferromagnetic body
JP3065904B2 (en) Thin magnetic head and method of manufacturing the same
JP2514338B2 (en) Current detector
US20230118914A1 (en) Magnetic sensor
JPH08178691A (en) Magnetic position sensor
JPH0196511A (en) Displacement detecting element and displacement arithmetic element
JPH0713643B2 (en) Speed / position sensor
JP2002082135A (en) Current sensor
JP2024076479A (en) Magnetic Sensor
JPH034123A (en) Sensor device for detecting position

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees