JPH0196511A - Displacement detecting element and displacement arithmetic element - Google Patents

Displacement detecting element and displacement arithmetic element

Info

Publication number
JPH0196511A
JPH0196511A JP25589487A JP25589487A JPH0196511A JP H0196511 A JPH0196511 A JP H0196511A JP 25589487 A JP25589487 A JP 25589487A JP 25589487 A JP25589487 A JP 25589487A JP H0196511 A JPH0196511 A JP H0196511A
Authority
JP
Japan
Prior art keywords
conductor
coil
displacement
shield
conductor coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25589487A
Other languages
Japanese (ja)
Other versions
JPH0574003B2 (en
Inventor
Haruo Urai
浦井 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25589487A priority Critical patent/JPH0196511A/en
Publication of JPH0196511A publication Critical patent/JPH0196511A/en
Publication of JPH0574003B2 publication Critical patent/JPH0574003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To raise the reliability of a detection and an arithmetic operation of a displacement by a simple and inexpensive constitution by providing a means by which a detection output is proportional to the displacement quantity as it is. CONSTITUTION:An exciting coil 2 and a detecting coil 3 as a first and second conductor coils are provided so as to be separated from each other on both end parts of a soft magnetic material pattern 1, and to the coil 2, an alternating current source 20 is connected, and also, on the periphery of the coil 3, a conductor shield 4 is provided in a non-contact state to the pattern 1, and also, so as to be movable. When coil length of the coil 3 and an overlap of the shield 4 and the coil 3 are denoted as Lc and (x), respectively, a magnetic field is generated from the end part of the excited shield 4, its magnetic field induces an eddy current 40 in the shield 4, a reverse magnetic field is applied to the overlap (x) of the coil 1 and the shield 4 and the magnetic flux density of its part becomes zero. As a result, an induction voltage of the coil 3 becomes only an induction voltage generated in the coil of length of Lc-(x). Also, when the shield is provided on both end parts of the pattern 1, two displacement quantities can be operated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変位検出素子及び変位演算素子に関し、特に非
接触で変位を検出し、2つの変位の大きさの和、差、積
等を演算する素子としての変位検出素子及び変位演算素
子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a displacement detection element and a displacement calculation element, and particularly to a displacement detection element and a displacement calculation element, which detect displacement without contact and calculate the sum, difference, product, etc. of the magnitude of two displacements. The present invention relates to a displacement detection element and a displacement calculation element as an element for calculating.

〔従来の技術〕[Conventional technology]

数値制御工作機器等では、物体の変位を精度良く検出す
ることは極めて重要な技術である。物体の変位を検出す
る技術としては、従来次の諸技術が広くしられている。
In numerically controlled machine tools, etc., it is an extremely important technology to accurately detect the displacement of an object. Conventionally, the following techniques are widely known as techniques for detecting the displacement of an object.

即ち、ポテンショメータを介して変位量を電気抵抗値に
変換する方法、歪みゲージを用いる方法、ホール効果又
は磁気抵抗効果を用いるマグネスケールを利用する方法
、光エンコーダを用いる方法、レーザー光の反射とその
位相ずれを利用する光干渉法、超音波反射とその位相ず
れを利用する超音波干渉法等である。
That is, a method that converts the amount of displacement into an electrical resistance value via a potentiometer, a method that uses a strain gauge, a method that uses a magnet scale that uses the Hall effect or magnetoresistive effect, a method that uses an optical encoder, and a method that uses laser light reflection and its effects. These include optical interferometry that uses a phase shift, and ultrasonic interferometry that uses ultrasound reflection and its phase shift.

ポテンショメータで変位を検出するためには、電気抵抗
体と位置検出用電極を接触させ、たがいに摺動させる必
要がある。この方法では、電極の接触摺動が不可欠とな
る。
In order to detect displacement with a potentiometer, it is necessary to bring the electric resistor and the position detection electrode into contact with each other and to cause them to slide against each other. In this method, contact sliding of the electrodes is essential.

歪みゲージは、電気抵抗線の長さが変化したときの電気
抵抗値の変化によって歪み量を検出するものである。従
って、物体の変位を検出するにはその物体と基準位置と
をこの歪みゲージで繋ぐ必要がある。
A strain gauge detects the amount of strain based on a change in electrical resistance value when the length of an electrical resistance wire changes. Therefore, in order to detect the displacement of an object, it is necessary to connect the object and the reference position using this strain gauge.

マグネスケールは、直線状の高保磁力磁性体をその長さ
方向に規則正しく正逆に磁化したものである。このマグ
ネスケールの近傍にホール効果或は磁気抵抗効果を用い
た磁界センサを設ける。磁界センサ全マグネスケールに
沿って移動させ、磁界センサが検知する磁界変動数を用
いて磁界センサの移動量即ち変位を計算する。
Magnescale is a linear high-coercivity magnetic material that is regularly magnetized in the normal and reverse directions along its length. A magnetic field sensor using the Hall effect or magnetoresistive effect is provided near this magnetescale. The magnetic field sensor is moved along the entire magnet scale, and the amount of movement, that is, the displacement of the magnetic field sensor is calculated using the number of changes in the magnetic field detected by the magnetic field sensor.

光エンコーダによる変位検出も、マグネスケールと同様
に複雑な光学パタンを持つスケールと、光強度変化から
変位を計算する。
Displacement detection using an optical encoder also calculates displacement from a scale with a complex optical pattern and changes in light intensity, similar to the Magnescale.

光干渉法や超音波干渉法を用いる変位測定では、光源や
音波源から発する光や超音波を物体に照射し、物体から
反射してくる光や超音波の位相を検出して、物体の移動
に伴う位相の変化を検出して、変位を算出する。
Displacement measurement using optical interferometry or ultrasonic interferometry involves irradiating an object with light or ultrasonic waves emitted from a light source or sound wave source, detecting the phase of the light or ultrasonic waves reflected from the object, and measuring the movement of the object. The displacement is calculated by detecting the change in phase associated with the change in phase.

又、二つの変位量を用いて、その和、差、積などを計算
する場合には、これらの変位測定手段で変位を算出した
後、改めて計算手段或は演算回路を用いて計算する必要
があった。
In addition, when calculating the sum, difference, product, etc. using two displacement amounts, it is necessary to calculate the displacement using these displacement measurement means and then calculate it again using a calculation means or an arithmetic circuit. there were.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の変位検出技術はそれぞれ次のような欠点
がある。
The conventional displacement detection techniques described above each have the following drawbacks.

すなわち、ポテンショメータで変位を検出する技術では
位相検出用電極の接触摺動が不可欠であるため摩耗に基
づく耐久性や信頼性の問題がある。
That is, in the technology of detecting displacement using a potentiometer, since contact and sliding of the phase detection electrode is essential, there are problems with durability and reliability due to wear.

歪みゲージで変位を検出する技術は、繰返し使用による
電気抵抗線の塑性変形をもたらし、信頼性に欠け、さら
に圧縮方向の変位の測定が困難であるという欠点がある
The technique of detecting displacement with a strain gauge has the disadvantage that repeated use causes plastic deformation of the electrical resistance wire, lacks reliability, and furthermore makes it difficult to measure displacement in the compression direction.

マグネスケールにより変位を検出する技術は、複雑な構
成を必要とするばかりでなく高価な計算手段を要すると
いう欠点がある。
The technique of detecting displacement using Magnescale has the disadvantage that it not only requires a complicated configuration but also requires expensive calculation means.

光エンコーダによシ変位を検出する技術は、マグネスケ
ールと同様に複雑な光学パターンを有するスケールと光
強度変化から変位を計算する複雑な回路を必要とすると
いう欠点がある。
The technique of detecting displacement using an optical encoder has the disadvantage that, like the Magnescale, it requires a scale with a complicated optical pattern and a complicated circuit for calculating displacement from changes in light intensity.

光干渉法や超音波干渉法によυ変位を検出する技術は、
高価な光源や音源を必要とするほか、高精度の位相検出
器ならびに検出した位相変化から変位を計算する高性能
の計算手段が必要となるという欠点がある。
The technology to detect υ displacement using optical interferometry or ultrasonic interferometry is
In addition to requiring an expensive light source and sound source, this method requires a highly accurate phase detector and a high-performance calculation means for calculating displacement from the detected phase change.

さらに、2つの変位量を用いて和、差、積などを計測す
る場合には、上述した各変位測定手段で変位を算出した
のち、あらためて計算することが必要であるという欠点
がある。
Furthermore, when measuring the sum, difference, product, etc. using two displacement amounts, there is a drawback that it is necessary to calculate the displacement again after calculating the displacement with each of the above-mentioned displacement measuring means.

本発明の目的は上述した欠点を除去し、簡素かつ安価な
構成で信頼度の高い変位検出ならびに変位演算ができる
測定容易な変位検出素子及び変位演算素子を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a displacement detection element and a displacement calculation element that are easy to measure and capable of highly reliable displacement detection and displacement calculation with a simple and inexpensive configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の変位検出素子は、棒状軟磁性体の互いに相離れ
た2箇所にそれぞれ第1及び第2の導体コイルを設ける
とともに前記第1の導体コイルには交番電流を印加し前
、記第2の導体コイルの近傍の周囲には金属導体シール
ドを配したうえ前記第2の導体コイルと金属導体シール
ドとの重なり長さを可変としうる構造、もしくは棒状軟
磁性体の互いに相離れた3箇所にそれぞれ第1及び第2
ならびに第3の導体コイルを前記第1のコイルが第2と
第3の導体コイル間に介在するように設けるとともに前
記第1の導体コイルには交番電流全印加し前記第2もし
くは第3の導体コイルの近傍の周囲には金属導体シール
ドを配したうえ前記金属導体シールドを配された第2も
しくは第3の導体コイル金属導体シールドとの重なり長
さを可変としうる構造を有して構成される。
In the displacement detection element of the present invention, a first conductor coil and a second conductor coil are respectively provided at two locations apart from each other on a rod-shaped soft magnetic body, and an alternating current is applied to the first conductor coil. A metal conductor shield is disposed around the vicinity of the conductor coil, and the overlapping length of the second conductor coil and the metal conductor shield can be made variable, or a rod-shaped soft magnetic material is placed at three points apart from each other. 1st and 2nd respectively
In addition, a third conductor coil is provided such that the first coil is interposed between the second and third conductor coils, and a full alternating current is applied to the first conductor coil, and the second or third conductor coil is A metal conductor shield is arranged around the vicinity of the coil, and the second or third conductor coil having the metal conductor shield arranged thereon has a structure in which the overlapping length with the metal conductor shield can be made variable. .

また、本発明の変位演算素子は、棒状軟磁性体の互いに
相離れた3箇所にそれぞれ第1及び第2ならびに第3の
導体コイルを前記第2と第3の導体コイル間に前記第1
の導体コイルが介在するように設けたうえ前記第1の導
体コイルには交番電流を印加し前記第2の導体コイルと
第3の導体コイルは磁気的には逆方向でかつ電気的には
直列に接続されるとともに前記第2及び第3の導体コイ
ル近傍の周囲にはそnぞれ第1及び第2の金属導体シー
ルドを設けて前記導体コイルと金属導体シールドとの重
なり長さがそれぞれ独立に可変としうる構造、もしくは
棒状軟磁性体の互いに相離れた3箇所にそれぞれ第1及
び第2ならびに第3の導体コイルを前記第2と第3の導
体コイル間に前記第1の導体コイルが介在するように設
けたうえ前記第1の導体コイルには交番電流を印加前記
第2の導体コイルと第3の導体コイルは磁気的には同方
向でかつ電気的には直列に接続されるとともに前記第2
及び第3の導体コイル近傍の周囲にはそれぞれ第1及び
第2の金属導体シールドを設けて前記導体コイルと金属
導体シールドとの重なり長さがそれぞれ独立に可変とし
うる構造、もしくは棒状軟磁性体の互いに相離nた2箇
所にそれぞれ第1及び第2の導体コイルを設けるととも
に前記第1の導体コイルには交番電流を印加し前記第1
及び第2のコイルの近傍の周囲にはそれぞれ金属導体シ
ールドを配したうえ前記コイルと導体シールドとの重な
り長さがそれぞれ独立に可変としうる構造を備えて構成
される。
In addition, in the displacement calculation element of the present invention, first, second, and third conductor coils are respectively arranged at three locations apart from each other on the rod-shaped soft magnetic body, and the first conductor coil is disposed between the second and third conductor coils.
A conductor coil is provided so that an alternating current is applied to the first conductor coil, and the second conductor coil and the third conductor coil are magnetically in opposite directions and electrically in series. and first and second metal conductor shields are provided around the second and third conductor coils, respectively, so that the overlapping lengths of the conductor coil and the metal conductor shield are independent from each other. The first conductor coil is arranged between the second and third conductor coils, and the first conductor coil is arranged between the second conductor coil and the third conductor coil. An alternating current is applied to the first conductor coil, and the second conductor coil and the third conductor coil are magnetically connected in the same direction and electrically connected in series. Said second
and a structure in which first and second metal conductor shields are respectively provided around the vicinity of the third conductor coil so that the overlapping length of the conductor coil and the metal conductor shield can be varied independently, or a rod-shaped soft magnetic material. First and second conductor coils are provided at two locations separated from each other, and an alternating current is applied to the first conductor coil.
A metal conductor shield is disposed around the vicinity of the second coil, and the length of the overlap between the coil and the conductor shield can be independently varied.

〔作用〕[Effect]

本発明は、以下の原理に基づいて作用する。すなわち、
棒状の軟磁性体の一部に励磁コイルを付して交番電流を
印加する。棒状の軟磁性体の励磁コイルとは相離れた一
端に磁束検出コイルを設けると、この検出コイルには電
磁誘導により励磁電流の周波数と振幅に比例する電圧が
生じる。この磁束検出コイルを囲むように電気伝導度の
高い材料でシールドを設ける。棒状の軟磁性体の一端か
ら発生する磁界が導体シールド内に渦電流を生じさせ、
この渦電流が磁性体に逆磁界を生じる。従って、シール
ドされた磁性体部には実質的に磁束が存在し無くなる。
The invention operates on the following principles. That is,
An excitation coil is attached to a part of the rod-shaped soft magnetic material to apply an alternating current. When a magnetic flux detection coil is provided at one end of a rod-shaped soft magnetic material separated from the excitation coil, a voltage proportional to the frequency and amplitude of the excitation current is generated in the detection coil due to electromagnetic induction. A shield made of a material with high electrical conductivity is provided to surround this magnetic flux detection coil. The magnetic field generated from one end of the rod-shaped soft magnetic material generates an eddy current in the conductor shield,
This eddy current generates a reverse magnetic field in the magnetic material. Therefore, substantially no magnetic flux exists in the shielded magnetic material portion.

換言すれば、シールドと磁束検出コイルの重なり領域に
は実質的に磁束がなく、重なりの大きさに比例して磁束
検出コイルに生じる誘導電圧は減少する。しかして、こ
の重なシの大きさは、変位に対応する。導体シールドと
磁束検出コイルとは接触している必要はなく、この原理
を用いることにより非接触変位センサが実現される。更
に、シールドを磁性体の両端部に設けることにより二つ
の変位量の演算が可能となる。
In other words, there is substantially no magnetic flux in the overlapping region of the shield and the magnetic flux detection coil, and the induced voltage generated in the magnetic flux detection coil decreases in proportion to the magnitude of the overlap. Therefore, the size of this overlap corresponds to the displacement. The conductor shield and the magnetic flux detection coil do not need to be in contact with each other, and by using this principle, a non-contact displacement sensor is realized. Furthermore, by providing shields at both ends of the magnetic body, calculation of two displacement amounts becomes possible.

〔実施例〕〔Example〕

次に図面を参照して本発明を説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の変位検出素子の第1の実施例を示す構
成図である。本実施例では、棒状の軟磁性体パタン1の
両端部に第1の導体コイルとしての励磁コイル2と第2
の導体コイルとしての検出コイル3が互いに相離れて設
けられ、励起コイル2には交番電流源20によって交番
電流が印加される。また、検出コイル3の周囲には金属
製の導体シールドパタン4が検出コイル3および軟磁性
パタン1と非接触状態かつ可動可能に設けられる。
FIG. 1 is a configuration diagram showing a first embodiment of a displacement detecting element of the present invention. In this embodiment, an excitation coil 2 serving as a first conductor coil and an excitation coil 2 serving as a first conductor coil are provided at both ends of a bar-shaped soft magnetic material pattern 1.
Detection coils 3 as conductor coils are provided spaced apart from each other, and an alternating current is applied to the excitation coil 2 by an alternating current source 20. Further, a metal conductor shield pattern 4 is provided around the detection coil 3 so as to be movable in a non-contact state with the detection coil 3 and the soft magnetic pattern 1.

第2図(A)は第1図の実施例の動作説明図、第2図(
B)は第1図の実施例の検出コイルの出力特性図である
。第2図(A)に示すように、軟磁性体パタンlの端部
にある検出コイル3のコイル長さをLcとし、導体シー
ルドパタン4と検出コイル30重なシ長さをXとする。
FIG. 2(A) is an explanatory diagram of the operation of the embodiment shown in FIG.
B) is an output characteristic diagram of the detection coil of the embodiment of FIG. 1. As shown in FIG. 2(A), the coil length of the detection coil 3 at the end of the soft magnetic material pattern 1 is designated as Lc, and the length of the overlap between the conductive shield pattern 4 and the detection coil 30 is designated as X.

励磁された軟磁性体バタン4の端部から仇磁界が発生し
、その磁界が導体シールドパタン4の中に渦電流4oを
誘起する。この渦電流40に基づく逆磁界が軟磁性体パ
タン1の検出コイル3と導体シールドパタン4との重な
り部(長さX)に印加てれ、その部分の磁束密度全実質
的にゼロとする。その結果、検出コ(ル3 f)誘導電
圧は、Lc−xの長さのコイルに生じる誘導電圧のみに
なる。この誘導電圧即ち検出コイル出力■の重なり長さ
X依存は、第2図(H)K示すようにO<x <Lcの
範囲で直線となる。
A negative magnetic field is generated from the end of the excited soft magnetic material button 4, and the magnetic field induces an eddy current 4o in the conductive shield pattern 4. A reverse magnetic field based on this eddy current 40 is applied to the overlapping portion (length X) of the detection coil 3 and conductive shield pattern 4 of the soft magnetic material pattern 1, and the total magnetic flux density in that portion is made substantially zero. As a result, the induced voltage in the detection coil (3f) is only the induced voltage that occurs in the coil having a length of Lc-x. The dependence of this induced voltage, that is, the detection coil output (2) on the overlap length X becomes a straight line in the range O<x<Lc, as shown in FIG. 2(H)K.

軟磁性体バタンlとして、11mの矩形断面で長さ30
叫のNiFe合金を用い、20ターンのコイルをその両
端に長さLC=1.5WrInでまき、内径5簡、外径
8■のアルミニウム製の導体シールドパタン4を設け、
周波数100kHz、振幅400In Ap−pの励磁
電流を印加したときに、1μmの重なり長さの変化に対
しlOμ■の検出電圧の変化が得られた。
The soft magnetic material button l has a rectangular cross section of 11 m and a length of 30 mm.
Using high-quality NiFe alloy, a 20-turn coil was wound at both ends with a length LC = 1.5 WrIn, and an aluminum conductor shield pattern 4 with an inner diameter of 5 cm and an outer diameter of 8 cm was provided.
When an excitation current with a frequency of 100 kHz and an amplitude of 400 In Ap-p was applied, a change in detection voltage of 10 μm was obtained for a change in overlap length of 1 μm.

第3図(A)は本発明の変位検出素子の第2の実施例の
構成図、第3図(H)は第3図(A)の実施例の検出コ
イルの出力特性図である。本実施例では、第3図(A)
 K示すように、軟磁性体パタン1の中央部は第1の導
体コイルとしての励磁コイル2を、その両側の対称的な
磁性体端部には第2及び第3の導体コイルとしての同じ
巻線数の検出コイル3゜5を設ける。検出コイル3.5
は電気的には直列に接続されている。しかし、磁気的に
は巻線方向はたがいに逆になっている。導体シールドパ
タン4は、一方の検出コイル3の近傍に設けられている
。導体シールドパタン4と検出コイル3との重力や長さ
x=Qであるときは、検出コイル3のみの検出電圧と検
出コイル5のみの検出電圧とは絶対値は等しく極性はた
がいに逆であるため、それらを直列接続した合成検出出
力は0となる。重なり長さXが増大すると検出コイル3
のみの検出出力は減少するが、検出コイル5の検出出力
は一定であるため、両者の合成出力は、第3図(B) 
K示すように0 < x < L cの範囲では重なり
長さXに比例して増大する。即ち、本実施例の特徴は検
出出力■が変位Xに比例するところにある。
FIG. 3(A) is a block diagram of a second embodiment of the displacement detecting element of the present invention, and FIG. 3(H) is an output characteristic diagram of the detection coil of the embodiment of FIG. 3(A). In this example, FIG. 3(A)
As shown in K, the central part of the soft magnetic material pattern 1 has an excitation coil 2 as a first conductor coil, and the symmetrical magnetic ends on both sides have the same windings as second and third conductor coils. A wire number detection coil of 3°5 is provided. Detection coil 3.5
are electrically connected in series. However, magnetically, the winding directions are opposite to each other. The conductor shield pattern 4 is provided near one of the detection coils 3. When the gravity and length of the conductor shield pattern 4 and the detection coil 3 are x=Q, the detection voltage of only the detection coil 3 and the detection voltage of only the detection coil 5 have the same absolute value and opposite polarities. Therefore, the combined detection output obtained by connecting them in series becomes 0. When the overlap length X increases, the detection coil 3
The detection output of the detection coil 5 decreases, but the detection output of the detection coil 5 remains constant, so the combined output of both is as shown in Figure 3 (B).
As shown by K, in the range 0 < x < L c, it increases in proportion to the overlap length X. That is, the feature of this embodiment is that the detection output (2) is proportional to the displacement (X).

第4図(A)は本発明の変位演算素子の第1の実施例の
構成図、第4図(B)は第4図(A)の実施例の検出コ
イルの出力特性図である。第4図(A) K示すように
、軟磁性体バタン1.励磁コイル2゜検出コイル3,5
.交番電流源20は、第3図(A)の第2の実施例と同
じである。第2の実施例と異なる点は検出コイル5の近
傍にも導体シールドパタン6が設けられているところに
ある。導体シールドパタンと検出コイル3との重なシ長
さをXi、導体シールドパタン6と検出コイル5との重
なシ長さをx2とすると、検出コイル3.5単独での出
力は前述した第3図(A)の第2の実施例で述べたよう
に、それぞれXl及びX−に比例する。両コイルの合成
出力は、第4図(B)に示すように(XI  X2)に
比例する。即ち、本実施例は、なんら特別な演算回路を
用いなくとも二つの変位量の差を容易に求める演算素子
を提供するものである。
FIG. 4(A) is a configuration diagram of a first embodiment of the displacement calculation element of the present invention, and FIG. 4(B) is an output characteristic diagram of the detection coil of the embodiment of FIG. 4(A). As shown in FIG. 4(A)K, the soft magnetic material button 1. Excitation coil 2° detection coil 3, 5
.. The alternating current source 20 is the same as in the second embodiment of FIG. 3(A). The difference from the second embodiment is that a conductive shield pattern 6 is also provided near the detection coil 5. If the length of the overlap between the conductor shield pattern and the detection coil 3 is Xi, and the length of the overlap between the conductor shield pattern 6 and the detection coil 5 is x2, then the output of the detection coil 3.5 alone is as described above. As mentioned in the second embodiment of FIG. 3(A), they are proportional to Xl and X-, respectively. The combined output of both coils is proportional to (XI X2) as shown in FIG. 4(B). That is, this embodiment provides an arithmetic element that can easily determine the difference between two displacement amounts without using any special arithmetic circuit.

第5図(A)は本発明の変位演算素子の第2の実施例の
構成図である。第5図(A)に示すように、軟磁性体パ
タン1.励磁コイル2.検出コイル3゜5、交番電流源
20及び導体シールドパタン4゜6は、第4図(A)の
場合とほぼ同じである。異なる点は、検出コイル3,5
の巻線方向がたがいに逆である点である。導体シールド
パタン4と検出コイル3との重なり長さをxl、導体シ
ールドパタン6と検出コイル5との重なり長さをx2と
すると、検出コイル3,5単独での出力は第4図(A)
の実施例からも容易に解るようにそれぞれ−x1及び−
x2に比例する。従って、両コイルの合成出力は、第5
図(B) K示すように(xl+x*)に比例する。即
ち、本実施例は、なんら特別な演算回路を用いなくとも
二つの変位量の和を容易に求める演算素子を提供するも
のである。
FIG. 5(A) is a configuration diagram of a second embodiment of the displacement calculation element of the present invention. As shown in FIG. 5(A), soft magnetic material pattern 1. Excitation coil 2. The detection coil 3.5, the alternating current source 20 and the conductive shield pattern 4.6 are almost the same as those in FIG. 4(A). The difference is that the detection coils 3 and 5
The winding directions are opposite to each other. Assuming that the overlapping length between the conductor shield pattern 4 and the detection coil 3 is xl, and the overlapping length between the conductor shield pattern 6 and the detection coil 5 is x2, the output of the detection coils 3 and 5 alone is shown in Figure 4 (A).
As can be easily seen from the examples, -x1 and -
It is proportional to x2. Therefore, the combined output of both coils is
As shown in Figure (B), K is proportional to (xl+x*). That is, this embodiment provides an arithmetic element that can easily calculate the sum of two displacement amounts without using any special arithmetic circuit.

第6図は本発明の変位演算素子の第3の実施例の構成図
である。軟磁性体パタン1.励磁コイル2、検出コイル
3.交番電流源20は、第1図に示す実施例と#1ぼ同
じである。本実施例と第1図の実施例とで異なる点は、
本実施例では、励磁コイル2の近傍にも導体シールドパ
タン6が設けらル3との重なり長さをXl、導体シール
ドパタン6と励磁コイル2との重なQ長さをx2とする
と、励磁コイルから発生する磁束は、x2に比例して減
少する。このX2に比例した磁束を検出コイル3は検出
するが、この際x1に比例して検出出力は減少する。即
ち、この検出出力は、結果としてxl−x2に比例する
ことになる。換言すれば、本実施例は、なんら特別な演
算回路を用いなくとも二つの変位量の積を容易に求める
演算素子全提供するものである。
FIG. 6 is a configuration diagram of a third embodiment of the displacement calculation element of the present invention. Soft magnetic material pattern 1. Excitation coil 2, detection coil 3. The alternating current source 20 is almost the same as the embodiment shown in FIG. The difference between this embodiment and the embodiment shown in FIG.
In this embodiment, a conductor shield pattern 6 is also provided in the vicinity of the excitation coil 2.If the overlapping length with the conductor shield pattern 6 and the excitation coil 3 is Xl, and the overlapping length Q between the conductor shield pattern 6 and the excitation coil 2 is x2, the excitation The magnetic flux generated from the coil decreases in proportion to x2. The detection coil 3 detects the magnetic flux proportional to this X2, but at this time, the detection output decreases in proportion to x1. That is, this detection output is proportional to xl-x2 as a result. In other words, this embodiment provides all arithmetic elements that can easily calculate the product of two displacement amounts without using any special arithmetic circuit.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、検出出力がそのまま
変位量に比例するという手段を備えることにより、高感
度・高信頼性かつ構成が簡単な非接触型の変位検出素子
、ならびになんら特別な演算回路や計算手段を要しない
2つの変位量の変位演算素子が実現できるという効果が
ある。
As described above, according to the present invention, by providing a means in which the detection output is directly proportional to the amount of displacement, a non-contact displacement detection element with high sensitivity, high reliability, and simple configuration, as well as no special This has the effect that a displacement calculation element for two displacement amounts can be realized without requiring a calculation circuit or calculation means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の変位検出素子の第1の実施例を示す構
成図、第2図(A)は第1図の実施例の動作説明図、第
2図(B)は第1図の実施例の検出コイルの出力特性図
、第3図(A)は本発明の変位検出素子の第2の実施例
を示す構成図、第3図(B)は第3図(A)の実施例の
検出コイルの出力特性図、第4図(A)は本発明の変位
演算素子の第1の実施例を示す構成図、第4図(H)は
第4図(A)の実施例の検出コイルの出力特性図、第5
図(A)は本発明の変位演算素子の第2の実施例の構成
図、第5図(H)は第5図(A)の検出コイルの出力特
性図、第6図は本発明の変位演算素子の第3の実施例の
構成図である。 1・・°・・°軟磁性体バタン、2・°°・°°励磁コ
イル、3゜5・°°・°°磁束検出コイル、4,6°°
°・・・導体シールド、11・・・・・・磁束、20・
・・・・・交番電流源、40・・・・・・渦電流、41
・・・・・・磁束。 代理人 弁理士  内 原   背 筋1圓 (β少 第1 (I3) 躬う図 G4) (β) 第4図 (β) 袷 5 図 躬6図
FIG. 1 is a configuration diagram showing a first embodiment of the displacement detecting element of the present invention, FIG. 2(A) is an explanatory diagram of the operation of the embodiment of FIG. 1, and FIG. An output characteristic diagram of the detection coil of the embodiment, FIG. 3(A) is a configuration diagram showing a second embodiment of the displacement detection element of the present invention, and FIG. 3(B) is the embodiment of FIG. 3(A). FIG. 4(A) is a configuration diagram showing the first embodiment of the displacement calculation element of the present invention, and FIG. 4(H) is a detection diagram of the embodiment of FIG. 4(A). Coil output characteristic diagram, 5th
Figure (A) is a configuration diagram of the second embodiment of the displacement calculation element of the present invention, Figure 5 (H) is an output characteristic diagram of the detection coil of Figure 5 (A), and Figure 6 is the displacement calculation element of the present invention. FIG. 7 is a configuration diagram of a third example of an arithmetic element. 1...°...° Soft magnetic material slam, 2.°°.°° Excitation coil, 3°5.°°.°° Magnetic flux detection coil, 4,6°°
°...Conductor shield, 11...Magnetic flux, 20...
..... alternating current source, 40 ..... eddy current, 41
...Magnetic flux. Agent Patent Attorney Uchihara Uchihara 1 circle (β small 1st (I3) stumbling figure G4) (β) Figure 4 (β) Plate 5 figure 6 figure

Claims (6)

【特許請求の範囲】[Claims] (1)棒状軟磁性体の互いに相離れた2箇所にそれぞれ
第1及び第2の導体コイルを設けるとともに前記第1の
導体コイルには交番電流を印加し前記第2の導体コイル
の近傍の周囲には金属導体シールドを配したうえ前記第
2の導体コイルと金属導体シールドとの重なり長さを可
変としうる構造を有して成ることを特徴とする変位検出
素子。
(1) A first conductor coil and a second conductor coil are provided at two mutually distant locations on a rod-shaped soft magnetic material, and an alternating current is applied to the first conductor coil, and an alternating current is applied to the vicinity of the second conductor coil. A displacement detecting element, characterized in that the element has a structure in which a metal conductor shield is disposed on the second conductor coil and the overlapping length of the second conductor coil and the metal conductor shield can be made variable.
(2)棒状軟磁性体の互いに相離れた3箇所にそれぞれ
第1及び第2ならびに第3の導体コイルを前記第1の導
体コイルが第2と第3の導体コイル間に介在するように
設けるとともに前記第1の導体には交番電流を印加し前
記第2もしくは第3の導体コイルの近傍の周囲には金属
導体シールドを配したうえ前記金属導体シールドを配さ
れた第2もしくは第3の導体コイルと金属導体シールド
との重なり長さを可変としうる構造を有して成ることを
特徴とする変位検出素子。
(2) First, second, and third conductor coils are provided at three mutually distant locations on the rod-shaped soft magnetic material, respectively, so that the first conductor coil is interposed between the second and third conductor coils. At the same time, an alternating current is applied to the first conductor, a metal conductor shield is arranged around the second or third conductor coil, and the second or third conductor is arranged with the metal conductor shield. A displacement detection element characterized by having a structure in which the overlapping length of a coil and a metal conductor shield can be made variable.
(3)前記第2の導体コイルと第3の導体コイルが磁気
的には逆方向でかつ電気的には直列に接続されているこ
とを特徴とする特許請求の範囲第(2)項記載の変位検
出素子。
(3) The second conductor coil and the third conductor coil are magnetically connected in opposite directions and electrically connected in series. Displacement detection element.
(4)棒状軟磁性体の互いに相離れた3箇所にそれぞれ
第1及び第2ならびに第3の導体コイルを前記第2と第
3の導体コイル間に前記第1の導体コイルが介在するよ
うに設けたうえ前記第1の導体コイルには交番電流を印
加し前記第2の導体コイルと第3の導体コイルは磁気的
には逆方向でかつ電気的には直列に接続されるとともに
前記第2及び第3の導体コイル近傍の周囲にはそれぞれ
第1及び第2の金属導体シールドを設け前記導体コイル
と金属導体シールドとの重なり長さがそれぞれ独立に可
変としうる構造を有して成ることを特徴とする変位演算
素子。
(4) First, second, and third conductor coils are placed at three mutually distant locations on the rod-shaped soft magnetic material, such that the first conductor coil is interposed between the second and third conductor coils. In addition, an alternating current is applied to the first conductor coil, and the second conductor coil and the third conductor coil are connected magnetically in opposite directions and electrically in series. and a structure in which first and second metal conductor shields are respectively provided around the vicinity of the third conductor coil, and the overlapping length of the conductor coil and the metal conductor shield can be varied independently. Characteristic displacement calculation element.
(5)棒状軟磁性体の互いに相離れた3箇所にそれぞれ
第1及び第2ならびに第3の導体コイルを前記第2と第
3の導体コイル間に前記第1の導体コイルが介在するよ
うに設けたうえ前記第1の導体コイルには交番電流を印
加し前記第2の導体コイルと第3の導体コイルは磁気的
には同方向でかつ電気的には直列に接続されるとともに
前記第2及び第3の導体コイル近傍の周囲にはそれぞれ
第1及び第2の金属導体シールドを設けて前記導体コイ
ルと金属導体シールドとの重なり長さがそれぞれ独立に
可変としうる構造を有して成ることを特徴とする変位演
算素子。
(5) First, second, and third conductor coils are placed at three mutually distant locations on the rod-shaped soft magnetic material, such that the first conductor coil is interposed between the second and third conductor coils. In addition, an alternating current is applied to the first conductor coil, and the second conductor coil and the third conductor coil are connected magnetically in the same direction and electrically in series, and the second conductor coil is electrically connected in series. and having a structure in which first and second metal conductor shields are respectively provided around the vicinity of the third conductor coil, and the overlapping length of the conductor coil and the metal conductor shield can be independently varied. A displacement calculation element characterized by:
(6)棒状軟磁性体の互いに相離れた2箇所にそれぞれ
第1及び第2の導体コイルを設けるとともに前記第1の
導体コイルには交番電流を印加し前記第1及び第2のコ
イルの近傍の周囲にはそれぞれ金属導体シールドを配し
たうえ前記コイルと導体シールドとの重なり長さがそれ
ぞれ独立に可変としうる構造を有して成ることを特徴と
する変位演算素子。
(6) First and second conductor coils are provided at two locations separated from each other on the rod-shaped soft magnetic material, and an alternating current is applied to the first conductor coil to provide a conductor coil near the first and second coils. A displacement computing element characterized in that a metal conductor shield is arranged around each of the coils, and the overlapping length of the coil and the conductor shield can be independently varied.
JP25589487A 1987-10-08 1987-10-08 Displacement detecting element and displacement arithmetic element Granted JPH0196511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25589487A JPH0196511A (en) 1987-10-08 1987-10-08 Displacement detecting element and displacement arithmetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25589487A JPH0196511A (en) 1987-10-08 1987-10-08 Displacement detecting element and displacement arithmetic element

Publications (2)

Publication Number Publication Date
JPH0196511A true JPH0196511A (en) 1989-04-14
JPH0574003B2 JPH0574003B2 (en) 1993-10-15

Family

ID=17285046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25589487A Granted JPH0196511A (en) 1987-10-08 1987-10-08 Displacement detecting element and displacement arithmetic element

Country Status (1)

Country Link
JP (1) JPH0196511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789915A (en) * 1989-02-17 1998-08-04 Nartron Corporation Magnetic field energy responsive position sensing apparatus and method
GB2435518A (en) * 2006-02-28 2007-08-29 Alexy Davison Karenowska Position sensor with electromagnetic field generator and shield
JP2009204348A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Position sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443765A (en) * 1977-08-17 1979-04-06 Hayter John Edward Electromagnetic location transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443765A (en) * 1977-08-17 1979-04-06 Hayter John Edward Electromagnetic location transducer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789915A (en) * 1989-02-17 1998-08-04 Nartron Corporation Magnetic field energy responsive position sensing apparatus and method
GB2435518A (en) * 2006-02-28 2007-08-29 Alexy Davison Karenowska Position sensor with electromagnetic field generator and shield
GB2435518B (en) * 2006-02-28 2009-11-18 Alexy Davison Karenowska Position sensor
US8018222B2 (en) 2006-02-28 2011-09-13 Alexy Davison Karenowska Electromagnetic field-based position sensor
JP2009204348A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Position sensor

Also Published As

Publication number Publication date
JPH0574003B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JP3246727B2 (en) Inductive electronic caliper
JP7300324B2 (en) Scale configuration for inductive encoders
EP0129282B1 (en) Measuring device for the &#34;contactless&#34; measurement of large thicknesses, for metal materials above the curie temperature
JPH09508466A (en) Micro coil device made by flattening technology to detect ferromagnetic material
JPH0812082B2 (en) Non-contact distance measuring system and non-contact distance measuring method
JP4390347B2 (en) Position detection device
US7576532B2 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
US20150061650A1 (en) Method and arrangement and sensor for determing the postion of a component
JPH0196511A (en) Displacement detecting element and displacement arithmetic element
JP2001041703A (en) Range finder and thickness meter
JP3097094B2 (en) Non-contact displacement detector
JP4115036B2 (en) Liquid level detector
JPS61292014A (en) Position detector
RU2031403C1 (en) Eddy-current converter for non-destructing control of parameters of materials
JPH03123815A (en) Cylindrical magnetic scale
NL1027373C2 (en) Method and device for non-destructive examination of an object.
RU2727321C1 (en) Inductive displacement sensor
RU2300737C1 (en) Inductive optical transformer of electric cable eccentricity meter
JP6962727B2 (en) Position detector
SU777404A1 (en) Method of measuring the thickness of layers of laminated articles
JP3534484B2 (en) Magnetic position sensor
JPH01280258A (en) Measuring instrument for conductivity of liquid
JPS61230030A (en) Liquid level detector
SU462186A1 (en) Multiturn contactless transformer potentiometer
JPH03243801A (en) Noncontact type range finder