JPH01280258A - Measuring instrument for conductivity of liquid - Google Patents

Measuring instrument for conductivity of liquid

Info

Publication number
JPH01280258A
JPH01280258A JP11023988A JP11023988A JPH01280258A JP H01280258 A JPH01280258 A JP H01280258A JP 11023988 A JP11023988 A JP 11023988A JP 11023988 A JP11023988 A JP 11023988A JP H01280258 A JPH01280258 A JP H01280258A
Authority
JP
Japan
Prior art keywords
liquid
detection
current
coil
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11023988A
Other languages
Japanese (ja)
Other versions
JPH0670659B2 (en
Inventor
Shoki Tsunoda
角田 昭喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MELS CORP
Original Assignee
MELS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MELS CORP filed Critical MELS CORP
Priority to JP11023988A priority Critical patent/JPH0670659B2/en
Publication of JPH01280258A publication Critical patent/JPH01280258A/en
Publication of JPH0670659B2 publication Critical patent/JPH0670659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To secure a sufficient output level regardless of variation in ambient temperature and a mechanical shock and to improve detection sensitivity and detection accuracy by canceling magnetic flux produced at the core of a detection troidal coil with a liquid current. CONSTITUTION:The liquid current I2 which is generated by an AC power source 1 and an exciting troidal coil 2 is cross-linked with the detection troidal coil 3 and an external amplifier 4 supplies the coil 3B of the detection troidal coil 3 with such a current I0 that the magnetic flux phi in the core 3A is all eliminated by canceling magnetic flux produced at the core 3A of the detection troidal coil 3 with the liquid current I2. This current I0 is converted into a voltage, which is compared with the output voltage of the liquid whose conductivity is already known to find the conductivity of the liquid 100.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、いわゆる電磁誘導法による液体の導電率測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid conductivity measuring device using a so-called electromagnetic induction method.

(従来の技術) 周知のように、電磁誘導法は、液体中に電磁誘導によっ
て流れる交流の液電流を検出して液体の導電率を測定す
る方法であり、この方法による従来の導電率測定装置を
等価回路で示すと第4図のとおりとなる。
(Prior Art) As is well known, the electromagnetic induction method is a method of measuring the conductivity of a liquid by detecting an alternating liquid current flowing through the liquid by electromagnetic induction. The equivalent circuit shown in Fig. 4 is as follows.

すなわち、同図において51は交流電源、52は交流電
源51に接続された励磁トロイダルコイル(以下、励磁
トロイドという)、53は導電率を測定するべき液体1
00を介して、励磁トロイド52と電磁的に結合される
検出トロイダルコイル(以下、検出トロイドという)、
54は検出トロイド53の両端に接続された抵抗、55
は増幅器、56は指示計をそれぞれ示している。
That is, in the figure, 51 is an AC power source, 52 is an excitation toroidal coil (hereinafter referred to as an excitation toroid) connected to the AC power source 51, and 53 is a liquid 1 whose conductivity is to be measured.
a detection toroidal coil (hereinafter referred to as detection toroid) electromagnetically coupled to the excitation toroid 52 via 00;
54 is a resistor connected to both ends of the detection toroid 53;
indicates an amplifier, and 56 indicates an indicator, respectively.

この測定装置では、抵抗54を流れる電流I。が液体1
00の抵抗rに反比例することから、抵抗54の両端の
電圧を検出することにより、液体100の導電率 、X を求めている。
In this measuring device, the current I flowing through the resistor 54. is liquid 1
Since it is inversely proportional to the resistance r of 00, the conductivity of the liquid 100, X, is determined by detecting the voltage across the resistor 54.

ここで、交流電源電圧をE、励磁トロイド52の一次側
インダクタンスをL工、−次側巻数をnl、−次側電流
を工1、励磁トロイド52側からの電磁誘導により液体
100中を各トロイド52.53に鎖交するように流れ
る液電流をI2.励磁トロイド52の二次側インダクタ
ンスをI2、検出トロイド53の一次側インダクタンス
をI3.同じく二次側インダクタンスをり。、二次側巻
数をn。、二次側電流を工。、抵抗54の値をRとする
Here, the AC power supply voltage is E, the primary inductance of the exciting toroid 52 is L, the number of turns on the negative side is nl, the negative current is 1, and each toroid in the liquid 100 is caused by electromagnetic induction from the exciting toroid 52 side. 52. The liquid current flows interlinking with I2. The secondary inductance of the excitation toroid 52 is I2, and the primary inductance of the detection toroid 53 is I3. Similarly, the secondary inductance. , the number of secondary turns is n. , calculate the secondary current. , the value of the resistor 54 is R.

この等価回路を解析すると、以下のとおりとなる。Analysis of this equivalent circuit yields the following.

まず、各トロイド52.53は漏洩磁束を無視できるか
ら、液電流回路を1個のコイルと考えると、励磁トロイ
ド52の一次、二次コイル間の相互インダクタンスM 
L 2及び検出トロイド53の一次、二次コイル間の相
互のインダクタンスM 30は、M工2=fロ瓦2M、
。=fr7π −(1)となる。また、各電流11. 
L、 I。が流れる閉回路について、キルヒホッフの第
二法則により以下の連立方程式が成立する。なお、交流
型に’X ?’j、圧Eは角周波数ωの正弦波とする。
First, since the leakage magnetic flux of each toroid 52 and 53 can be ignored, if we consider the liquid current circuit as one coil, the mutual inductance M between the primary and secondary coils of the excitation toroid 52
The mutual inductance M 30 between L 2 and the primary and secondary coils of the detection toroid 53 is M 2 = f 2 M;
. = fr7π −(1). Also, each current 11.
L, I. For a closed circuit in which , the following simultaneous equations hold according to Kirchhoff's second law. In addition, 'X' for AC type? 'j and pressure E are sinusoidal waves of angular frequency ω.

この(2)式において、左辺の行列式のM1□、 M、
In this equation (2), the determinant on the left side is M1□, M,
.

に前記(1)式を代入して行列式の値を求めると、= 
jωL、(jωL、r + jωL、R+ rR)≠0
−(3)となる。従って、電流I。は、 となる。よって、出力側の抵抗54に発生する電圧E0
は、 であり、L1=n1”I2であるから、氏 また、L、=no”1.であるから、 となる。抵抗値RをωL0に比ムて十分大きくすると、
分母括弧内の第2項の絶対値は第1項に比べて十分小さ
くなるので、 となる。ここで、rは液抵抗、ωL、は検出トロイド5
3の一巻コイルのりアクタンスであるから、通常の測定
条件では、 r)ωL3   ・・・ (6) が成り立つので、 となる。逆に、抵抗値RをωL0に比べて十分に小さく
してR′とする。すなわち、 ωL。
Substituting the above equation (1) into and finding the value of the determinant, =
jωL, (jωL, r + jωL, R+ rR)≠0
−(3). Therefore, the current I. becomes . Therefore, the voltage E0 generated at the output side resistor 54
is, and since L1=n1''I2, we also have L,=no''1. Therefore, it becomes . If the resistance value R is made sufficiently large compared to ωL0,
Since the absolute value of the second term in the denominator parentheses is sufficiently smaller than the first term, the following formula is obtained. Here, r is liquid resistance, ωL is detection toroid 5
Since the actance of a single-turn coil is 3, under normal measurement conditions, r)ωL3 (6) holds true. Conversely, the resistance value R is made sufficiently smaller than ωL0 to be R'. That is, ωL.

□ ) 1    ・・(8) R′ とし、この時の出力電圧をE0′とすると、(5)式(
6)、 (8)式の条件から、上式の分母第2項は第1
項に比べて十分小さいため無視できて、n工n。   
 r また、(7)、 (8)、 (9)式から、次式が得ら
れる。
□ ) 1...(8) If R' and the output voltage at this time are E0', then equation (5) (
6), From the conditions of equations (8), the second term in the denominator of the above equation is the first term.
Since it is sufficiently small compared to the term, it can be ignored.
r Also, from equations (7), (8), and (9), the following equation can be obtained.

(発明が解決しようとする課題) 上述したように、抵抗値Rを大きくすれば、(7)式に
よって出力電圧の絶対値IE、lを検出トロイド53の
巻数n。に比例させることができ、検出感度の増大を図
ることができる。しかるに、(7)式はインダクタンス
L3を含んでおり、このインダクタンスは周知のように
検出トロイド53のコアの透磁率に比例する。従って、
周囲温度の変化に伴う透磁率の変化が出力電圧に直接影
響してしまい、検出精度が低くなってしまうという問題
があった。
(Problem to be Solved by the Invention) As described above, if the resistance value R is increased, the absolute value IE,l of the output voltage can be detected by the equation (7), and the number of turns n of the toroid 53. It is possible to increase the detection sensitivity. However, equation (7) includes an inductance L3, and this inductance is proportional to the magnetic permeability of the core of the detection toroid 53, as is well known. Therefore,
There was a problem in that changes in magnetic permeability due to changes in ambient temperature directly affected the output voltage, resulting in low detection accuracy.

一方、抵抗値R(R’)をωL0に対して小さくすれば
、(9)式に示すように透磁率の変化の影響を小さくで
きるが、(10)式が示すように出力電圧IEol(l
E、’l)が相対的に低くなってしまう。このため、現
実的に透磁率変化の影響を小さくして、しかもあるレベ
ルの出力電圧を得るためには、必然的に検出トロイド5
3のコイルの巻数n。を小さくできない。トロイドコア
は強磁性体なので磁歪現象を避けられず、コアに機械的
衝撃が加わると微小な磁化変化を起し、微小な磁束変化
が発生する。
On the other hand, if the resistance value R (R') is made smaller with respect to ωL0, the influence of changes in magnetic permeability can be reduced as shown in equation (9), but as shown in equation (10), the output voltage IEol(l
E, 'l) becomes relatively low. Therefore, in order to realistically reduce the influence of magnetic permeability changes and obtain a certain level of output voltage, it is necessary to increase the detection toroid 5.
The number of turns of the coil of 3 is n. cannot be made smaller. Since the toroid core is a ferromagnetic material, magnetostriction cannot be avoided, and when a mechanical shock is applied to the core, a minute change in magnetization occurs, resulting in a minute change in magnetic flux.

このため、検出トロイド53のコイルの巻数が大きい場
合、この微小磁束変化をノイズとして検出してしまうと
いう問題があった。
For this reason, when the number of turns of the coil of the detection toroid 53 is large, there is a problem in that this minute change in magnetic flux is detected as noise.

本発明は上記問題点を解消するために提案されたもので
、その目的とするところは、周囲温度の変化や機械的衝
撃に拘らず十分な出力レベルを確保できるようにして検
出感度及び検出精度の向上を可能にした液体の導電率測
定装置を提供することにある。
The present invention was proposed to solve the above problems, and its purpose is to ensure a sufficient output level regardless of changes in ambient temperature or mechanical shock, thereby increasing detection sensitivity and accuracy. An object of the present invention is to provide a liquid conductivity measuring device that makes it possible to improve the conductivity of a liquid.

(課題を解決するための手段) 上記目的を達成するため、本発明は、第11図に示すよ
うに交流電源1及び励磁トロイダルコイル2により発生
する液電流工2が鎖交する検出トロイダルコイル3にお
いて、液電流工2により検出トロイダルコイル3のコア
3Aに生じる磁束を打ち消してコア3A内の全磁束φを
ゼロにするような電流工。を、外部の増幅器4により検
出トロイダルコイル3のコイル3Bに供給するものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a detection toroidal coil 3 which is linked to a liquid current generator 2 generated by an AC power source 1 and an excitation toroidal coil 2, as shown in FIG. , an electric current generator that cancels the magnetic flux generated in the core 3A of the detection toroidal coil 3 by the liquid electric current generator 2 to make the total magnetic flux φ in the core 3A zero. is supplied to the coil 3B of the detection toroidal coil 3 by an external amplifier 4.

(作用) 検出トロイド3のコイル3Bの巻数をnoとすると、液
電流工2及び電流■。の起磁力が等しい時。
(Function) If the number of turns of the coil 3B of the detection toroid 3 is no, then the liquid electric current 2 and the current ■. When the magnetomotive forces of are equal.

すなわち ■2=n、I。   −(11) ならばコア3A内の磁束φはゼロになり、この条件が満
たされれば、検出トロイド3のコイルのインダクタンス
L、、L、はゼロになる。
That is, ■2=n, I. -(11), then the magnetic flux φ in the core 3A becomes zero, and if this condition is satisfied, the inductance L,, L, of the coil of the detection toroid 3 becomes zero.

ここで、励磁トロイド2は実質上、変圧器と等価である
から、液電流回路には交流電源1及び励磁トロイド2か
らなる起電力E/n、の交流電源が接続されているとみ
なすことができる。よって液′に流■2は、 n□     r 従って、Ioを電圧に変換しでぶ電率が既知の液体の出
力電圧と比較すれば、液体100の導電率kを求めるこ
とができる。
Here, since the excitation toroid 2 is substantially equivalent to a transformer, it can be assumed that an AC power source with an electromotive force E/n consisting of the AC power source 1 and the excitation toroid 2 is connected to the liquid current circuit. can. Therefore, the flow (2) in the liquid ' is n□ r Therefore, by converting Io into a voltage and comparing it with the output voltage of a liquid whose electric constant is known, the conductivity k of the liquid 100 can be determined.

すなわち、本発明においては、コア3Aの磁束φがゼロ
となるような電流工。を求めれば液体100の導電率k
を求めることができる。この時、コア3Aには磁束φが
存在しないから、温度変化により透磁率が変動しても電
流工。に影響を与えることはなく、また、検出トロイド
3のコイル3Bの巻数n。は、従来の方法のように大き
な値に選ばなければならない制約がなくなり、以下の各
実施例が示す如き条件の中で増幅器4の増幅度を高く選
ぶことにより、巻数n。を適当な小さい値に選ぶことか
できるので、トロイドコア3Aに機械的衝撃が加わって
も1発生する磁歪ノイズを十分低くすることができる。
That is, in the present invention, the current work is such that the magnetic flux φ of the core 3A is zero. If we find the conductivity k of liquid 100,
can be found. At this time, since there is no magnetic flux φ in the core 3A, there is no current flow even if the magnetic permeability changes due to temperature changes. Also, the number of turns n of the coil 3B of the detection toroid 3. The number of turns n can be increased by selecting a high amplification degree of the amplifier 4 under the conditions shown in each of the following embodiments. can be selected to a suitably small value, so even if a mechanical shock is applied to the toroid core 3A, the generated magnetostrictive noise can be made sufficiently low.

(実施例) 以下、図に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

なお、以下の第1及び第2実施例は、共に第1図におけ
る増幅器4の構成が異なるものである。
Note that both the following first and second embodiments differ in the configuration of the amplifier 4 from FIG. 1.

まず、第2図は本発明の第1実施例を示すもので、図に
おいて10は交流電源であり、この交流電源10は第1
図と同様に、電圧Eの交流電源1と一次側コイルの巻数
がn□である励磁トロイド2とを合成して起電力E/n
工を有するものとして示しである。
First, FIG. 2 shows a first embodiment of the present invention, and in the figure, 10 is an AC power supply, and this AC power supply 10 is
Similarly to the figure, an electromotive force E/n is generated by combining an AC power supply 1 with a voltage E and an excitation toroid 2 whose primary coil has a number of turns n□.
It is shown as having a

また、30は励磁トロイドにより誘湛される液電流I2
がコア3OAに鎖交する検出トロイドであり、この検出
トロイド30は巻数がそれぞれnot nの2つのコイ
ル30B□、:JOB2を有している。このうち一方の
コイル30B2の両端は、電圧増幅度Aが極めて大きい
交流増幅器41の六方側に接続され、他方のコイル30
B1の両端は交流増幅器41の出カ側F L: O・・
・ (26) となる。よって、 φ L:O・・・(27) であり、以後は前述した(20)式によって液体100
の導電率kに比例した出力電圧E。を得ることができる
ものである。
In addition, 30 is a liquid current I2 induced by the excited toroid.
is a detection toroid linked to the core 3OA, and this detection toroid 30 has two coils 30B□, :JOB2, each having a number of turns not n. Both ends of one of the coils 30B2 are connected to the hexagonal sides of an AC amplifier 41 with an extremely large voltage amplification degree A, and the other coil 30B2 is
Both ends of B1 are on the output side F of the AC amplifier 41.
・(26) becomes. Therefore, φ L:O...(27) From then on, the liquid 100
The output voltage E is proportional to the conductivity k. This is something that can be obtained.

なお、電流I0を供給する増幅器は上記第1及び第2実
施例に何ら限定されるものではなく、検出トロイド内の
磁束を相殺してゼロにできるものであれば1種々の変更
が可能である。
Note that the amplifier that supplies the current I0 is not limited to the first and second embodiments described above, and various modifications can be made as long as the magnetic flux within the detection toroid can be canceled out to zero. .

(発明の効果) 以上のように本発明によれば、検出トロイド内の磁束を
ゼロとするような電流を外部から供給すれば、その電流
が液体の導電率に比例するため、この電流を電圧に変換
することによって導電率を簡単に求めることができる。
(Effects of the Invention) As described above, according to the present invention, if a current that makes the magnetic flux in the detection toroid zero is supplied from the outside, the current is proportional to the conductivity of the liquid, so this current is converted into a voltage. The conductivity can be easily determined by converting to

このとき検出トロイドのコア内には磁束が存在しないか
ら、周囲温度の変化によりコアの透磁率が変化しても出
力信号に何ら影響を与えることはない。また、検出トロ
イドのコイルの巻数n0を適当に低い値に選ぶことがで
きるので、機械的衝撃による不要なノイズ電圧の発生を
防ぐことができる。
At this time, since no magnetic flux exists in the core of the detection toroid, even if the magnetic permeability of the core changes due to changes in ambient temperature, it will not affect the output signal in any way. Furthermore, since the number of turns n0 of the coil of the detection toroid can be selected to a suitably low value, generation of unnecessary noise voltage due to mechanical impact can be prevented.

更に、増幅器の増幅度を高く選ぶことにより、例えば、
第1実施例における条件式(17)式、第2実施例にお
ける(25)式の制約の中で出力側の抵抗Rを大きく選
ぶことができるから、高いレベルの出力電圧を得ること
ができ、検出精度及び検出感度の大幅な向上が可能にな
る。
Furthermore, by selecting a high amplification degree of the amplifier, for example,
Since the resistance R on the output side can be selected to be large within the constraints of conditional expression (17) in the first embodiment and expression (25) in the second embodiment, a high level output voltage can be obtained. It becomes possible to significantly improve detection accuracy and detection sensitivity.

加えて、外部から電流を供給する増幅器は簡単な回路構
成により実現できるため、低コストにて信頼性の高い導
電率測定装置を提供することができる等の効果を有する
In addition, since the amplifier that supplies current from the outside can be realized with a simple circuit configuration, it is possible to provide a highly reliable conductivity measuring device at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す等価回路図、第2図及び第
3図はそれぞれ本発明の第1.第2実施例を示す等価回
路図、第4図は従来例を示す等価回路図である。 1.10・・・交流電源 2・・・励磁トロイダルコイル(励磁トロイド)3.3
0・・・検出トロイダルコイル(検出ト晶イド3A、3
0A・・・コア 3 B 、 30B 、 30B、、 30B2・−+
イル4・・・増幅器   41・・・交流増幅器42、
44・・・抵抗  43・・・オペアンプ 100・・
・液体特許出願人 電気化学計器株式会社 代 理 人 弁理士 森 1)雄 −(鋤 Epメ 文 一9只Q− に接続されている。さらに、コイル30B工には抵抗4
2が直列に接続されている。 次に、第2図の回路を解析する。前記同様に電源電圧E
が角周波数ωの正弦波とすると、交流増幅器41の入力
インピーダンスは十分高いため、第2図中の各閉回路に
ついて次の連立方程式が成立する。 ・・・(13) ここで、L3は検出トロイド30の一次側インダクタン
ス、Loはコイル30B1のインダクタンス、Lはコイ
ル30B2のインダクタンス、Rは抵抗42の(I ヲ
示L/、マタ、fr書■、fGT、F口重は各インダク
タンスによる相互インダクタンスをそれぞれ示している
。 検出トロイド30のコア30Aの全磁束をφ、交流増幅
器41の入力電圧をVとすると、 V=jωnφ= j (、+ (fr口I 、 −f「
=I 、 l= (14)であり、先の(13)式から
I2. I。を求めて(14)式に代入すると、 となる。ここでIAIは十分に大きいことから、分母中
のAを含まない項を省略すると、f7コ=nL、、 F
70=noLaであるから、液抵抗rに対して適当なn
。、Rを選びとすることは通常の増幅器であれば実現可
能であるから、 ■ −(I 上記(17)式が満足されれば、上記(16)式は、V
与 O・・・ (18) となる。従って、先の(14)式より、φ 岬 0  
 ・・・ (19) となり、第1図及び(12)式において説明したようが
成立する。よって、第2図における抵抗42の両端の電
圧E。は、 となり、液体100の導電率kに比例した出力電圧を得
ることができるから、導電率が既知の液体の出力電圧と
の比例関係により、目的とする液体100の導電率kを
算出することができる。 次に、第3図は本発明の第2実施例を示している。 この実施例は、第1図の増幅器4として、電圧増幅度A
が極めて大きいオペアンプ43を用いたものであ1〕、
同図において44は帰還抵抗、30は検出トロイド、3
0Aはコア、30Bはコイルをそれぞれ示している。な
お、他の構成は第1実施例と同一であるため詳述を省略
する。 この実施例において、電源電圧Eが前記同様に角周波数
ωの正弦波とすると、次の連立方程式が成立する。 液電流工2と電流工。とによる起磁力の合計をFとする
と、 F=I2X1+IoXn。  ・・ (22)(21)
式を解いてI2.I。を(22)式に代入すると、とな
る。前記同様にAが極めて大きいとすれば、(23)式
は。 となる。通常のオペアンプでは、 とすることは実現可能であるから、(25)式が満足さ
れれば(24)式は、
FIG. 1 is an equivalent circuit diagram showing the configuration of the present invention, and FIGS. 2 and 3 are equivalent circuit diagrams showing the configuration of the present invention. FIG. 4 is an equivalent circuit diagram showing the second embodiment, and FIG. 4 is an equivalent circuit diagram showing the conventional example. 1.10... AC power supply 2... Excitation toroidal coil (excitation toroid) 3.3
0...Detection toroidal coil (detection toroidal 3A, 3
0A...Core 3B, 30B, 30B, 30B2・-+
Ile 4...Amplifier 41...AC amplifier 42,
44... Resistor 43... Operational amplifier 100...
・Liquid patent applicant Denki Kagaku Keiki Co., Ltd. Agent Patent attorney Mori 1) Connected to the male - (plow Ep mebunichi 9 Q-).Furthermore, the coil 30B is connected to the resistor 4.
2 are connected in series. Next, the circuit shown in FIG. 2 will be analyzed. As above, the power supply voltage E
Assuming that is a sine wave with an angular frequency ω, the input impedance of the AC amplifier 41 is sufficiently high, so the following simultaneous equations hold true for each closed circuit in FIG. ...(13) Here, L3 is the primary inductance of the detection toroid 30, Lo is the inductance of the coil 30B1, L is the inductance of the coil 30B2, and R is the resistance of the resistor 42. , fGT, and F weight indicate the mutual inductance due to each inductance. If the total magnetic flux of the core 30A of the detection toroid 30 is φ, and the input voltage of the AC amplifier 41 is V, then V=jωnφ= j (, + ( frmouth I, -f''
=I, l= (14), and from the previous equation (13), I2. I. By finding and substituting it into equation (14), we get: Here, IAI is sufficiently large, so if we omit terms that do not include A in the denominator, f7 = nL,, F
Since 70=noLa, appropriate n for liquid resistance r
. , R can be realized with a normal amplifier. If the above equation (17) is satisfied, the above equation (16) becomes V
Given O... (18) becomes. Therefore, from the previous equation (14), φ Cape 0
... (19), and the explanation in FIG. 1 and equation (12) holds true. Therefore, the voltage E across resistor 42 in FIG. Since it is possible to obtain an output voltage proportional to the conductivity k of the liquid 100, the conductivity k of the target liquid 100 can be calculated from the proportional relationship with the output voltage of a liquid whose conductivity is known. I can do it. Next, FIG. 3 shows a second embodiment of the present invention. In this embodiment, the voltage amplification degree A is used as the amplifier 4 in FIG.
It uses an operational amplifier 43 with extremely large 1],
In the figure, 44 is a feedback resistor, 30 is a detection toroid, and 3
0A indicates a core, and 30B indicates a coil. Note that the other configurations are the same as those of the first embodiment, so detailed descriptions will be omitted. In this embodiment, if the power supply voltage E is a sine wave with an angular frequency ω as described above, the following simultaneous equations hold true. Liquid electrician 2 and electrician. If the total magnetomotive force due to these is F, then F=I2X1+IoXn. ... (22) (21)
Solve the equation I2. I. Substituting into equation (22) yields. As above, if A is extremely large, then equation (23) is. becomes. In a normal operational amplifier, it is possible to achieve the following, so if equation (25) is satisfied, equation (24) becomes

Claims (1)

【特許請求の範囲】 交流電源に接続された励磁トロイダルコイルと、この励
磁トロイダルコイルにより発生する液体中の液電流が鎖
交する検出トロイダルコイルとを備え、この検出トロイ
ダルコイルを流れる電流から前記液体の導電率を測定す
る導電率測定装置において、 前記液電流によって前記検出トロイダルコイルのコアに
発生する磁束を打ち消す電流を、外部の増幅器から前記
検出トロイダルコイルのコイルに流入させ、この時の流
入電流の値によって前記液体の導電率を求めることを特
徴とする液体の導電率測定装置。
[Scope of Claims] An excitation toroidal coil connected to an AC power supply and a detection toroidal coil interlinked with a liquid current in the liquid generated by the excitation toroidal coil, and the liquid is detected from the current flowing through the detection toroidal coil. In a conductivity measuring device for measuring the conductivity of a sensor, a current that cancels the magnetic flux generated in the core of the detection toroidal coil by the liquid current flows into the coil of the detection toroidal coil from an external amplifier, and the inflow current at this time is A liquid conductivity measuring device characterized in that the conductivity of the liquid is determined by the value of .
JP11023988A 1988-05-06 1988-05-06 Liquid conductivity measuring device Expired - Lifetime JPH0670659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11023988A JPH0670659B2 (en) 1988-05-06 1988-05-06 Liquid conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11023988A JPH0670659B2 (en) 1988-05-06 1988-05-06 Liquid conductivity measuring device

Publications (2)

Publication Number Publication Date
JPH01280258A true JPH01280258A (en) 1989-11-10
JPH0670659B2 JPH0670659B2 (en) 1994-09-07

Family

ID=14530634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11023988A Expired - Lifetime JPH0670659B2 (en) 1988-05-06 1988-05-06 Liquid conductivity measuring device

Country Status (1)

Country Link
JP (1) JPH0670659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184620A (en) * 1994-12-29 1996-07-16 Hewlett Packard Japan Ltd Correcting method for electromagnetic induction type probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6312118B2 (en) * 2013-05-16 2018-04-18 学校法人東京理科大学 Electric characteristic measuring apparatus, electric characteristic measuring method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184620A (en) * 1994-12-29 1996-07-16 Hewlett Packard Japan Ltd Correcting method for electromagnetic induction type probe

Also Published As

Publication number Publication date
JPH0670659B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US6411078B1 (en) Current sensor apparatus
US7365535B2 (en) Closed-loop magnetic sensor system
US5914593A (en) Temperature gradient compensation circuit
JP3445362B2 (en) AC current sensor
EP0380562B1 (en) Magnetometer employing a saturable core inductor
WO1989002082A1 (en) Single-winding magnetometer
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
Ripka et al. Precise DC current sensors
US2861242A (en) Magnetometer
JP2816175B2 (en) DC current measuring device
JP2008532012A (en) Current sensor with annular coil
JP4716030B2 (en) Current sensor
JPH01280258A (en) Measuring instrument for conductivity of liquid
JPH06347489A (en) Electric current sensor
JP2586156B2 (en) AC / DC dual-purpose current detection method
GB2295459A (en) Alternating current sensor
Sasada et al. A new structure of torque sensors using thin pickup head—Use of mutual coupling modulation
JPH0763833A (en) Superconductor-loop type magnetic-field measuring apparatus
Saxena et al. Differential inductive ratio transducer with short-circuiting ring for displacement measurement
CN116953335B (en) Device and method for detecting direct current signal or magnetic field
Zhang et al. Design of an inductive long displacement measurement instrument
RU2533347C1 (en) Device for independent recording of pulse magnetic field
JPH0743105A (en) Position transducer
US3379969A (en) Magnetic bridge means for detecting the electrical properties of substances
RU2208762C1 (en) Amplitude-phase differential-transformer displacement sensor with phase output