JP2586156B2 - AC / DC dual-purpose current detection method - Google Patents

AC / DC dual-purpose current detection method

Info

Publication number
JP2586156B2
JP2586156B2 JP1322084A JP32208489A JP2586156B2 JP 2586156 B2 JP2586156 B2 JP 2586156B2 JP 1322084 A JP1322084 A JP 1322084A JP 32208489 A JP32208489 A JP 32208489A JP 2586156 B2 JP2586156 B2 JP 2586156B2
Authority
JP
Japan
Prior art keywords
current
iron core
detected
voltage
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1322084A
Other languages
Japanese (ja)
Other versions
JPH03191870A (en
Inventor
昭史 勝山
安俊 井出
秀樹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to DE19904019810 priority Critical patent/DE4019810C2/en
Publication of JPH03191870A publication Critical patent/JPH03191870A/en
Priority to US07/861,170 priority patent/US5223789A/en
Application granted granted Critical
Publication of JP2586156B2 publication Critical patent/JP2586156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、零相電流検出器,各種漏れ電流検出器など
に用いられ、鉄心の磁気現象を利用して、電気的に非接
触で直流および交流の電流を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used for a zero-phase current detector, various leak current detectors, and the like, and uses a magnetic phenomenon of an iron core to electrically and non-contact DC. And a method for detecting an alternating current.

〔従来の技術〕[Conventional technology]

小電流を電気的に非接触で検出する装置として、漏電
遮断器,漏電保護リレーなどに用いる零相変流器が知ら
れている。第19図は、零相変流器の作動を説明するため
にその要部構成を示した模式図である。第19図のよう
に、零相変流器は、高透磁率を有する環状の鉄心1の中
心孔を通る2本の導体2,鉄心1に巻回した検出コイル3
の両端に接続する抵抗4で構成され、導体2の両端は、
それぞれ主回路の交流電源5,負荷6に接続されている。
正常な状態では、2本の導体2を流れ矢印で方向を示し
た往復の電流I1,I2の値は同じで方向が逆であるから鉄
心1は磁化されることなく、検出コイル3には電圧が誘
起されない。負荷6側で漏電が生ずると電流I1,I2の値
が変り、その差電流で鉄心1が磁化され、その誘起電圧
によって抵抗4に電流が流れ、抵抗4の電圧降下分を制
御信号として取り出すことができる。なお、第19図では
単相の場合を示したが、3相の場合は導体2を3本とし
て表わせばよく、原理的には単相と同じである。この零
相変流器で検出することができるのは、原理的に交流の
零相電流のみであり、直流用には使用することができな
い。
As a device for detecting a small current electrically in a non-contact manner, a zero-phase current transformer used for an earth leakage breaker, an earth leakage protection relay and the like is known. FIG. 19 is a schematic diagram showing a configuration of a main part of the zero-phase current transformer in order to explain the operation thereof. As shown in FIG. 19, the zero-phase current transformer comprises two conductors 2 passing through a center hole of an annular core 1 having high magnetic permeability, and a detection coil 3 wound around the iron core 1.
Of the conductor 2 is connected to both ends of the
Each is connected to an AC power supply 5 and a load 6 of the main circuit.
In a normal state, the values of the reciprocating currents I 1 and I 2 indicated by arrows and flowing in the two conductors 2 are the same but opposite in direction, so that the iron core 1 is not magnetized and the detection coil 3 No voltage is induced. When a leakage occurs on the load 6 side, the values of the currents I 1 and I 2 change, the core 1 is magnetized by the difference current, a current flows through the resistor 4 by the induced voltage, and the voltage drop of the resistor 4 is used as a control signal. Can be taken out. In FIG. 19, the case of a single phase is shown, but in the case of a three phase, three conductors 2 may be represented, and the principle is the same as the single phase. In principle, this zero-phase current transformer can detect only an AC zero-phase current, and cannot be used for DC.

一方、直流電流を主回路とは非接触で検出するには、
装置の図示を省略したが、次の方法がある。
On the other hand, to detect DC current without contacting the main circuit,
Although illustration of the apparatus is omitted, the following method is available.

一つは、直流変流器法であり、閉磁路の鉄心を2個用
い、交流で両鉄心の磁束方向が逆になるように励磁して
おき、被検出電流による直流磁界が加わると交流電流が
変化し、この変化により直流電流を検出することができ
る。その他、ホール素子法によれば、鉄心にギャップを
設け、このギャップにホール素子を挿入し、被検出電流
を求めることが可能である。
One is the DC current transformer method, which uses two iron cores in a closed magnetic circuit, and excites both AC cores so that their magnetic flux directions are reversed. Changes, and a DC current can be detected based on the change. In addition, according to the Hall element method, it is possible to obtain a current to be detected by providing a gap in the iron core and inserting the Hall element into the gap.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、近年予防保全が重要視され、直流の機
器に対しても、漏電遮断器,漏電保護リレーなどへの適
用が要望されている状況にあって、以上のような電流検
出方法では、これを達成することができないという問題
がある。
However, in recent years, preventive maintenance has been regarded as important, and it has been demanded that DC devices be applied to earth leakage breakers and earth leakage protection relays. There is a problem that cannot be achieved.

即ち、零相変流器では、前述のように交流電流しか検
出することができず、また交流を検出する場合も、検出
電流が小さいため、鉄心1にFe−Ni合金、例えば商品名
パーマロイのような高透磁率材料を用いても、第20図に
示した磁化曲線の如くその検出磁界が小さいので、得ら
れる磁束も低く、検出部の寸法,重量ともに大きなもの
となる。一方、直流を検出するための直流変流器を用い
る方法は、鉄心を2個必要として検出部の寸法が大きく
なり、しかも、原理的に大電流にはよいとしても、小電
流には不適当であって、零相電流のような小電流を検出
することは非常に困難である。ホール素子を用いて直流
を検出する場合も、鉄心にギャップがあるため、外部か
らの磁界の影響を受けやすく、磁気遮蔽を必要とするの
で検出部の寸法が大きくなり、また、零相変流器のよう
に検出する電流は小さくても、主電流が大きい場合は、
鉄心のギャップの影響を受けて、主電流による磁界が平
衡して零にならず、この場合も適用することができな
い。以上のように、従来、直流差電流を検出する適当な
装置は得られていない。そして、漏電遮断器や漏電保護
リレーなどで検出が望まれている直流電流は、完全な直
流のみではなく、交流を整流した波形のような脈流もあ
る。
That is, in the zero-phase current transformer, only the alternating current can be detected as described above. Also, when the alternating current is detected, the detection current is small. Therefore, the iron core 1 is made of an Fe-Ni alloy, for example, a trade name of Permalloy. Even if such a high magnetic permeability material is used, since the detection magnetic field is small as in the magnetization curve shown in FIG. 20, the obtained magnetic flux is low, and the size and weight of the detection section are large. On the other hand, the method using a DC current transformer for detecting DC requires two iron cores, which increases the size of the detection unit. In addition, it is not suitable for small current even though it is good for large current in principle. However, it is very difficult to detect a small current such as a zero-phase current. When detecting direct current using a Hall element, there is a gap in the iron core, so it is easily affected by an external magnetic field, and the size of the detection part becomes large because it requires magnetic shielding. When the main current is large even if the current to be detected is small like a container,
Under the influence of the iron core gap, the magnetic field due to the main current is not balanced to zero, and this case cannot be applied. As described above, conventionally, no suitable device for detecting a DC difference current has been obtained. The direct current that is desired to be detected by an earth leakage breaker, an earth leakage protection relay, or the like includes not only a complete DC but also a pulsating current like a rectified AC waveform.

本発明は上述の点に鑑みてなされたものであり、その
目的は、交流,直流何れの電流に対しても装置を大型化
することなく、検出可能な方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method capable of detecting both AC and DC current without increasing the size of the device.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題を解決するために、本発明の方法は、鉄心
の磁気ヒステリシス曲線の磁界が保磁力より大きい点ま
で、正側,負側両方向に同一条件で高周波励磁してお
き、被検出電流で生ずる磁界によって、高周波励磁電流
が変化する現象を利用することにある。
In order to solve the above-mentioned problem, the method of the present invention provides a method in which high-frequency excitation is performed under the same conditions in both the positive side and the negative side until the magnetic field of the magnetic hysteresis curve of the iron core is larger than the coercive force. The object of the present invention is to utilize a phenomenon in which a high-frequency excitation current changes depending on a magnetic field generated.

即ち、磁気ヒステリシスの角形性が良く保磁力が小さ
い鉄心に、高周波励磁コイルを巻回し、これに鉄心およ
び高周波励磁コイル部のリアクタンスに比べて、小さい
検出抵抗を直列に接続して、高周波電源を用いて磁界が
保磁力より大きい点まで励磁しておき、この状態で、鉄
心の中心孔に通した導体に流れる被検出電流で生じた小
磁界が加わると、ヒステリシス曲線の範囲が移動し、こ
れに伴い磁束密度と磁界の範囲も移動して、高周波励磁
電流が変わるので、この高周波励磁電流変化を検出抵抗
の電圧降下分または高周波励磁コイル両端の電圧変化分
として取り出し、電子回路により信号処理し主回路の電
流を求めるものである。また、瞬時に流れる大電流に対
しては、その検出回路を併設して上記の電流検出の信号
と合わせて検出可能としている。
That is, a high-frequency excitation coil is wound around an iron core having a good squareness of magnetic hysteresis and a small coercive force, and a detection resistance smaller than the reactance of the iron core and the high-frequency excitation coil unit is connected in series to the high-frequency power supply. When the magnetic field is excited to a point where the magnetic field is larger than the coercive force, and a small magnetic field generated by the detected current flowing through the conductor passing through the center hole of the iron core is applied in this state, the range of the hysteresis curve moves. The range of the magnetic flux density and the magnetic field also moves, and the high-frequency excitation current changes, so this change in the high-frequency excitation current is taken out as the voltage drop of the detection resistor or the voltage change across the high-frequency excitation coil, and the signal is processed by an electronic circuit. This is for obtaining the current of the main circuit. In addition, a detection circuit for a large current that flows instantaneously can be detected together with the above-described current detection signal.

〔作用〕[Action]

本発明の方法は、上記のように、鉄心を高周波で励磁
しておくと、被検出電流によって生ずる小さな磁界で、
鉄心のヒステリシス曲線上の励磁範囲が移動し、これに
伴い、高周波励磁電流の保磁力近傍の値および最大値も
変化するので、これらの値の正負の絶対値の差から直流
および交流の電流を検出することができる。また、その
絶対値の和から瞬時に流れる大きな電流を検出すること
も可能である。
According to the method of the present invention, as described above, when the iron core is excited at a high frequency, a small magnetic field generated by the detected current can be used.
Since the excitation range on the hysteresis curve of the iron core moves, and the value near the coercive force of the high-frequency excitation current and the maximum value also change, the DC and AC currents are calculated from the difference between the positive and negative absolute values of these values. Can be detected. It is also possible to detect a large current flowing instantaneously from the sum of the absolute values.

〔実施例〕〔Example〕

以下本発明の方法を実施例に基づき説明する。 Hereinafter, the method of the present invention will be described based on examples.

第1図は、本発明における交流,直流両用の小電流検
出方法の基本的な事項を説明するために、使用する装置
の要部構成の一例を示した模式図である。第1図におい
て、鉄心1aは磁気特性が角形のヒステリシス曲線を持
ち、保磁力の小さい材料からなり、例えば環状に形成し
てある。この環状の鉄心1aの中心孔を通って、導体2aが
主回路の電源と負荷に接続されているが、これら電源と
負荷は図示を省略してある。また零相電流を検出するに
は、導体2aは2本または3本になり、各導体間の差電流
を利用するが、原理的には単線の電流を検出するのと同
じであるから、ここでは導体2aは1本で表わし、方向を
矢印で示した被検出電流をIOとして以後の説明を進め
る。また、鉄心1aにはその肉厚部に、高周波励磁コイル
7を、鉄心部のリアクタンスに比べて小さな値の検出抵
抗8を介して高周波電源9に接続してある。高周波励磁
電流iは点線の矢印方向に流れる。検出抵抗8から信号
を取り出す端子は,であり高周波励磁コイル7から
信号を取り出す端子は,である。端子はは双方に
共通となる。
FIG. 1 is a schematic diagram showing an example of the configuration of a main part of an apparatus used for explaining the basic items of a method for detecting a small current for both AC and DC in the present invention. In FIG. 1, an iron core 1a is made of a material having a square hysteresis curve and a small coercive force, for example, in a ring shape. The conductor 2a is connected to the power supply and the load of the main circuit through the center hole of the annular core 1a, but these power supply and the load are not shown. In order to detect the zero-phase current, two or three conductors 2a are used, and the difference current between the conductors is used. However, in principle, this is the same as detecting a single-line current. In the following description, the conductor 2a is represented by a single line, and the detected current whose direction is indicated by an arrow is represented by I O , and the following description will proceed. A high-frequency excitation coil 7 is connected to a high-frequency power supply 9 via a detection resistor 8 having a smaller value than the reactance of the iron core in a thick portion of the iron core 1a. The high frequency exciting current i flows in the direction of the dotted arrow. A terminal for extracting a signal from the detection resistor 8 is a terminal, and a terminal for extracting a signal from the high-frequency excitation coil 7 is. The terminal is common to both.

次に第2図は、鉄心1aの磁気ヒステリシス曲線の全体
の形状を示したものであるが、第3図は、以後の説明の
便宜上、第2図の曲線を直線状に近似して表わした磁気
特性線図である。第4図は、磁界と高周波励磁電流の波
形図、第5図(a),(b)は、被検出電流,検出抵抗
8の両端の電圧を示す各波形図である。
Next, FIG. 2 shows the entire shape of the magnetic hysteresis curve of the iron core 1a. FIG. 3 shows the curve of FIG. 2 as a linear approximation for convenience of the following description. It is a magnetic characteristic diagram. FIG. 4 is a waveform diagram of the magnetic field and the high-frequency excitation current, and FIGS. 5 (a) and 5 (b) are waveform diagrams showing the current to be detected and the voltage across the detection resistor 8.

以下、本発明の方法における作動について、第1図の
装置構成図,第3図は磁気特性線図,および第4図,第
5図(a),(b)の各波形図を参照して説明する。抵
抗1aは第1図の高周波電源9,抵抗8および高周波励磁コ
イル7により励磁する。鉄心1aの高周波印加電圧と磁束
密度,励磁電流の関係は(1)式で表わされる。
Hereinafter, the operation in the method of the present invention will be described with reference to the apparatus configuration diagram of FIG. 1, FIG. 3 is a magnetic characteristic diagram, and each waveform diagram of FIGS. 4, 5 (a) and (b). explain. The resistor 1a is excited by the high frequency power supply 9, the resistor 8 and the high frequency exciting coil 7 shown in FIG. The relationship between the high-frequency applied voltage of the iron core 1a, the magnetic flux density, and the exciting current is expressed by equation (1).

但し、EH:高周波印加電圧 i:高周波励磁電流 R:検出抵抗 NH:高周波励磁コイルの巻数 AC:磁路断面積 B:磁束密度 t:時間 ここで(2)式のように設定すると、EHが一定であれ
ば、別のコイルの電流による磁界が加わってもBは変化
しない。
Where E H : High frequency applied voltage i: High frequency excitation current R: Detection resistance N H : Number of turns of high frequency excitation coil A C : Magnetic path cross-sectional area B: Magnetic flux density t: Time , E H are constant, B does not change even if a magnetic field due to the current of another coil is applied.

磁界と電流の関係は(3)式で表わされる。 The relationship between the magnetic field and the current is expressed by equation (3).

Hi=NH(i/L) …………(3) 但し、Hi:高周波励磁電流による磁界 L:磁路長さ ここでは説明を簡易にするため、磁気回路条件を
(4)式のように設定した場合について述べる。
H i = N H (i / L) (3) where H i : the magnetic field due to the high-frequency excitation current L: the magnetic path length In order to simplify the explanation, the magnetic circuit condition is expressed by equation (4). The case where the setting is made as follows will be described.

NH=L …………(4) したがって、(3)式は(4)式の条件にしたとき、
(5)式となる。
N H = L (4) Therefore, when the condition of the expression (3) is set under the condition of the expression (4),
Equation (5) is obtained.

Hi=i …………(5) 但し導体2aは鉄心1aの中心孔を貫通させているので、
巻数は1回である。
H i = i (5) However, since the conductor 2a passes through the center hole of the iron core 1a,
The number of turns is one.

被検出電流IOにより生ずる磁界H1は(6)式となる。Magnetic field H 1 generated by the detection current I O is (6).

H1=IO/L …………(6) 次に、特に第3図の磁気特性線図と第4図の波形図を
参照して、この両図の関係から、本発明の方法について
説明する。ここでは説明の便宜上、被検出電流IOを直流
の場合IDとして扱う。
H 1 = I O / L (6) Next, referring to the magnetic characteristic diagram of FIG. 3 and the waveform diagram of FIG. 4, the method of the present invention will be described based on the relationship between these diagrams. explain. Here, for convenience of description, the detected current I O is treated as I D in the case of direct current.

第3図,第4図において鉄心1aは、導体2aに流れる被
検出電流IDが0の場合は、磁界の0点と高周波励磁電流
iの0点は一致し、第3図,第4図に実線で示したよう
に、高周波励磁電流i1〜i2の範囲で励磁され、高周波励
磁電流iの波形は第4図の実線のように変化し、高周波
励磁電流iは鉄心1aの保磁力近傍のi3,i4でほぼ一定値
になる。そして磁束がほぼ飽和領域に入るとiは急激に
増大しi1,i2となる。
3 and 4, when the detected current ID flowing through the conductor 2a is 0, the point 0 of the magnetic field coincides with the point 0 of the high-frequency exciting current i. As shown by the solid line, the excitation is performed in the range of the high frequency excitation current i 1 to i 2 , and the waveform of the high frequency excitation current i changes as shown by the solid line in FIG. 4, and the high frequency excitation current i is the coercive force of the iron core 1a. It becomes almost constant at i 3 and i 4 in the vicinity. When the magnetic flux substantially enters the saturation region, i rapidly increases to i 1 and i 2 .

ここで導体2aに直流の正電流IDが流れ、前記(6)式
に相当する磁界ID/Lが加わった場合、横軸を高周波励磁
電流iを基準にすると、第3図のヒステリシス曲線は点
線のように負側に移動した形となり、iの最大値はi5
i6,保磁力近傍のiはi7,i8になり、電流iの波形は第
4図の点線のようになる。即ち、被検出電流IDは流れた
場合の磁界は第4図の点線に示すように、0点が負側に
ID/L分移動した形になり、導体2aにIDが流れると高周波
励磁電流iの最大値は、正側は大きくなって(i1
i5)、負側は小さくなり(i2→i6)、保磁力に相当する
電流i3とi4はそれぞれi7,i8と負側に大きくなる。導体
2aの電流が負の場合は、磁界,電流の変化が上記とは正
負の向きが逆になるだけで現象としては同じである。
Here, when a DC positive current ID flows through the conductor 2a and a magnetic field ID / L corresponding to the above equation (6) is applied, the hysteresis curve shown in FIG. Moves to the negative side as indicated by the dotted line, and the maximum value of i is i 5 ,
i 6 and i near the coercive force become i 7 and i 8 , and the waveform of the current i is as shown by the dotted line in FIG. That is, the magnetic field when the detected current ID flows is such that the zero point is on the negative side as shown by the dotted line in FIG.
It moves by I D / L, and when I D flows through the conductor 2a, the maximum value of the high-frequency excitation current i increases on the positive side (i 1
i 5), the negative side is smaller (i 2 → i 6), the current i 3 and i 4 corresponding to the coercive force is increased on the negative side and i 7, i 8, respectively. conductor
When the current of 2a is negative, the phenomenon is the same as that of the above, except that the change in the magnetic field and the current is reversed in the positive and negative directions.

第5図(a),(b)は導体2aに直流電流IDが流れた
場合のIDの変化と、検出抵抗8の両端の電圧即ち高周波
励磁電流iの波形である。導体2aに第5図(a)のよう
に直流電流IDが流れると、検出抵抗8の両端には第4図
に示す高周波励磁電流波形と同じ波形の電圧降下が生ず
る。高周波励磁電流iは被検出電流IDが0では正負が対
称である。正の被検出電流IDが流れると、高周波励磁電
流iの正の最大値は大きくなって負の最大値は小さくな
る。被検出電流IDが負のときはこの逆になる。一方、高
周波励磁電流iの保磁力近傍の値はIDが正であれば負側
に移動し、IDが負のときは正側に移動する。したがっ
て、高周波励磁電流iの保磁力近傍の値、または最大値
の変化から被検出電流IDを求めることができる。被検出
電流が交流の場合は現象が速くなるのみであるから、基
本的には直流の場合と同じであって、検出可能である。
FIGS. 5 (a) and 5 (b) show a change in ID when a DC current ID flows through the conductor 2a, and the waveform of the voltage across the detection resistor 8, that is, the high-frequency excitation current i. When a DC current ID flows through the conductor 2a as shown in FIG. 5A, a voltage drop having the same waveform as the high-frequency excitation current waveform shown in FIG. When the detected current ID is 0, the high-frequency excitation current i is symmetric in positive and negative directions. When the positive detected current ID flows, the positive maximum value of the high-frequency excitation current i increases and the negative maximum value decreases. The opposite is true when the detected current ID is negative. On the other hand, the value of the coercive force near the high-frequency excitation current i is moved to the negative side if positive is I D, when I D is negative moves to the positive side. Therefore, the detected current ID can be obtained from a value near the coercive force of the high-frequency exciting current i or a change in the maximum value. When the current to be detected is an alternating current, only the phenomenon is accelerated. Therefore, it is basically the same as the case of a direct current and can be detected.

以上、高周波励磁電流i即ち検出抵抗8の両端の電圧
変化〔(1)式のiRの変化〕で説明したが、EHが一定で
あるから(1)式の右辺第2項のNHACdB/dt即ち第1図
の高周波励磁コイル7の両端,の電圧からでも被検
出電流IDを求めることができる。
As described above, the high-frequency excitation current i, that is, the voltage change at both ends of the detection resistor 8 [the change in iR in equation (1)] is described. However, since E H is constant, N H A in the second term on the right side of equation (1) is used. The detected current ID can also be obtained from C dB / dt, that is, the voltage at both ends of the high-frequency excitation coil 7 in FIG.

まず、第1の方法として高周波励磁電流iの保磁力近
傍の値から被検出電流IDを検出する方法から述べる。こ
こでは検出抵抗8の両端,間の電圧から被検出電流
IDを求める方法について説明する。第6図はその装置構
成の一例を示す模式図であり、第1図と共通部分に同一
符号を用いてある。第6図では検出抵抗8の両端から反
転増幅器10,低域濾波器11の順に接続してあり、次のよ
うな信号処理を行なう。第6図の装置を用いて第5図
(a)の被検出電流波形図を求めると、反転増幅器出力
波形図として第7図(a)が得られる。この波形は第5
図(b)に示した検出抵抗両端の電圧最大値を、反転増
幅器10により飽和させ一定値としたものである。そして
第7図(a)の電圧を低域濾波器11に入れると、その出
力は第7図(b)のようになり、第5図(a)に比例し
た値、即ち低域濾波器11からの出力電圧は被検出電流ID
に比例した電圧となる。
First, a method for detecting the detected current ID from a value near the coercive force of the high-frequency exciting current i will be described as a first method. Here, the current to be detected is calculated from the voltage between both ends of the detection resistor 8.
A method for obtaining ID will be described. FIG. 6 is a schematic diagram showing an example of the device configuration, and the same reference numerals are used for the same parts as in FIG. In FIG. 6, an inverting amplifier 10 and a low-pass filter 11 are connected in this order from both ends of the detection resistor 8, and the following signal processing is performed. When the detected current waveform diagram of FIG. 5A is obtained by using the apparatus of FIG. 6, FIG. 7A is obtained as an inverting amplifier output waveform diagram. This waveform is the fifth
The maximum value of the voltage between both ends of the detection resistor shown in FIG. When the voltage shown in FIG. 7A is input to the low-pass filter 11, the output becomes as shown in FIG. 7B, and the output is a value proportional to FIG. Output voltage is the detected current I D
It becomes a voltage proportional to.

これらのことをさらに詳細に比べると、直流の被検出
電流IDが0の場合は、第7図(a)のように反転増幅器
10の出力は正と負の値が同じであるから、低域濾波器11
の出力は第7図(b)に示すように0になる。次の直流
の被検出電流IDが正の場合は、反転増幅器10の出力は第
7図(a)のように、保磁力に相当する領域(時間帯)
が正側に移動するので、低域濾波器11の出力は正負の絶
対値の差分であるから第7図(b)のように正の電圧と
なる。IDが負の場合は上記とは正負が逆になって、低域
濾波器11の出力は負の電圧になる。このように低域濾波
器11からは、被検出電流IDに比例した出力電圧が得られ
るのである。
Comparing these details in more detail, when the DC detected current ID is 0, as shown in FIG.
Since the output of 10 has the same positive and negative values, the low-pass filter 11
Is 0 as shown in FIG. 7 (b). When the next DC detected current ID is positive, the output of the inverting amplifier 10 is in a region (time zone) corresponding to the coercive force as shown in FIG.
Moves to the positive side, and the output of the low-pass filter 11 is a positive voltage as shown in FIG. When ID is negative, the polarity is reversed from the above, and the output of the low-pass filter 11 becomes a negative voltage. As described above, an output voltage proportional to the detected current ID is obtained from the low-pass filter 11.

被検出電流が交流の場合は、第5図(a),(b),
第7図(a),(b)の各値の変化が速くなるのみで、
基本的には直流の場合と全く同じであり、この電流を検
出することができる。本発明の方法によれば、以上の作
動原理から明らかなように、歪波,方形波など、如何な
る波形をもつ小電流に対しても検出可能である。
When the current to be detected is an alternating current, FIGS. 5 (a), (b),
Only the change of each value of FIGS. 7 (a) and 7 (b) becomes faster,
This is basically the same as the case of direct current, and this current can be detected. According to the method of the present invention, it is possible to detect a small current having any waveform such as a distorted wave or a square wave, as is apparent from the above operating principle.

本発明による電流検出範囲は、第3図,第4図から被
検出電流IDが正のときはi4とi2の間,被検出電流IDが負
のときはi3とi1の間になるが、第1図の高周波励磁コイ
ル7の巻数,検出抵抗8,高周波印加電圧EHを変えること
により任意の設定することができる。鉄心1aの材料は高
周波で励磁するので、高周波特性の良いことが必要であ
る。高周波励磁電源9の周波数は、原理的には高いほど
よいが、実用上は、被検出電流iDの周波数成分,要求さ
れる検出精度,鉄心材料の周波数特性などを勘案して決
めなければならない。
Current detection zone according to the invention, Figure 3, Figure 4 from the detected current I D is between the positive when i 4 and i 2, when the detected current I D is negative i 3 and i 1 be between, but the number of turns of the high-frequency excitation coil 7 of FIG. 1, the detection resistor 8, can be arbitrarily set by changing the high frequency applied voltage E H. Since the material of the iron core 1a is excited at a high frequency, it is necessary to have good high-frequency characteristics. Frequency of the high-frequency excitation power supply 9 is better high in principle, practically, must be determined by taking into consideration the frequency components of the detected current i D, required detection accuracy, and the frequency characteristic of the core material .

なお、前述の高周波励磁コイル7の両端,間の電
圧変化から被検出電流IDを求める方法については、原理
的に検出抵抗8の両端,間における場合と同じであ
るからその説明を省略する。
The method of obtaining the current to be detected ID from the voltage change between both ends of the high-frequency excitation coil 7 described above is basically the same as the method for calculating the current between both ends of the detection resistor 8, and thus the description thereof is omitted.

続いて第2の方法について説明する。これは高周波励
磁電流iの最大値の変化から被検出電流IDを求める方法
である。第8図はその装置構成の一例を示す模式図であ
り、ここでも第1図と共通する部分に同一符号を用いて
いる。第8図では検出抵抗8の両端に、オペアンプと整
流器で低電圧でも整流できるようにした半波整流回路12
a,高周波のピークホールド器13a,これらと並列に同じ性
能を持つ半波整流回路12b,ピークホールド器13bを接続
して、両者の出力側を加算器14に導き次のような信号処
理を行なう。ここでも第8図の装置を用いて第5図
(a)の波形を持つ電流を検出する場合について述べる
と、このとき検出抵抗8の両端の電圧は第5図(b)の
如くなるが、ピークホールド器13a,13bにより、正側,
負側それぞれの最大値をプロットした形として第9図
(a)のようになる。被検出電流IDが0の場合(t1
t2)には、高周波のピークホールド器13a,13bの出力
は、第9図(a)に示すように正負の値が同じであるか
ら、加算器14の出力も第9図(b)の如く0である。直
流の被検出電流IDが正の場合(t2〜t4)は、ピークホー
ルド器13a,13bの出力は、正側,負側とも大きくなり、
加算器14の出力はこれらの和になるので正の値になる。
IDが負の場合(t4〜t5)は、ピークホールド器13a,13b
の出力は、正側,負側とも小さくなり、加算器14の出力
は負の値になる。このように加算器14の出力は第9図
(b)の如く被検出電流ID〔第5図(a)〕に比例した
電圧になる。
Next, the second method will be described. This is a method of obtaining a detected current ID from a change in the maximum value of the high-frequency excitation current i. FIG. 8 is a schematic diagram showing an example of the configuration of the apparatus. Here, the same reference numerals are used for the parts common to FIG. In FIG. 8, a half-wave rectifier circuit 12 capable of rectifying even a low voltage with an operational amplifier and a rectifier is provided at both ends of the detection resistor 8.
a, a high-frequency peak hold unit 13a, a half-wave rectifier circuit 12b having the same performance in parallel with these, and a peak hold unit 13b are connected, and both output sides are led to an adder 14 to perform the following signal processing. . Here, a case where a current having the waveform of FIG. 5A is detected using the apparatus of FIG. 8 will be described. At this time, the voltage across the detection resistor 8 becomes as shown in FIG. By the peak hold devices 13a and 13b, the positive side,
FIG. 9 (a) shows a form in which the maximum value of each negative side is plotted. When the detected current ID is 0 (t 1 to
At t 2 ), since the outputs of the high-frequency peak hold units 13a and 13b have the same positive and negative values as shown in FIG. 9A, the output of the adder 14 is also shown in FIG. 9B. It is 0 as described above. If the detected current I D of the direct current positive (t 2 ~t 4), the peak hold circuit 13a, the output of 13b is greater positive, both negative,
Since the output of the adder 14 becomes the sum of these, it takes a positive value.
If I D is negative (t 4 ~t 5), the peak hold circuit 13a, 13b
Is smaller on both the positive side and the negative side, and the output of the adder 14 has a negative value. In this way, the output of the adder 14 becomes a voltage proportional to the current I D [FIG. 5 (a)] as shown in FIG. 9 (b).

被検出電流が交流の場合は、前述の保磁力近傍を利用
する方法と同様第5図(a),(b)の各種の変化が速
くなるのみで、基本的には直流の場合と全く同じであ
り、この電流を検出することができる。第2の方法の場
合も高周波励磁コイル7の両端から被検出電流IDを求め
ることができるのは勿論である。
When the current to be detected is an alternating current, the various changes in FIGS. 5A and 5B only become faster as in the above-described method using the vicinity of the coercive force. And this current can be detected. Also in the case of the second method, the current to be detected ID can be obtained from both ends of the high-frequency excitation coil 7.

ところで、これまで述べてきたように、本発明の電流
検出方法は鉄心を高周波で励磁しておき、その励磁電流
が鉄心のヒステリシス曲線上で保磁力付近もしくは最大
値となる点を変化させ励磁電流の正負の差を用いている
ので、特に零相電流の検出に対して有効なものである
が、例えばこれを漏電遮断器に用いたとき、負荷が地絡
を生じた場合などには問題がある。即ち既に述べた方法
は小電流範囲では良好に検出することができるが、大電
流が流れて検出器が追随することができないときは、鉄
心の磁束が飽和領域に入り、高周波励磁電流は正負とも
大きくなって検出が不可能になることである。したがっ
て、漏電遮断器に適用するときは通常の漏電電流範囲で
は問題はないが、地絡などにより瞬時に大電流が流れ、
漏電電流の検出が不可能となる場合を考慮してその対策
を講じておかねばならない。
By the way, as described above, in the current detection method of the present invention, the core is excited at a high frequency, and the exciting current is changed by changing the point at which the exciting current is near the coercive force or the maximum value on the hysteresis curve of the iron core. Is particularly effective for detecting zero-sequence current.However, when this is used for an earth leakage breaker, a problem may occur if a load causes a ground fault. is there. That is, the method described above can detect well in a small current range, but when a large current flows and the detector cannot follow, the magnetic flux of the iron core enters a saturation region, and the high-frequency excitation current is positive and negative. That is, detection becomes impossible. Therefore, when applied to earth leakage breaker, there is no problem in the normal earth leakage current range, but a large current flows instantaneously due to ground fault etc.
It is necessary to take measures in consideration of the case where the leakage current cannot be detected.

以下に地絡などにより大電流が流れた場合の電流検出
方法について述べる。第10図は瞬時の大電流(地絡電
流)に対して適切に作動する装置の模式図であり、これ
までの図と共通部分は同一符号を用いてある。第10図に
おいて小電流側(通常の漏電電流)の検出は前述の第1
の方法によって可能であり、その出力側は出力合成器15
に接続してある。大電流側(地絡などによる電流)の検
出は、検出抵抗8の両端から両波整流器16a,平滑器17a
を通して波形比較器18に導き、これとは別回路で高周波
励磁電源9の電圧を取り出す分圧器19,両波整流器16b,
平滑器17bの順に波形比較器18に接続し、この波形比較
器18を出力合成器15に接続した回路によって行なう。
A method for detecting a current when a large current flows due to a ground fault or the like will be described below. FIG. 10 is a schematic diagram of a device that operates appropriately for an instantaneous large current (ground fault current), and the same reference numerals are used for the same parts as in the previous drawings. In FIG. 10, the detection of the small current side (normal leakage current)
And the output side is an output combiner 15
Connected to The detection of the large current side (current due to ground fault or the like) is performed by detecting the double-wave rectifier 16a and the smoother 17a from both ends of the detection resistor 8.
To the waveform comparator 18 and a voltage divider 19 for taking out the voltage of the high-frequency excitation power supply 9 by another circuit, a double-wave rectifier 16b,
The waveform comparator 18 is connected to the waveform comparator 18 in this order, and the waveform comparator 18 is connected to the output combiner 15 by a circuit.

第11図(a)は被検出電流の時間による変化であり、
第11図(b)は検出抵抗8の両端の電圧即ち高周波励磁
電流iの時間による変化である。第11図(a),(b)
のt6〜t7の間は被検出電流が小さい範囲で前述の第5図
(a),(b)と同様である。第11図(a),(b)に
おいてt8で被検出電流が非常に大きくなると、鉄心1aの
磁束密度が飽和領域に近づくため磁束密度の変化範囲が
小さくなって、(1)式右辺第2項の値が小さくなり、
高周波励磁電流iは下記(7)式で表わされ、第11図
(b)のように正弦波で正負対称の大きな値となる。高
周波電源波形は正弦波を用いた場合である。
FIG. 11 (a) shows the change of the detected current with time,
FIG. 11 (b) shows the change over time of the voltage across the detection resistor 8, that is, the high-frequency excitation current i. FIG. 11 (a), (b)
Between the t 6 ~t 7 FIG. 5 described above in a range to be detected current is small (a), is the same as (b). Figure 11 (a), when the detected current is very large in t 8 (b), the variation range of the magnetic flux density for the magnetic flux density of the iron core 1a approaches the saturation region becomes small, (1) hand side The value of the two terms decreases,
The high-frequency exciting current i is expressed by the following equation (7), and has a large value with a sine wave and positive and negative symmetry as shown in FIG. 11 (b). The high-frequency power supply waveform is a case where a sine wave is used.

i=EH/R …………(7) 第10図の低域濾波器11の出力は、高周波励磁電流iの
正負の和(正負の絶対値の差)であるから、第11図
(a),(b)のt8以降ではほぼ0になり、被検出電流
は全く求められなくなる。この大電流側で高周波励磁電
流iの正側と負側の値の大きくなるのを検出するのが第
10図の中段(16a→17a→18→15)の回路および下段(19
→16b→17b→18→15)の回路であって、小電流側では出
力を生じないことが必要である。中段回路は高周波励磁
電流iによる電圧降下分を、両波整流器16aを通し正負
対称でも出力されないようにして、平滑器17aにより、
小電流側で生ずる高周波励磁電流iのパルス状部分の影
響を少なくしている。下段回路は基準電圧をつくるもの
であり、この電圧は大電流側でも鉄心1aの磁束密度が若
干変化する分と、検出抵抗Rで生ずる電圧降下分などに
よりEHより小さくする必要があるので、分圧器19で分圧
した後、両波整流器16b,平滑器17bにより整流し平滑に
している。波形比較器18は、被検出電流が小さい範囲で
は平滑器17aの出力が小さく、被検出電流が大きくなる
と鉄心1aの磁束密度変化範囲が小さくなり、平滑器17a
の出力が増大して出力を生ずるものであるから、平滑器
17bからの基準電圧は波形比較器18の出力が生ずるよう
に設定する必要がある。出力合成器15は小電流検出側
(低域濾波器11)からの入力と大電流検出側(波形比較
器18)からの入力の何れか大きい方の値が出力されるよ
うにしてある。
i = E H / R (7) Since the output of the low-pass filter 11 in FIG. 10 is the sum of the positive and negative of the high frequency exciting current i (the difference between the positive and negative absolute values), FIG. a), a substantially becomes 0, the detected current is not sought at all t 8 after the (b). The detection of an increase in the positive and negative values of the high frequency exciting current i on the large current side is the second step.
The circuit in the middle (16a → 17a → 18 → 15) and the lower (19
→ 16b → 17b → 18 → 15) It is necessary that no output is generated on the small current side. The middle stage circuit prevents the voltage drop due to the high-frequency excitation current i from being output through the dual-wave rectifier 16a even in the positive / negative symmetry, and the smoother 17a
The influence of the pulse-like portion of the high-frequency excitation current i generated on the small current side is reduced. Lower circuit is intended to create a reference voltage, since the voltage is divided and the magnetic flux density of the iron core 1a at a large current side is changed slightly, it needs to be smaller than E H and resistive voltage drop caused by the detection resistor R, After the voltage is divided by the voltage divider 19, it is rectified and smoothed by the double-wave rectifier 16b and the smoother 17b. In the waveform comparator 18, the output of the smoothing unit 17a is small in the range where the current to be detected is small, and the magnetic flux density change range of the iron core 1a is small when the current to be detected is large, and the smoothing unit 17a
Output increases to produce an output.
The reference voltage from 17b must be set such that the output of waveform comparator 18 occurs. The output combiner 15 is configured to output the larger value of the input from the small current detection side (low-pass filter 11) and the input from the large current detection side (waveform comparator 18).

第12図は被検出電流と出力電圧との関係線図であり、
第10図における小電流側検出回路(低域濾波器11)の出
力を実線の曲線イで示し、大電流側検出回路(波形比較
器18)の出力を破線ロで示している。出力合成器15の出
力が両出力の大きい方の値であるから、地絡などにより
瞬時に大電流が流れても出力が生ずるので全く問題はな
い。なお、漏電検出器は大電流側では電流が流れている
ことを検知するだけでよく、その値を検出する必要はな
いから第12図のような特性が得られれば十分である。
FIG. 12 is a relationship diagram between the detected current and the output voltage,
The output of the small current side detection circuit (low-pass filter 11) in FIG. 10 is indicated by a solid curve A, and the output of the large current side detection circuit (waveform comparator 18) is indicated by a broken line B. Since the output of the output combiner 15 is the larger of the two outputs, even if a large current flows instantaneously due to a ground fault or the like, the output occurs, so there is no problem at all. Note that the leakage detector only needs to detect that a current is flowing on the large current side, and it is not necessary to detect the value, so that it is sufficient to obtain the characteristics shown in FIG.

基準電圧は第13図のように別の直流電源を用いること
も可能である。第13図は第10図の一部を省略した模式図
であり、第10図の分圧器19,両波整流器16b,平滑器17bの
代りに直流電源20を用いて装置を構成したものである。
また、前に述べた第2の方法における大電流側の検出
は、基本的に上述の方法と同様にして行なうことができ
るのでその説明は省略する。
As the reference voltage, another DC power supply can be used as shown in FIG. FIG. 13 is a schematic diagram in which a part of FIG. 10 is omitted, in which the device is configured using a DC power supply 20 instead of the voltage divider 19, the double-wave rectifier 16b, and the smoothing device 17b of FIG. .
Further, the detection of the large current side in the above-described second method can be basically performed in the same manner as the above-described method, and thus the description thereof is omitted.

以上、本発明による直流,交流両用の電流検出方法の
装置構成と作動について、基本的な事柄を説明した。次
に本発明の方法を用いた具体的な事例を再び第6図を参
照して述べる。使用した鉄心1aは、組成が82Co−2Ni−
4.5Fe−8.5Si−3Bのアモルファス合金薄帯であり、これ
を円筒状の巻鉄心に形成し、所定の熱処理を行なった
後、プラスチックケースに入れた。このアモルファス合
金は、直流は勿論、高周波の磁気特性が優れている上
に、磁歪が小さいために、磁気特性に対する応力の影響
が小さく、取り扱いが容易であり、鉄心1aとして用いる
には好適である。鉄心1aの寸法は、外径13mm,内径10mm,
高さ(薄帯の幅)2mmである。導体2aは直径1mmの銅線を
用いた。高周波励磁コイル7は、直径0.1mmのホルマー
ル銅線を用いて、鉄心1aの肉厚部に90回巻いて製作し
た。高周波励磁コイル7に流れる電流は小さいので、こ
の程度の銅線を用いても十分である。反転増幅器10は増
幅度が10倍,飽和点は±12Vである。低域濾波器11は遮
断周波数1KHzのものを二段にした。高周波励磁電源9は
ICによる方形波発生回路で、周波数が10KHz,電圧は6V程
度にした。
As above, the basic matters of the device configuration and operation of the DC and AC current detection method according to the present invention have been described. Next, a specific example using the method of the present invention will be described again with reference to FIG. The iron core 1a used had a composition of 82Co-2Ni-
A 4.5Fe-8.5Si-3B amorphous alloy ribbon was formed into a cylindrical wound core, subjected to a predetermined heat treatment, and then placed in a plastic case. This amorphous alloy has excellent magnetic properties of high frequency as well as direct current, and also has a small magnetostriction, so that the influence of stress on the magnetic properties is small, handling is easy, and it is suitable for use as the iron core 1a. . The dimensions of iron core 1a are outer diameter 13mm, inner diameter 10mm,
The height (width of the ribbon) is 2 mm. The conductor 2a was a copper wire having a diameter of 1 mm. The high-frequency excitation coil 7 was manufactured by using a formal copper wire having a diameter of 0.1 mm and winding 90 times around the thick portion of the iron core 1a. Since the current flowing through the high-frequency excitation coil 7 is small, it is sufficient to use such a copper wire. The inverting amplifier 10 has an amplification factor of 10 times and a saturation point of ± 12V. The low-pass filter 11 has a cut-off frequency of 1 KHz in two stages. The high frequency excitation power supply 9
The square wave generation circuit by IC, frequency was 10KHz, voltage was about 6V.

以上のようにして本発明の方法により、直流電流を検
出した場合に得られる出力電圧と被検出電流値との関係
を求めた線図を第14図に示す。第14図における出力特性
線イ,ロ,ハはそれぞれ検出抵抗8を500,200,100Ωと
した場合である。検出可能な最小電流は、イの条件で1m
A,ロの条件で2mA,ハの条件で5mA程度である。これらの
特性は直線性がよく、電流の正負も検出することがで
き、出力電圧も大きい。第15図は、本発明の方法によ
り、検出抵抗を500Ωとして交流50Hz正弦波電流を検出
したときの出力電圧実効値と被検出電流実効値との関係
を示した特性線図である。第15図には比較のために、第
19図で述べた従来法で求めた出力特性も付記してあり、
実線が本発明の方法,点線が従来法を表わす。従来法で
は鉄心1に例えば商品名パーマロイを用い、鉄心1の寸
法を本発明の実施例の場合と同じにし、検出コイル3の
巻数を500回として10倍に増幅している。第15図からわ
かるように、本発明の方法によれば、出力電圧は従来法
に比べて大きく、約2倍になっている。また、本発明の
方法を用いて、直流と交流の重畳した電流を検出するこ
とができるのは勿論である。
FIG. 14 is a diagram showing the relationship between the output voltage obtained when a DC current is detected and the detected current value obtained by the method of the present invention as described above. The output characteristic lines A, B and C in FIG. 14 are obtained when the detection resistor 8 is set to 500, 200 and 100Ω, respectively. The minimum detectable current is 1m under condition (a).
It is about 2 mA under A and B conditions and about 5 mA under C conditions. These characteristics have good linearity, can detect the positive / negative of the current, and have a large output voltage. FIG. 15 is a characteristic diagram showing a relationship between an effective value of an output voltage and an effective value of a detected current when a 50 Hz AC sine wave current is detected with a detection resistance of 500Ω according to the method of the present invention. FIG. 15 shows, for comparison, FIG.
The output characteristics obtained by the conventional method described in Fig. 19 are also added.
The solid line represents the method of the present invention, and the dotted line represents the conventional method. In the conventional method, for example, permalloy (trade name) is used for the iron core 1, the dimensions of the iron core 1 are made the same as those in the embodiment of the present invention, and the number of turns of the detection coil 3 is set to 500, and the core is amplified 10 times. As can be seen from FIG. 15, according to the method of the present invention, the output voltage is larger than that of the conventional method, and is about twice as large. Further, it is needless to say that a current in which DC and AC are superimposed can be detected by using the method of the present invention.

以上、本実施例では高周波電源9は方形波の場合につ
いて説明したが、この波形は正弦波,三角波などその他
の波径でも可能である。また高周波励磁電流iの最大値
は反転増幅器10で飽和させその影響を少なくしたが、こ
の部分はパルス状であり、平均値は保磁力付近の電流平
均値に比べて非常に小さいので、励磁条件を適切に設定
すれば無視することができ、反転増幅器10を省くことが
できる。反転増幅器10を省略すると被検出電流と出力の
正負の関係が逆になるが、導体2aと高周波励磁コイル7
の巻方向を逆にすることにより、被検出電流と出力の正
負を一致させることができるから、実用上は全く問題は
ない。
As described above, in the present embodiment, the case where the high-frequency power supply 9 is a square wave has been described. However, the waveform may be other wave diameters such as a sine wave and a triangular wave. The maximum value of the high-frequency exciting current i was saturated by the inverting amplifier 10 to reduce its influence. However, since this portion is pulse-shaped and the average value is much smaller than the current average value near the coercive force, the excitation condition Can be neglected, and the inverting amplifier 10 can be omitted. If the inverting amplifier 10 is omitted, the positive / negative relationship between the current to be detected and the output is reversed, but the conductor 2a and the high-frequency excitation coil 7
By reversing the winding direction, it is possible to make the detected current coincide with the sign of the output, and there is no problem in practice.

次に本発明における前述の第2の方法を用いた具体的
事例を再び第8図を参照して述べる。使用した鉄心1aは
前述した第1の方法で用いたものと同じである。高周波
励磁電源9は方形波10KHzを用い、電圧は6V程度にし
た。半波整流器12a,12bの部分は整流器自体の電気抵抗
の影響をさけるため、オペアンプと組み合わせて理想整
流回路とした。加算器14は正側成分はその状態で、負側
成分のみをIC回路で反転してから両成分を差動増幅器に
入れる方法をとった。
Next, a specific example using the above-described second method in the present invention will be described again with reference to FIG. The iron core 1a used is the same as that used in the first method described above. The high-frequency excitation power supply 9 used a square wave of 10 KHz, and the voltage was about 6V. In order to avoid the influence of the electric resistance of the rectifiers themselves, the half-wave rectifiers 12a and 12b are combined with an operational amplifier to form an ideal rectifier circuit. In the adder 14, the positive side component is kept in that state, and only the negative side component is inverted by the IC circuit, and then both components are put into the differential amplifier.

以上のようにして本発明の方法により、直流電流を検
出した場合に得られる電圧と被検出電流との関係を求め
た線図を第16図に示す。この特性は直線状であり、電流
の正負も検出することができ、出力電圧も大きい。第17
図は本発明の方法により交流50Hzの正弦波電流を検出し
たときの、出力電圧実効値と被検出電流実効値との関係
を示した特性線図である。第17図には比較のために、第
19図で述べた従来法で求めた出力特性も付記してあり、
実線で本発明の方法,点線が従来法を表わす。第17図か
らわかるように、本発明の方法によれば、出力電圧は従
来法に比べて非常に大きく、約50倍にもなる。また、本
発明の方法を用いて直流と交流の重畳した電流を検出す
ることができるのは勿論である。
FIG. 16 is a diagram showing the relationship between the voltage obtained when DC current is detected and the current to be detected by the method of the present invention as described above. This characteristic is linear, and it is possible to detect whether the current is positive or negative, and the output voltage is large. 17th
The figure is a characteristic diagram showing a relationship between an output voltage effective value and a detected current effective value when a sine wave current of AC 50 Hz is detected by the method of the present invention. FIG. 17 shows, for comparison, FIG.
The output characteristics obtained by the conventional method described in Fig. 19 are also added.
The solid line represents the method of the present invention, and the dotted line represents the conventional method. As can be seen from FIG. 17, according to the method of the present invention, the output voltage is much larger than that of the conventional method, that is, about 50 times. Further, it is needless to say that a current in which DC and AC are superimposed can be detected by using the method of the present invention.

既に述べたように、本発明の小電流検出方法は、1本
の導体を用いたものとして説明してきたが、上述の如く
小電流を検出することができるから、2本ないし3本の
導体の差電流を検出する零相検出器への適用も勿論十分
に可能であり、さらに本発明の方法を用いることによ
り、検出装置が従来に比べて小型で済むという大きな利
点もある。
As described above, the small current detection method of the present invention has been described as using one conductor. However, since a small current can be detected as described above, two or three conductors can be detected. Of course, the present invention is sufficiently applicable to a zero-phase detector for detecting a difference current, and furthermore, by using the method of the present invention, there is a great advantage that the detection device can be smaller than the conventional one.

続いて第18図は、本発明の方法を漏電遮断器に用い
て、地絡などにより大電流が流れたとき、第10図の装置
により小電流側と大電流側を実測した特性線図である。
鉄心および回路条件などは前述の第1の方法の結果(第
14図)の場合と同じである。第18図において、特性線イ
の小電流検出回路の出力,特性線ロは大電流検出回路の
出力であり、出力合成器15の出力は両出力の何れか大き
い方の値になる。漏電遮断器の動作感度20mA用に適用す
る場合、出力電圧は20mA以上の電流領域では常に20mAに
おける出力電圧EZOより大きくなければならないが、こ
の例では小電流検出側出力電圧イは3A以上では小さくな
る。これを補償するのが大電流検出回路である。大電流
側出力を生ずる電流値はこの例では200〜3000mA間にな
るが、信頼性の点から小電流側出力が最大となる電流値
よりやや大きく設定することが望ましく、この例では20
0〜300mAである。この大電流検出回路の出力を生ずる点
に、第10図に示した分圧器19を調整することにより任意
に設定することができる。
Next, FIG. 18 is a characteristic diagram in which a large current flows due to a ground fault or the like by using the method of the present invention for an earth leakage breaker, and a small current side and a large current side are actually measured by the apparatus of FIG. is there.
The iron core and circuit conditions are the results of the first method (second
It is the same as the case of Fig. 14). In FIG. 18, the output of the small current detecting circuit and the characteristic line B of the characteristic line A are the outputs of the large current detecting circuit, and the output of the output combiner 15 is the larger of the two outputs. When applied to the operation sensitivity of the earth leakage breaker of 20mA, the output voltage must always be larger than the output voltage EZO at 20mA in the current region of 20mA or more.In this example, the output voltage of the small current detection side is 3A or more. Become smaller. The large current detection circuit compensates for this. In this example, the current value at which the high current side output is generated is between 200 and 3000 mA.However, from the viewpoint of reliability, it is desirable to set the current value slightly larger than the current value at which the low current side output is maximum.
0 to 300 mA. The point at which the output of the large current detection circuit is generated can be arbitrarily set by adjusting the voltage divider 19 shown in FIG.

本発明の方法は以上のように大電流検出回路を併設す
ることにより、瞬時に大電流が流れて小電流側検出部が
これに追随することができず、遮断器,リレーなどの作
動が不可能な場合でも、大電流側検出部で電流を検出し
これらの機器を作動させることができる。また、この方
法によれば小電流検出との組み合わせとすることなく、
大電流を単独に検出することも可能である。
In the method of the present invention, by providing a large current detection circuit as described above, a large current flows instantaneously, the small current side detection unit cannot follow this, and the operation of the circuit breaker, the relay, etc. is not performed. Even if possible, these devices can be operated by detecting the current with the high current side detection unit. Also, according to this method, without combining with the small current detection,
It is also possible to detect a large current alone.

〔発明の効果〕〔The invention's effect〕

従来、零相電流のような小電流は交流のみしか検出す
ることができず、直流の漏電遮断器などは得られなかっ
たのに対して、本発明の方法によれば、実施例で述べた
如く、鉄心を保磁力より大きい所まで高周波励磁してお
き、鉄心の中心孔を通る導体の被検出電流で生ずる磁界
により、保磁力近傍または最大値の高周波励磁電流が変
化することを利用して、この高周波励磁電流変化を検出
抵抗の電圧降下または高周波励磁コイルの電圧変化から
取り出すことにより電流を検出するものであるから、出
力電圧と被検出電流とが非常によい直線性を示し、交流
は勿論,直流および交直両電流の重畳した小電流も容易
に検出することができるようになり、装置を大型化する
ことなく、従来の交流機器に加えて、直流用の漏電遮断
器などの作製が可能となった。また、本発明の方法は、
交流の小電流を検出する場合でも、出力が従来法に比べ
て大きく、この出力を用いる制御回路,遮断回路などを
簡易にすることができる。さらに従来漏電遮断器などの
地絡電流が流れたときは出力電圧が小さくなり、遮断器
を作動させることができなかったのに対して、本発明の
方法ではこれを防止する回路を装置に付加することによ
り、常に大電流側でも遮断可能な出力を保持している。
即ち本発明は小電流から大電流に至る広範囲な交直両用
の電流検出方法ということができる。
Conventionally, a small current such as a zero-phase current can be detected only by an alternating current, and a direct current leakage breaker or the like cannot be obtained.On the other hand, according to the method of the present invention, as described in the embodiment. As described above, the high-frequency excitation of the iron core is performed up to a point larger than the coercive force, and the magnetic field generated by the detected current of the conductor passing through the center hole of the iron core utilizes the fact that the high-frequency exciting current near or at the maximum value changes. Since the current is detected by extracting the change in the high-frequency excitation current from the voltage drop of the detection resistor or the voltage change in the high-frequency excitation coil, the output voltage and the current to be detected show very good linearity. Of course, it is also possible to easily detect a small current in which both DC and AC and DC currents are superimposed, and to manufacture a DC leakage breaker in addition to the conventional AC equipment without increasing the size of the device. Possible It became. Also, the method of the present invention,
Even when a small alternating current is detected, the output is larger than in the conventional method, and a control circuit, a cutoff circuit, and the like using this output can be simplified. Furthermore, when a ground fault current such as an earth leakage circuit breaker flows, the output voltage decreases and the circuit breaker cannot be operated. In contrast, the method of the present invention adds a circuit to prevent this from occurring. By doing so, an output that can be cut off is always maintained even on the large current side.
That is, the present invention can be said to be a current detection method for a wide range of alternating current from a small current to a large current.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法が適用され小電流を検出する装置
の要部構成を示した模式図、第2図は鉄心材料の磁気ヒ
ステリシス曲線の形を示した概念図、第3図は同じく磁
気ヒステリシス曲線を一本の線で近似して表わした磁気
特性線図、第4図は鉄心に生ずる磁界と高周波励磁電流
波形との関係線図、第5図(a)は第1図の装置におけ
る時間と被検出電流の変化を示す関係線図、第5図
(b)は同じく検出抵抗両端の電圧波形図、第6図は第
1図の装置に関し検出抵抗両端の電圧から被検出電流を
求めるときの要部構成を示した装置模式図、第7図
(a)は第6図の装置における反転増幅器の出力電圧波
形図、第7図(b)は同じく低域濾波器の出力電圧波形
図、第8図は第1図の装置に関し高周波励磁コイル両端
の電圧から被検出電流を求めるときの要部構成を示した
装置模式図、第9図(a)は第8図の装置におけるピー
クホールド器の出力電圧波形図、第9図(b)は同じく
加算器の出力電圧波形図、第10図は本発明の方法が適用
され大電流を検出する装置の要部構成を示した模式図、
第11図(a)は第10図の装置における時間と被検出電流
の変化を示す関係線図、第11図(b)は同じく検出抵抗
両端の出力電圧波形図、第12図は同じく被検出電流と出
力電圧の関係を小電流側と大電流側で示した関係線図、
第13図は第10図の変形として一部に直流電源を用いた装
置の構成を示す部分模式図、第14図は第6図の装置を用
いて直流電流を検出した場合に得られる出力電圧と被検
出電流との関係線図、第15図は同じく交流正弦波電流を
検出した場合の出力電圧実効値と被検出電流実効値との
関係線図、第16図は第8図の装置を用いて直流電流を検
出した場合に得られる出力電圧と被検出電流との関係線
図、第17図は同じく交流正弦波電流を検出した場合の出
力電圧実効値と被検出電流実効値の関係線図、第18図は
第10図の装置を用いて小電流側と大電流側を実測した場
合に得られる出力電圧と被検出電流との関係線図、第19
図は零相変流器の作動を説明するための要部構成を示し
た模式図、第20図は第19図の鉄心材料の磁化曲線の形を
示した概念図である。 1,1a:鉄心、2,2a:導体、3:検出コイル、4:抵抗、5:交流
電源、6:負荷、7:高周波励磁コイル、8:検出抵抗、9:高
周波電源、10:反転増幅器、11:低域濾波器、12a,12b:半
波整流回路、13a,13b:ピークホールド器、14:加算器、1
5:出力合成器、16a,16b:両波整流器、17a,17b:平滑器、
18:波形比較器、19:分圧器、20:直流電源。
FIG. 1 is a schematic diagram showing a main part of a device for detecting a small current to which the method of the present invention is applied, FIG. 2 is a conceptual diagram showing a shape of a magnetic hysteresis curve of an iron core material, and FIG. FIG. 4 is a magnetic characteristic diagram showing a magnetic hysteresis curve approximated by a single line, FIG. 4 is a diagram showing the relationship between a magnetic field generated in an iron core and a high-frequency excitation current waveform, and FIG. FIG. 5 (b) is a voltage waveform diagram across the detection resistor, and FIG. 6 is a diagram showing the detected current from the voltage across the detection resistor for the device of FIG. FIG. 7 (a) is an output voltage waveform diagram of an inverting amplifier in the device of FIG. 6, and FIG. 7 (b) is an output voltage waveform of a low-pass filter similarly. 8 and FIG. 8 show the current to be detected from the voltage across the high-frequency excitation coil for the apparatus of FIG. FIG. 9 (a) is an output voltage waveform diagram of a peak hold device in the device of FIG. 8, and FIG. 9 (b) is an output voltage waveform diagram of an adder. , FIG. 10 is a schematic diagram showing a main configuration of an apparatus for detecting a large current to which the method of the present invention is applied,
FIG. 11 (a) is a relationship diagram showing a change in time and a current to be detected in the apparatus of FIG. 10, FIG. 11 (b) is an output voltage waveform diagram of both ends of the detection resistor, and FIG. A relationship diagram showing the relationship between the current and the output voltage on the small current side and the large current side,
FIG. 13 is a partial schematic diagram showing a configuration of a device using a DC power source as a modification of FIG. 10, and FIG. 14 is an output voltage obtained when DC current is detected using the device of FIG. FIG. 15 is a diagram showing the relationship between the output voltage effective value and the detected current effective value when an AC sine wave current is detected, and FIG. FIG. 17 is a relationship diagram between an output voltage obtained when a DC current is detected and a detected current, and FIG. 17 is a relationship line between an output voltage RMS value and a detected current RMS value when an AC sinusoidal current is also detected. FIG. 18 is a graph showing the relationship between the output voltage and the detected current obtained when the small current side and the large current side are actually measured using the apparatus of FIG.
FIG. 20 is a schematic diagram showing a main part configuration for explaining the operation of the zero-phase current transformer, and FIG. 20 is a conceptual diagram showing a shape of a magnetization curve of the iron core material in FIG. 1,1a: Iron core, 2, 2a: Conductor, 3: Detection coil, 4: Resistance, 5: AC power, 6: Load, 7: High frequency excitation coil, 8: Detection resistance, 9: High frequency power, 10: Inverting amplifier , 11: low-pass filter, 12a, 12b: half-wave rectifier circuit, 13a, 13b: peak hold device, 14: adder, 1
5: output combiner, 16a, 16b: double wave rectifier, 17a, 17b: smoother,
18: Waveform comparator, 19: Voltage divider, 20: DC power supply.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−148966(JP,A) 実開 昭63−35962(JP,U) 特公 昭63−131070(JP,B2) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-58-148966 (JP, A) JP-A-63-35962 (JP, U) JP-B-63-131070 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気ヒステリシス曲線が角形の高透磁率材
からなる閉磁路鉄心を、この鉄心の肉厚部に巻回した励
磁コイルと高周波電源とを結ぶ励磁回路によって、前記
ヒステリシス曲線の保磁力より大きい領域まで、磁界の
正負両方向に同一条件で高周波励磁しておき、前記鉄心
の中心孔を通る導体に流れる被検出電流で生ずる磁界が
加わることによって前記ヒステリシス曲線の磁化範囲が
移動するとともに保磁力近傍の前記高周波励磁電流を変
化させ、その変化分を前記励磁回路に直列に接続した検
出抵抗の電圧降下変化または前記励磁コイルの電圧変化
として取り出して信号処理し、その信号電圧の正負の絶
対値の差から前記被検出電流を求めることを特徴とする
交直両用電流検出方法。
1. A coercive force of a hysteresis curve of a closed magnetic path iron core having a rectangular magnetic hysteresis curve formed of a material having a high permeability and connecting an excitation coil wound around a thick portion of the iron core and a high-frequency power supply. Up to a larger region, high-frequency excitation is performed under the same conditions in both the positive and negative directions of the magnetic field, and the magnetic field generated by the detected current flowing through the conductor passing through the center hole of the iron core is applied to move and maintain the magnetization range of the hysteresis curve. The high-frequency excitation current in the vicinity of the magnetic force is changed, and the change is taken out as a voltage drop change of a detection resistor connected in series with the excitation circuit or a voltage change of the excitation coil, and subjected to signal processing. An AC / DC dual-purpose current detection method, wherein the detected current is obtained from a difference between values.
【請求項2】請求項1)項記載の電流検出を行なうに当
たり、鉄心の磁束密度が飽和領域のみで変化する電流に
対して、信号処理した電圧の正負の絶対値の和から出力
を維持することを特徴とする交直両用電流検出方法。
2. In performing the current detection according to claim 1), for a current in which the magnetic flux density of the iron core changes only in the saturation region, the output is maintained from the sum of the positive and negative absolute values of the signal processed voltage. An AC / DC dual-purpose current detection method.
【請求項3】磁気ヒステリシス曲線が角形の高透磁率材
からなる閉磁路鉄心を、この鉄心の肉厚部に巻回した励
磁コイルと高周波電源とを結ぶ励磁回路によって、前記
ヒステリシス曲線の保磁力より大きい領域まで、磁界の
正負両方向に同一条件で高周波励磁しておき、前記鉄心
の中心孔を通る導体に流れる被検出電流で生ずる磁界が
加わることによって前記ヒステリシス曲線の磁化範囲が
移動するとともに前記高周波励磁電流の最大値を変化さ
せ、その変化分を前記励磁回路に直列に接続した検出抵
抗の電圧降下変化または前記励磁コイルの電圧変化とし
て取り出して信号処理し、その信号電圧の正負の絶対値
の差から前記被検出電流を求めることを特徴とする交直
両用電流検出方法。
3. A coercive force of a hysteresis curve of a closed magnetic circuit iron core having a rectangular magnetic hysteresis curve made of a material having a high magnetic permeability, which is connected to an exciting coil wound around a thick portion of the iron core and a high-frequency power supply. Up to a larger area, high-frequency excitation is performed under the same conditions in both the positive and negative directions of the magnetic field, and the magnetization range of the hysteresis curve is moved by applying a magnetic field generated by a detected current flowing through a conductor passing through the center hole of the iron core. The maximum value of the high-frequency excitation current is changed, the change is taken out as a voltage drop change of a detection resistor connected in series to the excitation circuit or a voltage change of the excitation coil, and signal processing is performed, and the positive and negative absolute values of the signal voltage are obtained. Wherein the detected current is obtained from the difference between the two.
【請求項4】請求項3)項記載の電流検出を行なうに当
たり、鉄心の磁束密度が飽和領域のみで変化する電流に
対して、信号処理した電圧の正負の絶対値の和から出力
を維持することを特徴とする交直両用電流検出方法。
In the current detection according to the third aspect, the output is maintained from the sum of the positive and negative absolute values of the signal processed voltage for the current in which the magnetic flux density of the iron core changes only in the saturation region. An AC / DC dual-purpose current detection method.
JP1322084A 1989-06-23 1989-12-12 AC / DC dual-purpose current detection method Expired - Fee Related JP2586156B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19904019810 DE4019810C2 (en) 1989-06-23 1990-06-21 Method for detecting a direct current or alternating current flowing in a conductor
US07/861,170 US5223789A (en) 1989-06-23 1992-03-27 AC/DC current detecting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-161334 1989-06-23
JP16133489 1989-06-23
JP1-203478 1989-08-05
JP20347889 1989-08-05

Publications (2)

Publication Number Publication Date
JPH03191870A JPH03191870A (en) 1991-08-21
JP2586156B2 true JP2586156B2 (en) 1997-02-26

Family

ID=26487506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322084A Expired - Fee Related JP2586156B2 (en) 1989-06-23 1989-12-12 AC / DC dual-purpose current detection method

Country Status (1)

Country Link
JP (1) JP2586156B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW534999B (en) 1998-12-15 2003-06-01 Tdk Corp Magnetic sensor apparatus and current sensor apparatus
EP2251704A1 (en) * 2009-05-11 2010-11-17 Liaisons Electroniques-Mecaniques Lem S.A. Closed-loop fluxgate current sensor
JP6024162B2 (en) * 2012-04-02 2016-11-09 富士電機機器制御株式会社 Current detector
WO2017169062A1 (en) * 2016-03-31 2017-10-05 住友電気工業株式会社 Chopper circuit
KR102539688B1 (en) * 2016-04-28 2023-06-07 엘에스일렉트릭(주) Leakage Current Detector
CN113759288B (en) * 2021-11-08 2022-03-11 深圳市德兰明海科技有限公司 Leakage current detection circuit and method and leakage current detector

Also Published As

Publication number Publication date
JPH03191870A (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
Shepard et al. An overview of Rogowski coil current sensing technology
US5923514A (en) Electronic trip circuit breaker with CMR current sensor
JP5449222B2 (en) DC leakage detection device
JP2586156B2 (en) AC / DC dual-purpose current detection method
JP2008532012A (en) Current sensor with annular coil
JP3783173B2 (en) AC / DC leakage detector
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
CN104614688B (en) For the c-type sensor and its detection method of D.C. magnetic biasing dynamic magnetic-flux measurement
JPH07312823A (en) Dc leak detection and protective device
JPH01158365A (en) Method and apparatus for detecting small current
Enokizono et al. Non-destructive testing with magnetic sensor using rotational magnetic flux
US20060192549A1 (en) Current sensor with magnetic toroid dual frequency detection scheme
de Souza et al. A novel nanocrystalline-based current transformer working on saturated region
JP3378427B2 (en) Magnetic sensor, object detection device, and object identification device
JPS63210781A (en) Current detector
KR102039270B1 (en) A Ground-Fault Current Detection Circuit
JPH0510980A (en) Current detection method
JPH0440372A (en) Detection of current
JPH0355905Y2 (en)
JPH02196967A (en) Small current detection method
JPH02203279A (en) Detector for minute current
JPH03115870A (en) Current sensor
JPS58158502A (en) Position detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees