JPH02203279A - Detector for minute current - Google Patents

Detector for minute current

Info

Publication number
JPH02203279A
JPH02203279A JP1024257A JP2425789A JPH02203279A JP H02203279 A JPH02203279 A JP H02203279A JP 1024257 A JP1024257 A JP 1024257A JP 2425789 A JP2425789 A JP 2425789A JP H02203279 A JPH02203279 A JP H02203279A
Authority
JP
Japan
Prior art keywords
current
iron core
magnetic field
frequency excitation
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1024257A
Other languages
Japanese (ja)
Inventor
Terushi Katsuyama
勝山 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1024257A priority Critical patent/JPH02203279A/en
Publication of JPH02203279A publication Critical patent/JPH02203279A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect sensitively and accurately with a small and lightweight device by setting an exciting current based on a high frequency excitation part in the neighborhood of a residual magnetic flux density of magnetic hysteresis curve for an iron core and utilizing the change of incremental permeability caused by the magnetic field. CONSTITUTION:The high frequency excitation part 12 in which a high frequency excitation coil 7 is connected to a high frequency power supply 11 through e.g. a half-wave rectifying circuit with a rectifier 8 and a detection resistor 9 matched with a reactance of the iron core part, is provided in the iron core 1a. An output part 15 connected with a low-pass filter 13 and a DC removing device 14 in order is formed with the resistor 9. When the magnetic field generated from a current i0 to be detected which is made to flow in a conductor 2a passing through a center hole of the iron core 1a is applied, the change of reactance for the coil 7 according to the change of magnetic flux is abundantly appeared. So, with the condition that the magnetic field generating from the excitation part 12 is always being applied, the change of reactance according to the whole fluxes at the time when a minus hysteresis is moved thereto by the magnetic field generated from the current i0, is detected. Further by means of removing 13, 14 high frequency and DC parts, an output voltage having the correct current waveform to be detected can be taken out from the output part terminal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は零相電流検出器、各種もれt流検出器などに用
いられ、鉄心の磁気現象を利用して電気的に非接触で小
電流を検出する装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in zero-phase current detectors, various leakage current detectors, etc., and uses the magnetic phenomenon of the iron core to electrically contactless and small The present invention relates to a device for detecting current.

〔従来の技術〕[Conventional technology]

小電流を電気的に非接触で検出する装置としては、漏電
遮断器、漏電保II IJシレーどに用いる零相変流器
が知られている。第12図は零相変流器の原理を説明す
るための模式図である。零相変流器は第12図のように
、高透磁率を有する環状の鉄心1の中心孔を通る2本の
導体2、鉄心に巻回した検出コイル3の両端に接続する
抵抗4で構成され、導体2の両端はそれぞれ交流電源5
、負荷6に接続されている。正常な状態では2本の導体
2を流れ、矢印で方向を示した往復の電流11.112
 の値は同じで方向が逆であるから鉄心1は磁化されず
、検出コイル3には電圧が誘起されない。負荷6側で漏
電が生じると電流11+I2  の値が変りその差電流
により鉄心1が磁化され、この誘起電圧によっで小抵抗
4に電流が流れ、小抵抗4の両端の電圧降下分を制御信
号とすることができる。なお第12図は単相の場合を示
したが、3相の場合は導体2を3本として表せばよく、
原理的には単相と同じである。
2. Description of the Related Art Zero-phase current transformers used in earth leakage circuit breakers, earth leakage protection II/IJ circuits, etc. are known as devices that electrically and non-contact detect small currents. FIG. 12 is a schematic diagram for explaining the principle of a zero-phase current transformer. As shown in Fig. 12, the zero-phase current transformer consists of two conductors 2 passing through the center hole of an annular iron core 1 with high magnetic permeability, and a resistor 4 connected to both ends of a detection coil 3 wound around the iron core. and both ends of the conductor 2 are connected to an AC power source 5.
, is connected to the load 6. Under normal conditions, the current flowing through the two conductors 2 is a round trip current 11.112 whose direction is indicated by the arrow.
Since the values of are the same and the directions are opposite, the iron core 1 is not magnetized and no voltage is induced in the detection coil 3. When a leakage occurs on the load 6 side, the value of the current 11 + I2 changes and the difference current magnetizes the iron core 1. This induced voltage causes current to flow through the small resistor 4, and the voltage drop across the small resistor 4 is converted into a control signal. It can be done. Although Fig. 12 shows a single-phase case, in the case of a three-phase case, the conductor 2 can be expressed as three.
The principle is the same as single phase.

この零相変流器は検出電流が小さいため、鉄心にFe−
N冶金例えば商品名パーマロイのような高透磁率材を用
いても第13図に示した磁化曲線のごとくその検出磁界
も小さいので得られる磁束も低(、検出コイル3に誘起
される電圧は非常に小さい。したがりてこのような零相
変流器はさらに高感度のものが好ましく、また使用機器
によっては小型化が強く望まれている。
Since the detection current of this zero-phase current transformer is small, Fe-
Even if a high magnetic permeability material such as N metallurgy (trade name Permalloy) is used, the detected magnetic field is small as shown in the magnetization curve shown in Figure 13, so the obtained magnetic flux is also low (and the voltage induced in the detection coil 3 is very low). Therefore, it is preferable that such a zero-phase current transformer has even higher sensitivity, and depending on the equipment used, there is a strong desire for miniaturization.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら1以上の構造をもつ零相変流器の感度を高
め、より低い電流まで検出するためには以下のような問
題がある。出力電圧を大きくするには例えば第12図の
鉄心lの磁路断面積を大きくする方法や導体2を鉄心1
に多数巻回して鉄心1に印カロする磁界を大きくする方
法などがあるが、鉄心1の磁路断面積を大きくするのは
、当然のことながら装置の寸法増大につながり、導体2
の鉄心1への巻数を多くするのは、この導体2には主回
路の[fiが流れるので線径を大きくしてあり、同様に
鉄心lの寸法が太き(なるのを避けることができない。
However, in order to increase the sensitivity of a zero-phase current transformer having one or more structures and to detect even lower currents, there are the following problems. To increase the output voltage, for example, you can increase the magnetic path cross-sectional area of iron core 1 as shown in Fig. 12, or replace conductor 2 with iron core 1.
There is a method of increasing the magnetic field applied to the iron core 1 by winding the conductor 2 a large number of times, but increasing the magnetic path cross-sectional area of the iron core 1 naturally leads to an increase in the size of the device.
The reason for increasing the number of turns around iron core 1 is that the wire diameter is increased because [fi of the main circuit flows through this conductor 2, and similarly, the size of iron core l is thick (unavoidable). .

したがって通常は小型の鉄心lの中心孔に導体2を通し
、検出コイル3の巻数を多くしてその誘起電圧を電子回
路で増幅する方法がとられている。
Therefore, the usual method is to pass the conductor 2 through the center hole of a small iron core 1, increase the number of turns of the detection coil 3, and amplify the induced voltage using an electronic circuit.

以上のように鉄心断面積、検出コイル巻数を増すと検出
部の寸法、l1mも大きくなるが、近年側(i141袈
置、保護g&置、計測装置などは高度の電子化により小
型化が進み、これに伴ってこれらに用いる電流検出器も
小型化することが強(望まれている。
As mentioned above, increasing the core cross-sectional area and the number of windings of the detection coil will also increase the size of the detection part, l1m, but in recent years (i141 girder placement, protection g&placement, measuring devices, etc.) have become smaller due to advanced electronicization, Along with this, it is strongly desired that the current detectors used in these devices be made smaller as well.

本発明は上述の点に轟みてなされたものであり、その目
的は鉄心重量と検出コイルの巻回数を少なくして高感度
かつ高精度に小電流を検出することができる小電流検出
装置を提供することにある。
The present invention has been made in response to the above-mentioned points, and its purpose is to provide a small current detection device that can detect small currents with high sensitivity and precision by reducing the weight of the iron core and the number of windings of the detection coil. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は鉄心の磁気ヒステリシス曲線のt留磁束密度近
傍の変分透磁率が磁界にようて変化することを利用する
ものである。鉄心に高周波励磁コイルを巻回し、高周波
でヒステリシス曲線の歿留磁束密度近傍に励磁してマイ
ナーヒステリシスを描かせておき、この状態に被検出電
流による小磁界が加わるとマイナーヒステリシスが[1
て磁束密度範囲が変化し、鉄心部のりアクタンスが変っ
て高周波励磁電流が変り、この高周波数励磁電流の変化
より主回路の小電流を求める。なお高周波励磁コイルに
は適切な抵抗を直列に接続して出力が被検出電流に比例
するようにしている。
The present invention utilizes the fact that the variational magnetic permeability near the t-retention magnetic flux density of the magnetic hysteresis curve of the iron core changes depending on the magnetic field. A high-frequency excitation coil is wound around the iron core, and minor hysteresis is drawn by exciting it with high frequency near the final magnetic flux density of the hysteresis curve. When a small magnetic field due to the current to be detected is added to this state, the minor hysteresis becomes [1
The magnetic flux density range changes, the core actance changes, and the high-frequency excitation current changes, and the small current in the main circuit is determined from the change in the high-frequency excitation current. Note that an appropriate resistor is connected in series to the high-frequency excitation coil so that the output is proportional to the current to be detected.

〔作用〕[Effect]

本発明の小電流検出装置は以上のように、高周波励磁部
による励磁電流(磁界)を鉄心の磁気ヒステリシス曲線
の侵留磁束密度近傍に設定し変分透磁率の変化を利用す
るものであり、導体の被検出電流による小さな磁界が加
わったときも高周波で励磁しているので磁束変化による
リアクタンスの変化が大きい。したがって本発明の装置
では常時高周波励磁部による磁界をかけておき、これに
導体の被検出電流による磁界によってマイナーヒステリ
シスを移動させたときの全磁束によるリアクタンス変化
を検出し、さらに高周波外、直流分を除去することによ
り出力部端から正しい液検出電流波形をもつ出力電圧を
取りだすことができ、以上のことから、高感度、高精度
で小さい電流の検出を可能とする。
As described above, the small current detection device of the present invention sets the excitation current (magnetic field) by the high-frequency excitation section near the penetrating magnetic flux density of the magnetic hysteresis curve of the iron core, and utilizes changes in variational magnetic permeability. Even when a small magnetic field is applied due to the current to be detected in the conductor, it is excited at a high frequency, so the reactance changes greatly due to changes in magnetic flux. Therefore, in the device of the present invention, a magnetic field is constantly applied by the high-frequency excitation part, and when the minor hysteresis is moved by the magnetic field caused by the current to be detected in the conductor, the reactance change due to the total magnetic flux is detected. By removing this, it is possible to extract an output voltage with a correct liquid detection current waveform from the output end, and from the above, it is possible to detect small currents with high sensitivity and precision.

〔実施例〕〔Example〕

以下実施例に基づき本発明を説明する。 The present invention will be explained below based on Examples.

第1図は本発明による小電流検出装置の要部構成を説明
する模式図であり、はじめ1ここの図について説明する
。鉄心1aは高透磁率を有する材料からなり閉磁路の例
えば環状に形成されている。
FIG. 1 is a schematic diagram illustrating the main part configuration of a small current detection device according to the present invention, and this diagram will be explained first. The iron core 1a is made of a material having high magnetic permeability and is formed into a closed magnetic path, for example, in the shape of a ring.

この鉄心1aの中心?hっで導体2aが被検出装置の電
源と負荷1こ接続されているが、これらの図示は省略し
である。また零相電流を検出するには導体2aは2本ま
たは3本になり、各導体間め差電流を利用するが、原理
的には単線の小電流を検出するのと同じであるから、こ
こでは導体2aは1本で表し、方向を矢印で示した被検
出電流を30とし以後の説明を進める。第1図において
鉄心1aにはその肉厚部に高周波励磁コイル7を例えば
整流器8による半波整流回路と鉄心部のりアクタンスと
整合させた適切な検出抵抗9を介して高周波電源11に
接続した高周波励磁部12を設けてあり、また検出抵抗
9は低域F波器13、直流除去器14の順に接続した出
力部15を形成する。直流除去器14はコンデンサーま
たは絶縁変圧器により容易に構成することができる。以
上のごとく1本発明装置は鉄心1aに励磁コイル7を有
する高周波励磁部12、検出抵抗9を有する出力部15
の二つの要素を備えたものであり、使用Iζ際して鉄心
1aの中心孔に被検出装置の導体2aを通してそれを流
れる小電流toを検出するものである。
The center of this iron core 1a? The conductor 2a is connected to the power supply of the detected device and the load 1 through h, but illustration of these is omitted. In addition, to detect zero-sequence current, there are two or three conductors 2a, and the difference current between each conductor is used, but the principle is the same as detecting a small current in a single wire, so here In the following, the conductor 2a is represented by one conductor, and the current to be detected whose direction is indicated by an arrow is set to 30, and the following explanation will be made. In FIG. 1, a high-frequency excitation coil 7 is connected to a high-frequency power source 11 in a thick part of the iron core 1a through a half-wave rectifier circuit using a rectifier 8 and an appropriate detection resistor 9 matched with the flux actance of the iron core. An excitation section 12 is provided, and the detection resistor 9 forms an output section 15 to which a low-frequency F wave generator 13 and a DC remover 14 are connected in this order. The DC remover 14 can be easily constructed with a capacitor or an isolation transformer. As described above, the device of the present invention includes a high frequency excitation section 12 having an excitation coil 7 on the iron core 1a, and an output section 15 having a detection resistor 9.
When used, the small current to flowing through the conductor 2a of the device to be detected is passed through the center hole of the iron core 1a.

次に第2図は鉄心1aの磁気ヒステリシス曲線の全体の
形状を示したものであり、第3,4図は以下の説明の便
宜上第2図の残留磁束密度近傍を拡大したもので、これ
に高周波励磁によるマイナーヒステリシスを11Fき加
えである。
Next, Figure 2 shows the overall shape of the magnetic hysteresis curve of the iron core 1a, and Figures 3 and 4 are enlarged views of the vicinity of the residual magnetic flux density in Figure 2 for the convenience of the following explanation. Minor hysteresis due to high frequency excitation is added by 11F.

以下に本発明装置の作動について、第1図の装置構成と
第3,4図の磁気ヒステリシス曲線およびその他必要な
図面を加え、これらを併用して説明する。鉄心1aは通
常は第1図の高周波電源11と整流器8、抵抗9により
、第5図に示す高周波の半波整流電流で励磁している。
The operation of the apparatus of the present invention will be described below with reference to the apparatus configuration shown in FIG. 1, the magnetic hysteresis curves shown in FIGS. 3 and 4, and other necessary drawings. The iron core 1a is normally excited by the high frequency half-wave rectified current shown in FIG. 5 by the high frequency power supply 11 shown in FIG. 1, the rectifier 8, and the resistor 9.

鉄心1aの印可電圧と磁束密度、励磁電流の関係は次式
で我されるが、第2項はりアクタンス分である。
The relationship between the voltage applied to the iron core 1a, the magnetic flux density, and the excitation current is expressed by the following equation, where the second term is the actance component.

dB Ex = IHR+NHACrt   ・・・・・・・
・・・・・・・・・・・ (1)但し El:高周波印可電圧 IH:高周波励磁電流 R:検出抵抗9の値 NH:高周波励磁コイル7の巻数 Ac:鉄心1aの磁路断面積 B :鉄心11の磁束密度 t :時間 ここで、 dB IHR<島Acrt   ・・ ・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
2)の条件にすると I)1中E 、、’xc   ・・ ・ ・・・・・ 
 ・・  ・・・   (3)となる。
dB Ex = IHR + NHACrt ・・・・・・・・・
・・・・・・・・・・・・ (1) However, El: High-frequency applied voltage IH: High-frequency excitation current R: Value of detection resistor 9 NH: Number of turns of high-frequency excitation coil 7 Ac: Magnetic path cross-sectional area of iron core 1a B :Magnetic flux density t of iron core 11 :Time Here, dB IHR<Island Acrt ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
Under the condition of 2), I) E in 1,,'xc...
... (3).

但し Xc;鉄心1aを含む高周波励磁コイル7のリアクタン
ス なお、E+は一定値にしておく。以上の条件で励磁した
のが第3図の磁化曲線である。第3図において鉄心1a
は磁界がH,とHlの間でマイナーヒステリシスを描き
、磁界範囲は△Ha 、 a束密度範囲は△Boである
。変分透磁率はΔBo/ΔHaになる。ここに導体2a
による磁界十Hiが加わるとマイナーヒステリシスの磁
界は第3図のようにH2とH3に移動し、磁界範囲はΔ
H1、磁束密度範囲はへ田となる。導体2aに−Hiが
加わるとマイナーヒステリシスの磁界は負側に移動し、
そのとき磁界範囲はΔH2、磁束密度範囲はΔB2であ
る。マイナーヒステリシスの磁界は △H2<ΔHa<ΔHt  ・・ ・・・・・・・・・
・・・・・・・・・・・  ・・・・・・ ・・・(4
)となる。一方第3図のようにマイナーヒステリシス曲
線の磁束密度の変化は磁界の強さが正方向に増すほど小
さくなるので、 ΔBg>ΔBo>ΔB1・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・(5)となる。高周波励磁電流はΔBによ
って変化するので、この変化から導体2aの電流を求め
ることができる。ただこの条件では被検出電流io  
と高周波励磁電流の変化が直線関係にならない。
However, Xc is the reactance of the high frequency excitation coil 7 including the iron core 1a. Note that E+ is kept at a constant value. The magnetization curve shown in FIG. 3 is obtained by excitation under the above conditions. In Figure 3, iron core 1a
The magnetic field draws a minor hysteresis between H and Hl, the magnetic field range is △Ha, and the a flux density range is △Bo. The variational magnetic permeability becomes ΔBo/ΔHa. Conductor 2a here
When a magnetic field of 10Hi is applied, the magnetic field of minor hysteresis moves to H2 and H3 as shown in Figure 3, and the magnetic field range is Δ
H1, the magnetic flux density range becomes Heda. When -Hi is applied to conductor 2a, the magnetic field of minor hysteresis moves to the negative side,
At that time, the magnetic field range is ΔH2 and the magnetic flux density range is ΔB2. The magnetic field of minor hysteresis is △H2<ΔHa<ΔHt ・・・・・・・・・・・・
・・・・・・・・・・・・ ・・・・・・ ・・・(4
). On the other hand, as shown in Figure 3, the change in the magnetic flux density of the minor hysteresis curve becomes smaller as the magnetic field strength increases in the positive direction, so ΔBg>ΔBo>ΔB1・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...(5). Since the high frequency excitation current changes according to ΔB, the current in the conductor 2a can be determined from this change. However, under this condition, the detected current io
and the change in high-frequency excitation current do not have a linear relationship.

以下に被検出電流i0と高周波励磁電流の変化を直線関
係にする方法について述べる。(1)式において、(2
)式とは逆lこ次式のような回路条件に設定する。
A method of establishing a linear relationship between the detected current i0 and the change in the high-frequency excitation current will be described below. In equation (1), (2
) is set to a circuit condition such as an inverse l-square equation.

IHR> NHACdB・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・(6)i 印可電圧Elを一定にすると励磁電流Inは次式のよう
になりほぼ一定値になる。
IHR>NHACdB・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
(6) i When the applied voltage El is kept constant, the excitation current In is expressed by the following equation and becomes a substantially constant value.

XH*E1/R・・・・・・・・・・・・・・・・・・
・・・・・・・・・・川・・・・・・・・・・・・・・
・・・・・・・・・・・・(V) 第4図はこの条件で励磁した場合の磁化曲線であり、導
体2aの電流!0によるマイナーヒステリシスの磁界、
磁束密度の6値は次のようになる。
XH*E1/R・・・・・・・・・・・・・・・・・・
··········river··············
・・・・・・・・・・・・(V) Figure 4 shows the magnetization curve when excited under these conditions, and the current in the conductor 2a! Magnetic field with minor hysteresis due to 0,
The six values of magnetic flux density are as follows.

ΔHs=Δ1Hs=ΔH4・・・・・・・・・・・・・
・・萌・・・・・・・・・・・・・・・・・・・・・・
・・・・(8)ΔBe>ΔBs>ΔB4  ・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(9)ここで△)工と
Hiの関係線図を示したのが第6図である。
ΔHs=Δ1Hs=ΔH4・・・・・・・・・・・・・
・・Moe・・・・・・・・・・・・・・・・・・・
...(8) ΔBe>ΔBs>ΔB4 ...
・・・・・・・・・・・・・・・・・・・・・・・・
(9) Here, Fig. 6 shows a relationship diagram between △) and Hi.

(2)式、第3図の条件の場合のΔHとHiの関係は第
6図の曲線(イ)、(6)式、第4図の条件の場合は第
6図の点#i!(ロ)のようになる。第6図は被検出電
流1oによる磁界Hiと出力電圧に相当する△Hとの関
係を示すものでありて、被検出電流は△Hoを基点とし
てΔHの変化分より求めるので、第6図の(イ)の特性
では出力は大きいが、出力特性が曲線状になり% (ロ
)の特性では直線ではあるが、出力が変化しないので使
用することができない。そこで(1)式の工HRを適切
な値に設定して、△HとHiの関係を第6図の(ハ)の
ようにすれは直線に近似し、出力特性を実用上問題ない
程度にすることができる。この条件における磁化状態が
第7図である。
The relationship between ΔH and Hi under the conditions of equation (2) and FIG. 3 is the curve (a) in FIG. 6, and the relationship between ΔH and Hi in the case of equation (6) and the conditions of FIG. It becomes like (b). Figure 6 shows the relationship between the magnetic field Hi due to the current to be detected 1o and △H which corresponds to the output voltage.Since the current to be detected is determined from the change in ΔH with △Ho as the base point, With the characteristic (a), the output is large, but the output characteristic is curved, and with the characteristic (b), although it is a straight line, the output does not change, so it cannot be used. Therefore, by setting HR in equation (1) to an appropriate value, the relationship between △H and Hi is approximated to a straight line as shown in (c) in Figure 6, and the output characteristics are adjusted to a level that does not cause any practical problems. can do. FIG. 7 shows the magnetization state under this condition.

第6図(ハ)の特性線とするように(1)式のRすなわ
ち第1図に示した検出抵抗9の値を計算で求めることは
簡単ではないが、Rに可変抵抗を用いて実験で容易に求
めることができる。
Although it is not easy to calculate the value of R in equation (1), that is, the value of the detection resistor 9 shown in FIG. 1, so as to obtain the characteristic line shown in FIG. can be easily found.

次に導体の電流による磁界Hiと高周波励磁電流IIに
ついて述べる。なお上述の△HはIHに比例する。被検
出電流i6がOの場合の高周波励磁電流は第8図(a)
に示すような波形になる。ここに第8図(b)のような
被検出電流i0による磁界H1が加わると、マイナーヒ
ステリシスは正磁界+Hiの場合は第7図のHIOとH
tnの範囲に移動し、磁界変化分が大きくなりてΔH?
になり高周波励磁電流が大きくなり、負磁界−Hiの場
合は第7図のH+zと1(isの範囲に移動し、磁界変
化分が減小しΔHsになりで高周波励磁電流が小さくな
り、これらによる膓周波励@電流の波形は第8図(C)
のような高周波と被検出電流の低周波が重畳した波形に
なる。なお、第8図の横軸は共通の時間軸としである。
Next, the magnetic field Hi due to the conductor current and the high frequency excitation current II will be described. Note that the above-mentioned ΔH is proportional to IH. The high frequency excitation current when the detected current i6 is O is shown in Fig. 8(a).
The waveform will be as shown in . When a magnetic field H1 due to the current i0 to be detected as shown in Fig. 8(b) is added here, the minor hysteresis becomes HIO and H in Fig. 7 in the case of a positive magnetic field + Hi.
Moves to the range of tn, the magnetic field change increases, and ΔH?
, the high-frequency excitation current increases, and in the case of negative magnetic field -Hi, it moves to the range of H + z and 1 (is in Figure 7), and the magnetic field change decreases to ΔHs, and the high-frequency excitation current decreases, and these Figure 8 (C) shows the inverse frequency excitation @ current waveform.
The waveform is a superimposition of a high frequency wave such as , and a low frequency waveform of the current to be detected. Note that the horizontal axis in FIG. 8 is a common time axis.

第8図(、c)の波形の最大値の時間による変化は被検
出電流i0の波形の各瞬時値に比例する。この波形から
出力部15の低域戸波器13で高周波分、ilI流除去
器14で直流分を除くことより、被検出電流波形を正確
に再現して求めることができる。したがりて本発明によ
れば以上の作動原理から明らかなように、歪波形、矩形
波などいかなる波形をもつ小電流に対しても検出可能で
ある。
The change over time in the maximum value of the waveform in FIG. 8(, c) is proportional to each instantaneous value of the waveform of the detected current i0. By removing the high frequency component from this waveform using the low-frequency wave filter 13 of the output section 15 and the DC component using the ILI current remover 14, the current waveform to be detected can be accurately reproduced and determined. Therefore, according to the present invention, as is clear from the above operating principle, it is possible to detect a small current having any waveform such as a distorted waveform or a rectangular wave.

本装置の電流検出範囲は、ヒステリシス曲線の残留磁束
密度近傍の変分透磁率の変化を利用しているので、負側
の磁束密度が急激に低下する点(保磁力)の直前までで
あるが、異なる磁気ヒステリシス特性をもつ鉄心材質を
選択することにより検出電流を広範囲に設定することが
できる。なお、鉄心材料は高周波励磁による損失が少な
く高周波特性の良いものを用いることが必要である。
The current detection range of this device uses the change in variational magnetic permeability near the residual magnetic flux density of the hysteresis curve, so it is up to just before the point where the magnetic flux density on the negative side sharply decreases (coercive force). By selecting core materials with different magnetic hysteresis characteristics, the detected current can be set over a wide range. Note that it is necessary to use a core material that has low loss due to high frequency excitation and good high frequency characteristics.

高周波励磁電流の波形は正弦波に限ることなくそのほか
の波形でも差支えない。例えば、正弦波の全波、直流を
タイマー用ICで矩形状にした波形でも良く、タイマー
用ICを用いれば電子回路の部品を低減することもでき
る。但し全波の波形を用いた場合は第1図の低域戸波器
13の入力側に!I流器を入れる必要がある。
The waveform of the high-frequency excitation current is not limited to a sine wave, and other waveforms may be used. For example, a full sine wave or a waveform obtained by making a direct current into a rectangular shape using a timer IC may be used, and if a timer IC is used, the number of electronic circuit components can be reduced. However, if a full-wave waveform is used, the input side of the low-frequency door waver 13 in Figure 1! It is necessary to install an I-flow device.

高周波励磁電流の周波数は原理的には高いほど良いが、
実用上は被検出電流の周波数とその高調波成分、要求さ
れる検出精度、鉄心材料の周波数特性などを勘案して決
めねばならない。
In principle, the higher the frequency of the high-frequency excitation current, the better.
In practice, it must be determined by taking into consideration the frequency of the current to be detected, its harmonic components, the required detection accuracy, the frequency characteristics of the iron core material, etc.

これまで被検出電流i0が交流の場合について述べてき
たが、第1図の出力部15の回路を変えることにより直
流を検出することも可能である。第9図はその要部回路
構成図を示したものであり、第1図と共通部分を同一符
号で示したが、鉄心。
Although the case where the detected current i0 is AC has been described so far, it is also possible to detect DC by changing the circuit of the output section 15 shown in FIG. FIG. 9 shows a circuit configuration diagram of the main parts, and the parts common to those in FIG. 1 are indicated by the same symbols, including the iron core.

導体および高周波励磁部は第1図と同じであるから図示
を省略した。第9図により回路溝底を作用とともに述べ
る。図示してない導体に被検出電流が流れてない状態で
、図示してない高周波励磁部による検出抵抗9の両端の
電圧を低域ろ波器13で高周波成分を除いて、差動増幅
器16の子端子に入力し、この重圧と同じ値の基準電圧
を直流電源17により差動増幅器16の一端子に入力す
ることにより差動増幅器16の出力はOになる。次に図
示してない導体に正の電流が流れると、高周波励磁電流
は太き(なり、基準電圧との差は正になるので、差動増
幅器16の出力側には被検出電流に比例した正の電圧が
得られる。被検出電流が負の場合もこれと同様な原理で
電流に比例した負電圧を得ることができる。かくして本
発明の装置によれば被検小電流が直流のみ、直流と交流
が重なりたとき、交流のみのいずれの場合でも検出する
ことができる。なお直流のみ検出するときは第9図の低
域P波器13の部分を平滑回路に変えても良い。
Since the conductor and the high frequency excitation part are the same as in FIG. 1, their illustration is omitted. The bottom of the circuit groove will be described with reference to FIG. 9 along with its function. With no current to be detected flowing through a conductor (not shown), the voltage across the detection resistor 9 by a high-frequency excitation section (not shown) is filtered by a low-pass filter 13 to remove high-frequency components, and then the differential amplifier 16 The output of the differential amplifier 16 becomes O by inputting a reference voltage having the same value as this heavy voltage to one terminal of the differential amplifier 16 via the DC power supply 17. Next, when a positive current flows through a conductor (not shown), the high-frequency excitation current becomes thick (and the difference from the reference voltage becomes positive), so the output side of the differential amplifier 16 has a voltage proportional to the detected current. A positive voltage can be obtained.Even when the current to be detected is negative, a negative voltage proportional to the current can be obtained using the same principle.Thus, according to the device of the present invention, when the small current to be detected is only direct current, it is possible to obtain a negative voltage proportional to the current. When an alternating current overlaps with an alternating current, it can be detected in any case where only an alternating current is detected.In addition, when detecting only a direct current, the low-pass P-wave device 13 in FIG. 9 may be replaced with a smoothing circuit.

以上本発明の小電流検出装置の構成と作動について基本
的な事柄を説明したが、次に本発明の装置を用いた具体
的な事例を第1図および第10図を併用して述べる。第
10図は第1図と共通部分を同一符号で表しであるが、
第1図の高周波電源11に相当するものとして、直流電
源18とタイマー用IC19を用いて高周波励磁部12
aを構成してあり、直流電源18とタイマー用I C1
9により高周波100に!(zで電圧が正側に変化する
方形波を発生させ、これを高周波励磁電源としたもので
ある。出力部は第1図と同じであるから第10図には図
示するのを省略し、この部分については第1図を参照し
て説明する。第10図において、鉄心はCo系のアそル
ファス合金薄帯を円筒状の巻鉄心に形成したものである
。このアモルファス合金は磁気特性が優れている上に磁
歪が小さいために、磁気特性に対する応力の影響が小さ
く、取扱いが容易であり、鉄心1aに用いるには好適で
ある。鉄心1aの寸法は外径3911m、内径35翳、
高さ(薄帯の巾)21である。第1図の導体2aは直径
5鰭のより銅線を用いた。高周波励磁コイル7は直径Q
、1111のホルマール銅線を用いて鉄心】aの肉厚部
に100回巻回して作製した。高周波励磁コイル7の電
流は小さいので、この程度の銅線を用いても十分である
The basic matters regarding the configuration and operation of the small current detection device of the present invention have been explained above. Next, a specific example using the device of the present invention will be described with reference to FIGS. 1 and 10. In Fig. 10, parts common to Fig. 1 are represented by the same symbols.
As a component corresponding to the high frequency power source 11 in FIG.
It consists of a DC power supply 18 and a timer IC1.
9 makes the high frequency 100! (It generates a square wave whose voltage changes to the positive side at z, and uses this as a high-frequency excitation power source.The output section is the same as in Fig. 1, so it is not shown in Fig. 10. This part will be explained with reference to Fig. 1. In Fig. 10, the iron core is a cylindrical wound core made of Co-based amorphous alloy ribbon. This amorphous alloy has magnetic properties. In addition to being excellent, it has a small magnetostriction, so the influence of stress on magnetic properties is small, and it is easy to handle, making it suitable for use in the iron core 1a.The dimensions of the iron core 1a are an outer diameter of 3911 m, an inner diameter of 35 mm,
The height (width of the thin strip) is 21. As the conductor 2a in FIG. 1, a twisted copper wire with a diameter of five fins was used. The high frequency excitation coil 7 has a diameter Q
, 1111 formal copper wire was wound 100 times around the thick part of the iron core A. Since the current of the high frequency excitation coil 7 is small, it is sufficient to use this amount of copper wire.

第1図の検出抵抗90両端の電圧は遮断周波数が11c
Hzの低域ろ波器13、コンデンサーを用いた直流除去
器14により高周波分と直流分を除いた。
The voltage across the detection resistor 90 in Figure 1 has a cutoff frequency of 11c.
High frequency components and direct current components were removed using a Hz low-pass filter 13 and a direct current remover 14 using a capacitor.

次に以上のようにして交流50 Hzの正弦波電流を検
出した場合に得られる出力電圧に対して被検出電流値と
の関係を求めた線図を第11図に示す。
Next, FIG. 11 shows a diagram showing the relationship between the detected current value and the output voltage obtained when an AC 50 Hz sinusoidal current is detected as described above.

第11図には比較のために、例えば第12図の鉄心1に
商品名パーマロイを用い、鉄心1aと内径が同じで断面
積が約10倍の大きさとなるものについて、検出コイル
巻数は1000回とし、第12図の導体2の寸法を本発
明の場合と同じにしたときの出力も併記しである。第1
1図において実線の特性線イが本発明の装置を表し、点
線の特性線口が従来装置を表している。第11図かられ
かるように、410両特性線とも非常に良い直線性を示
すが、本発明の方が高い出力が得られ、鉄心重量がIA
O、コイル巻数が1/10であるにも拘わらず出力は約
2倍になっている。
For comparison, Fig. 11 shows, for example, that the iron core 1 in Fig. 12 is made of Permalloy (product name), has the same inner diameter as the iron core 1a, and has a cross-sectional area about 10 times larger, and the number of turns of the detection coil is 1000. The output when the dimensions of the conductor 2 in FIG. 12 are the same as in the case of the present invention is also shown. 1st
In FIG. 1, a solid characteristic line A represents the device of the present invention, and a dotted characteristic line represents the conventional device. As can be seen from Fig. 11, both 410 characteristic lines show very good linearity, but the present invention provides higher output and the core weight is lower than IA.
O. Even though the number of coil turns is 1/10, the output is about twice as high.

次に不発明装置と従来装置の出力を同じにした場合の鉄
心、巻数の比較の一例を第1表に示す。
Next, Table 1 shows an example of a comparison of the iron core and the number of turns when the output of the inventive device and the conventional device are the same.

本装置は従来装置に比べると、鉄心重量が1/10、コ
イル回数が1/10になり、検出部の外径、高さ、重量
を低減することができ、装置全体の小型化が可能になる
ことがわかる。
Compared to conventional devices, this device has 1/10 the iron core weight and 1/10 the number of coils, making it possible to reduce the outer diameter, height, and weight of the detection section, making it possible to downsize the entire device. I know what will happen.

第  1  表 なお前にも述べたように本発明の小電流検出装置は1本
の導体を用いたものとして説明してきたが、上述のごと
く被検出電流と出力電圧は良い直線性が得られることか
ら、本発明の装置は2本ないし3本の導体の差電流を用
いる零相電流検出器の適用も勿論十分に可能であり、そ
の他にも必要に応じて広範囲に利用できるものである。
Table 1 As mentioned above, the small current detection device of the present invention has been explained as using one conductor, but as mentioned above, good linearity can be obtained between the detected current and the output voltage. Therefore, it is of course possible to apply the device of the present invention to a zero-sequence current detector that uses a differential current between two or three conductors, and it can also be used in a wide range of other applications as required.

〔発明の効果〕〔Effect of the invention〕

従来、小電流の検出装置は例えば零相電流検出器のよう
に、被検出電流による磁化力が弱く、誘起電圧が小さい
ので、小11!流を検出するには鉄心の断面積、検出コ
イル巻数の増大は避けられない。
Conventionally, small current detection devices, such as zero-phase current detectors, have a weak magnetizing force due to the detected current and a small induced voltage, so small 11! In order to detect current, it is unavoidable to increase the cross-sectional area of the iron core and the number of turns of the detection coil.

これに対し、本発明によれば実施例で説明したごとく、
高周波特性の良い鉄心の残留磁束密度近傍を、高周波励
磁コイルに適切な値の抵抗を直列に接続して高周波で磁
化し、磁束変化を高速で起こさせ、被検出電流による高
周波励磁電流の変化分より、高周波分、直流分を除去す
ることにより得られる出力電圧と被検出fi流の波形が
同じになるようにしたため、交流正弦波電流に限ること
なく、歪形波、直流その他いかなる波形をもつ被検出電
流に対してもJ鉄心重量を1/10、コイル巻回数を1
/10にそれぞれ低減することができ、検出部の小型化
、軽量化が可能となる。また本装置は高周波電源の電圧
が正側のみで良いので小屋、安価なタイマー用ICを使
用でき、高周波励磁部を小屋化でき、経済性の点でも有
利である。
On the other hand, according to the present invention, as explained in the embodiment,
The area near the residual magnetic flux density of the iron core with good high-frequency characteristics is magnetized at high frequency by connecting a resistor with an appropriate value in series to a high-frequency excitation coil to cause magnetic flux changes at high speed. Therefore, the waveform of the output voltage obtained by removing the high frequency component and DC component and the detected fi current are the same, so it is not limited to AC sine wave current, but can have any waveform such as distorted wave, DC, etc. For the current to be detected, the J iron core weight is set to 1/10, and the number of coil turns is set to 1.
/10, making it possible to reduce the size and weight of the detection unit. In addition, since this device requires only the positive voltage of the high frequency power supply, it is possible to use an inexpensive timer IC, and the high frequency excitation section can be made into a shed, which is advantageous in terms of economy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の要部構成の一例を示した模式図、
第2図は鉄心材料の磁気ヒステリシス曲線の形を示した
概念図、第3図、第4図、第7図は第2図の残留磁束密
度近傍のマイナーヒステリシスの磁界と磁束密度の変化
を表す拡大図、第5図は高周波励磁電流の波形図、第6
図は被検出電流の磁界とマイナーヒステリシスの磁界の
関係線図、第8図(ω、 (b) 、 (c)は夫々、
高周波励磁したときの高周波励磁電流の波形図、被検出
電流の波形図、被検出電流が加わったときの高周波励磁
電流の波形図、第9図は第1図とは異なる出力部の回路
構成図、第10図は第1図とは異なる高周波励磁部の回
路構成図、第11図は被検出電流と出力電圧の関係線図
、第氏図は零相変流器の作動を説明するための要部構成
を示した模式図、第13図は第11図の鉄心材料の磁化
曲線の形を示した概念図である。 1、la :鉄心、2,2a:導体、 7:高周波励1
11=rイル、8:整流器、9:検出抵抗、11:高周
波電源、12.12a :高周波励磁部、13:低域済
波器、14:直流除去器、垣:出力部、16:作動増幅
器、第1図 第3図 第2図 第5図 第4図 第 図 ■紘尋 第 図 第10図 第11!!1 第72図 積出磁界 第13図 補 正 の 内 容 明細書第1 9頁第14行目に 「第8図(a)。 (b)。 (C)は夫々、 」 とあるのを 「第8図は」 と補正する 1、事件の表示 持腐π/−2172ダq 3、補正をする者 事件との関係 住  所 名  称
FIG. 1 is a schematic diagram showing an example of the main part configuration of the device of the present invention,
Figure 2 is a conceptual diagram showing the shape of the magnetic hysteresis curve of the iron core material, and Figures 3, 4, and 7 represent changes in the magnetic field and magnetic flux density of minor hysteresis near the residual magnetic flux density in Figure 2. Enlarged view, Figure 5 is a waveform diagram of high frequency excitation current, Figure 6
The figure is a relationship diagram between the magnetic field of the detected current and the magnetic field of minor hysteresis.
A waveform diagram of the high-frequency excitation current when high-frequency excitation is performed, a waveform diagram of the current to be detected, a waveform diagram of the high-frequency excitation current when the current to be detected is applied, and Figure 9 is a circuit configuration diagram of the output section that is different from Figure 1. , Fig. 10 is a circuit configuration diagram of the high-frequency excitation section that is different from Fig. 1, Fig. 11 is a relationship diagram between detected current and output voltage, and Fig. 10 is a diagram for explaining the operation of a zero-phase current transformer. FIG. 13 is a schematic diagram showing the configuration of main parts, and is a conceptual diagram showing the shape of the magnetization curve of the iron core material in FIG. 11. 1, la: iron core, 2, 2a: conductor, 7: high frequency excitation 1
11 = r coil, 8: rectifier, 9: detection resistor, 11: high frequency power supply, 12.12a: high frequency excitation section, 13: low frequency filter, 14: DC remover, fence: output section, 16: operational amplifier , Figure 1 Figure 3 Figure 2 Figure 5 Figure 4 Figure ■ Hirohiro Figure 10 Figure 11! ! 1 Figure 72 Output Magnetic Field 1. Display of the case is π/-2172 daq. 3. Name of the address of the person making the amendment in relation to the case.

Claims (1)

【特許請求の範囲】 1)磁気ヒステリシス曲線が角形特性を示す高透磁率材
料を用いて閉磁路を形成した筒状鉄心の中心孔を通る導
体に流れる小電流によって前記鉄心に生する磁界の強さ
を変化させ、前記鉄心に生する磁束変化から前記小電流
を検出する装置であって、 i)前記鉄心の中心孔を通つて肉厚部に巻回した高周波
励磁コイルと、この高周波励磁コイルの電流によって前
記鉄心に生する磁気マイナーヒステリシスの磁界を所定
の大きさに制御する手段と、前記小電流の磁界による高
周波励磁電流の変化を検出する検出抵抗とを直列に接続
した高周波電源を有する高周波励磁部, ii)前記検出抵抗に接続され、前記小電流が加わるこ
とによって変化する前記高周波励磁電流から前記小電流
分を分離する回路を有する出力部を備えたことを特徴と
する小電流検出装置。
[Claims] 1) The strength of the magnetic field generated in the core by a small current flowing through a conductor passing through the center hole of a cylindrical core in which a closed magnetic path is formed using a high magnetic permeability material whose magnetic hysteresis curve exhibits rectangular characteristics. A device for detecting the small current from a change in magnetic flux generated in the iron core, the device comprising: i) a high-frequency excitation coil wound around a thick part of the iron core through a central hole, and this high-frequency excitation coil; A high-frequency power source includes a means for controlling a magnetic minor hysteresis magnetic field generated in the iron core to a predetermined magnitude by a current, and a detection resistor for detecting a change in a high-frequency excitation current due to the small current magnetic field, connected in series. a high-frequency excitation section; ii) an output section connected to the detection resistor and having a circuit that separates the small current from the high-frequency excitation current that changes when the small current is applied. Device.
JP1024257A 1989-02-02 1989-02-02 Detector for minute current Pending JPH02203279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024257A JPH02203279A (en) 1989-02-02 1989-02-02 Detector for minute current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024257A JPH02203279A (en) 1989-02-02 1989-02-02 Detector for minute current

Publications (1)

Publication Number Publication Date
JPH02203279A true JPH02203279A (en) 1990-08-13

Family

ID=12133190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024257A Pending JPH02203279A (en) 1989-02-02 1989-02-02 Detector for minute current

Country Status (1)

Country Link
JP (1) JPH02203279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606963A (en) * 2015-11-23 2016-05-25 国网上海市电力公司 Test circuit for measuring high-frequency leakage current of cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606963A (en) * 2015-11-23 2016-05-25 国网上海市电力公司 Test circuit for measuring high-frequency leakage current of cable

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
Neves et al. On modelling iron core nonlinearities
JP2007316042A (en) Direct current sensor and direct-current detector
CN108459193A (en) Alternating current measuring device
CN104614688B (en) For the c-type sensor and its detection method of D.C. magnetic biasing dynamic magnetic-flux measurement
JP2012233718A (en) Current detection device
CN112505388A (en) Current measuring device and current measuring system
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
JPH02203279A (en) Detector for minute current
JPH10309031A (en) Leak detector for both ac and dc
JP2586156B2 (en) AC / DC dual-purpose current detection method
JPH01158365A (en) Method and apparatus for detecting small current
JP2008014921A (en) Direct-current detecting method and dc detector
US2114865A (en) Peak alternating current measuring apparatus
US2636158A (en) Magnetic saturation device
JPH02196967A (en) Small current detection method
US2137878A (en) Direct-current measuring means
de Souza et al. A novel nanocrystalline-based current transformer working on saturated region
JPH01285866A (en) Small current detector
JPH0247557A (en) Current detecting apparatus
JPH01308004A (en) Current detector
JPH0440372A (en) Detection of current
JPH0510980A (en) Current detection method
JPH11231001A (en) Inductance measuring device for d.c. reactor
JPH0226747B2 (en)