JPH01308004A - Current detector - Google Patents
Current detectorInfo
- Publication number
- JPH01308004A JPH01308004A JP63139766A JP13976688A JPH01308004A JP H01308004 A JPH01308004 A JP H01308004A JP 63139766 A JP63139766 A JP 63139766A JP 13976688 A JP13976688 A JP 13976688A JP H01308004 A JPH01308004 A JP H01308004A
- Authority
- JP
- Japan
- Prior art keywords
- current
- iron core
- frequency
- detected
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 53
- 238000001514 detection method Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 19
- 230000005415 magnetization Effects 0.000 description 18
- 230000004907 flux Effects 0.000 description 15
- 238000004804 winding Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 244000046146 Pueraria lobata Species 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/30—Constructions
- H01F2038/305—Constructions with toroidal magnetic core
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Soft Magnetic Materials (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は鉄心の磁気現象を利用し、電気的に非接触で電
流を検出する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for electrically non-contact detecting current using the magnetic phenomenon of an iron core.
この種の電流検出装置として従来変流器が知られており
、第9図、第10図はその作動原理を説明するための模
式図である。第9図は閉磁路を形成した筒状の鉄心1に
、被検出ii流1.の流れる導体を一次巻!2として巻
回し、被検出電流Ilが流れたとき、鉄心l内に往する
磁束変化で二次巻線3に誘起する電圧により、二次巻線
3の導体に接続した負荷である電流計4に流れる二次電
流12を読みとるものである。第10図も第9図とほぼ
同様であるが第10図では負荷として抵抗5を二次巻線
3の導体に接続し、この抵抗5の両端の電圧から二次電
流i3に比例する被検出電流1+8求めるものであり、
このような変流器は主に制御回路に用いられる。そして
鉄心1は通常軟磁性材料として磁気特性の良好なFe−
Ni合金の商品名パーマロイなどが使われている。A current transformer is conventionally known as this type of current detection device, and FIGS. 9 and 10 are schematic diagrams for explaining its operating principle. FIG. 9 shows a cylindrical iron core 1 forming a closed magnetic path with a detected flow 1. The primary winding of the flowing conductor! 2, and when the detected current Il flows, the voltage induced in the secondary winding 3 due to changes in the magnetic flux flowing inside the iron core l causes an ammeter 4, which is a load connected to the conductor of the secondary winding 3, to This is to read the secondary current 12 flowing through the sensor. Fig. 10 is almost the same as Fig. 9, but in Fig. 10, a resistor 5 is connected to the conductor of the secondary winding 3 as a load, and the detected voltage is proportional to the secondary current i3 from the voltage across this resistor 5. The current is 1+8,
Such current transformers are mainly used in control circuits. The iron core 1 is usually made of soft magnetic material such as Fe-
Permalloy, a trade name of Ni alloy, is used.
しかしながら、これら変流器は鉄心Iに用いる商品名パ
ーマロイ合金などの磁化特性に関連して以下のような解
決すべき課題を生ずる。第11図はこの合金の磁化特性
すなわち磁界と磁束密度との関係曲線の形を示したもの
であり、立ち上りがら飽和磁束に達するまでに第11図
のような曲線部分を有する。そのため第10図のごとく
二次側に小抵抗5を接続しなければならず、そうすると
出力が低下するから鉄心lの断面積を増し、二次巻線3
の巻数を多くすることになる。したがって鉄心1や巻線
部の重量1寸法の増大が避けられない、近年各種電気機
器は電子化によって装置全体の小型化が進みそれに伴な
いこれらに使用される電流検出装置の寸法1重量が大き
くなることが問題となっており、とくに小電流の検出を
必要とする制御機器では電流検出部の小型軽量化が重要
な課題である。However, these current transformers have the following problems that need to be solved in relation to the magnetization characteristics of the Permalloy alloy used for the iron core I. FIG. 11 shows the magnetization characteristics of this alloy, that is, the shape of the relationship curve between the magnetic field and the magnetic flux density, which has a curved portion as shown in FIG. 11 from the time of rising to reaching the saturation magnetic flux. Therefore, as shown in Figure 10, it is necessary to connect a small resistor 5 to the secondary side, which will reduce the output, so the cross-sectional area of the iron core l is increased, and the secondary winding 3
The number of turns will be increased. Therefore, an increase in the weight and dimensions of the iron core and the winding section is unavoidable.In recent years, various electric devices have become more compact due to electronicization, and as a result, the dimensions and weight of the current detection devices used in these devices have increased. This has become a problem, and reducing the size and weight of the current detection unit is an important issue, especially in control equipment that requires detection of small currents.
本発明は上述の点に鑑みてなされたものであり、磁化特
性が直線となる材料を鉄心に用い、比較的小さな電流を
正確に検出することができる小型の電流検出装置を提供
することを目的とする。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a small current detection device that uses a material with linear magnetization characteristics for the iron core and can accurately detect relatively small currents. shall be.
上記目的を達成するために、本発明は、組成が重量%で
82.OCo −2.ONi −4,5Fe −8,5
5i −3.0Bからなり、170〜230℃で熱処理
し磁化特性を直線としたアモルファス合金を筒状鉄心と
して用い、この鉄心の中心孔に被検出電流の流れる一次
導体を通し、さらに鉄心の肉厚部には高周波電源に接続
する動磁コイルを巻回し、動磁コイルに整流器および抵
抗を直列接続し、この抵抗の両端に出力部を接続したも
のである。To achieve the above object, the present invention has a composition of 82% by weight. OCo-2. ONi-4,5Fe-8,5
5i-3.0B, heat-treated at 170 to 230°C to make the magnetization characteristic linear, is used as the cylindrical core, and the primary conductor through which the current to be detected flows is passed through the center hole of the core. A magnetic dynamic coil connected to a high frequency power source is wound around the thick part, a rectifier and a resistor are connected in series to the magnetic dynamic coil, and an output section is connected to both ends of this resistor.
(作用〕
本発明の電流検出装置は上記のように構成するものであ
り、高周波動磁コイルに高周波電源から半波の電圧を印
加し鉄心がほぼ飽和する点まで常時動磁しておき、−次
導体に被検出電流が流れるとその磁界により、高周波動
磁されている鉄心の磁束密度範囲が変化するので鉄心の
りアクタンスが変わる。したがって被検出電流に対応し
て変化する高周波動磁電流を高周波動磁コイルに直列に
接続した抵抗の電圧降下をとり出し、濾波回路を通して
被検出it流分を求めることができる。(Function) The current detection device of the present invention is constructed as described above, in which a half-wave voltage is applied from a high-frequency power source to the high-frequency magneto-dynamic coil, and the iron core is constantly magnetized to the point where it is almost saturated. When a current to be detected flows through the next conductor, the magnetic field changes the magnetic flux density range of the iron core, which is subjected to high-frequency dynamic magnetization, and the actance of the iron core changes.Therefore, the high-frequency magnetic current that changes in response to the detected current is The voltage drop across the resistor connected in series with the magnetic dynamic coil can be taken out and passed through a filter circuit to determine the detected IT current.
とくに鉄心はアモルファス合金に特定の熱処理を施し、
磁化特性が飽和点近傍まで直線を保つようにしてあり、
この鉄心を高周波の半波の電圧で常時動磁しているため
、被検出電流による高周波動磁電流の変化が大きいので
大きな出力が得られ、鉄心部の寸法を小さくしても精度
よく電流を検出することができる。In particular, the iron core is made of amorphous alloy with a specific heat treatment.
The magnetization characteristics are designed to maintain a straight line until near the saturation point.
Since this iron core is constantly magnetized by a high-frequency half-wave voltage, the change in the high-frequency magneto-dynamic current due to the detected current is large, so a large output can be obtained, and even if the dimensions of the iron core are reduced, the current can be accurately controlled. can be detected.
〔実施例] 以下本発明を実施例に基づき説明する。〔Example] The present invention will be explained below based on examples.
はじめに交流電流を検出する場合について述べ、第1図
に本発明装置の模式的な構成図を示す。第1図において
laは筒状の鉄心であり、電源6と負荷7とを結ぶ一次
導体2a、2bのうち、第1図では一次導体2aを鉄心
1aの中心孔に通している。−次導体2a、2bの双方
とも鉄心1aの中心孔に通す場合については後述する。First, the case of detecting alternating current will be described, and FIG. 1 shows a schematic configuration diagram of the apparatus of the present invention. In FIG. 1, la is a cylindrical iron core, and of the primary conductors 2a and 2b connecting the power source 6 and the load 7, the primary conductor 2a in FIG. 1 is passed through the center hole of the iron core 1a. The case where both of the secondary conductors 2a and 2b are passed through the center hole of the iron core 1a will be described later.
一方高周波電源8に直列に接続する整流器9.鉄心1a
に巻回して形成される高周波動磁コイルIO1抵抗11
を配置し、抵抗11の両端に低域濾波器I2および直流
除去器13を接続して出力部」[を形成する。On the other hand, a rectifier 9 connected in series to the high frequency power source 8. Iron core 1a
A high frequency magnetic dynamic coil IO1 resistor 11 formed by winding the
A low-pass filter I2 and a DC remover 13 are connected to both ends of the resistor 11 to form an output section.
本発明の電流検出装置は鉄心1aの磁化特性に直線関係
をもたせたことに大きな特徴をもつものであり、本発明
者は熱処理によって磁化特性を変えることができるアモ
ルファス磁性材料に着目し、その熱処理条件を検討した
。その結果、アモルファス磁性合金には各種の組成のも
のがあるがそれらのうち、磁気特性にすぐれた重置%で
82.OCo −2.0Ni−4,5Fe−8,55i
−3.0B合金薄帯を選び、これを直径36閤の円筒状
に成形し、非酸化性雰囲気で特定の温度条件の熱処理を
行なうことにより、本発明装置の鉄心として好適な磁化
特性が得られることを見出した。The current detection device of the present invention has a major feature in that it has a linear relationship with the magnetization characteristics of the iron core 1a.The present inventor focused on an amorphous magnetic material whose magnetization characteristics can be changed by heat treatment, and We considered the conditions. As a result, amorphous magnetic alloys have various compositions, and among them, 82% of them have excellent magnetic properties. OCo-2.0Ni-4,5Fe-8,55i
- By selecting a 3.0B alloy ribbon, forming it into a cylindrical shape with a diameter of 36 mm, and performing heat treatment under specific temperature conditions in a non-oxidizing atmosphere, magnetization characteristics suitable for the iron core of the device of the present invention can be obtained. I found out that it can be done.
第2図にこのアモルファス合金を200℃でFl理した
ときの立ち上りから飽和磁束近傍までの磁化特性線図を
示す。第2図から磁束密度は磁界がOから8 A /
m附近まで直線的に変化していることがわかる。このと
きの保磁力は0.5A/m程度である0本発明に有効な
鉄心の特性はそのヒステリシス曲線の部分であるが、こ
の合金は保磁力。FIG. 2 shows a magnetization characteristic diagram from the rise to near the saturation magnetic flux when this amorphous alloy is subjected to FL treatment at 200°C. From Figure 2, the magnetic flux density is 8 A /
It can be seen that it changes linearly up to around m. The coercive force at this time is about 0.5 A/m.0 The characteristic of the core that is effective in the present invention is its hysteresis curve, and this alloy has a coercive force.
残留磁束密度とも極めて小さいので、第2図の磁化特性
線と同じと見做すことができる。Since the residual magnetic flux density is also extremely small, it can be regarded as the same as the magnetization characteristic line in FIG.
第3図はこの合金の熱処理温度に対する残留磁東密度の
変化を示す線図であり、残留磁束密度は熱処理温度が1
70〜230’Cの範囲で低くなる。この合金を熱処理
して直線性が得られる程度は磁気ヒステリシス曲線の残
留磁束密度の小さい方がよくなっている。すなわち、1
70〜230’Cで熱処理を行なうことにより鉄心1a
の磁化特性に直線性を付与させることが可能となる。し
たがって本発明の電流検出装置では上述の組成を存する
アモルファス合金の鉄心1aに170〜230°Cの熱
処理を施して用いている。Figure 3 is a diagram showing the change in the residual magnetic flux density with respect to the heat treatment temperature of this alloy.
It becomes low in the range of 70-230'C. The degree to which linearity can be obtained by heat-treating this alloy is better as the residual magnetic flux density of the magnetic hysteresis curve is smaller. That is, 1
Iron core 1a is formed by heat treatment at 70 to 230'C.
It becomes possible to impart linearity to the magnetization characteristics of. Therefore, in the current detection device of the present invention, an amorphous alloy iron core 1a having the above-mentioned composition is used after being heat-treated at 170 to 230°C.
次に本発明装置の基本的な作動原理について述べる。第
1図において、−次導体2a、2bには電′tA6から
負荷7に被検出電流i、が流れ、高周波電源8から整2
it器9を通って高周波動磁コイル10と抵抗11に流
れる半波の高周波電流INにより、鉄心1aを常時動磁
しておく。このときの鉄心1aの磁界状態を模式的に磁
界と磁束密度との関係線図として第4図に示す、まず−
次導体2a、2bに被検出電流が流れていない場合の鉄
心1aは第4図(a)の太線のように磁化され高周波型
?a tイが流れている。次に一次導体2a、2bに正
の被検出電流11が流れると鉄心1aは第4図(b)の
太線に示すようにΔHの磁界が加わり、磁束密度は(B
、 −ΔB)の範囲で変化し、鉄心laと高周波動磁
コイル10のリアクタンスが小さくなった形となり、高
周波動磁電流i工は増大する。同様にして一次導体2a
、2bに負の被検出電流−iHが流れると鉄心1aには
−ΔHの磁界が加わって磁束密度の変化範囲は第4図(
C)の太線のように(B + +ΔB)となり、鉄心
1aと高周波動磁コイル10のリアクタンスが大きくな
った形になり、高周波励VA電流lHは低減する。した
がって高周波動磁電流i。は被検出電流11に対応して
増減する。Next, the basic operating principle of the device of the present invention will be described. In FIG. 1, a detected current i flows from the voltage tA6 to the load 7 through the negative conductors 2a and 2b, and from the high frequency power source 8,
The iron core 1a is always magnetized by a half-wave high-frequency current IN flowing through the high-frequency magneto-dynamic coil 10 and the resistor 11 through the IT device 9. The magnetic field state of the iron core 1a at this time is schematically shown in FIG. 4 as a relationship diagram between the magnetic field and magnetic flux density.
When the current to be detected is not flowing through the secondary conductors 2a and 2b, the iron core 1a is magnetized as shown by the thick line in FIG. 4(a) and is a high-frequency type? a t i is playing. Next, when the positive current to be detected 11 flows through the primary conductors 2a and 2b, a magnetic field of ΔH is applied to the iron core 1a as shown by the thick line in FIG. 4(b), and the magnetic flux density is (B
, −ΔB), the reactance of the iron core la and the high-frequency magneto-dynamic coil 10 becomes small, and the high-frequency magneto-dynamic current i increases. Similarly, the primary conductor 2a
When a negative detected current -iH flows through , 2b, a magnetic field of -ΔH is applied to the iron core 1a, and the range of change in magnetic flux density is as shown in Fig. 4 (
As shown by the thick line in C), (B + +ΔB) is obtained, and the reactance of the iron core 1a and the high-frequency magnetic dynamic coil 10 is increased, and the high-frequency excitation VA current lH is reduced. Therefore, the high frequency magnetodynamic current i. increases or decreases in accordance with the detected current 11.
第5図は電流波形図であり、第5図(a)は−次導体2
a、2bに被検出電流11が流れていない場合の高周波
励VA電流iHの波形を示し、波高値は一定であるが、
第5図(b)の正弦波の被検出電流i、が流れたとき、
高周波動磁電流i、の波形は第5図(C)のように波高
値が正弦波状に変化することを表わしている。この高周
波動磁電流を第1図の抵抗11の電圧降下分からとり出
し、低域濾波器12で高周波骨を除き、直流除去器13
で直流分を除くことにより被検出電流に対応した出力を
得ることができる。Fig. 5 is a current waveform diagram, and Fig. 5(a) shows the -order conductor 2.
A and 2b show the waveform of the high-frequency excitation VA current iH when the detected current 11 is not flowing, and the peak value is constant, but
When the sinusoidal detected current i of FIG. 5(b) flows,
The waveform of the high-frequency magnetodynamic current i shows that the peak value changes sinusoidally as shown in FIG. 5(C). This high frequency magnetodynamic current is taken out from the voltage drop of the resistor 11 in FIG.
By removing the DC component, an output corresponding to the detected current can be obtained.
また第1図には図示してないが本発明装置は微小電流を
検出することができるので、上述の原理に基づき一次導
体2aと2bをいずれも鉄心1aの中心孔を通し、差電
流を検出する零相電流検出用としてもれ電流を検出する
のにも有効に使用することが可能であり、この場合装置
の構成は2本の一次導体2a、2bを鉄心1aの中心孔
を通すことのほかは第1図と全く同様である。次に実際
にこの零相電流検出装置を作製した例について述べる。Although not shown in FIG. 1, the device of the present invention can detect minute currents, so based on the above-mentioned principle, both primary conductors 2a and 2b are passed through the center hole of iron core 1a, and the difference current is detected. It can be effectively used for detecting leakage current as well as for zero-phase current detection. The rest is exactly the same as in Figure 1. Next, an example of actually fabricating this zero-sequence current detection device will be described.
鉄心1aは前述のアモルファス合金薄帯を外径35.2
1n[a、 内径35 mm + 高さ1mの巻鉄心に
形成し、窒素ガス中で200°Cの熱処理を行ない接着
剤で強化したものである。鉄心1aの内径は負荷の電流
容量によって決まり、この例では負荷電流は3相、10
0〜200A程度になる。勿論検出するのは漏電電流で
あるから必要とする範囲は15〜500mAである。高
周波型B8は50KIlzの矩形波であり、低域ilt
波器12は遮断周波数をIKHzとし、直流除去器13
はコンデンサを用いた。第6図にこの装置の被検出電流
と出力の関係線図を示す。The iron core 1a is made of the aforementioned amorphous alloy ribbon with an outer diameter of 35.2 mm.
1n[a, inner diameter 35 mm + height 1 m wound core, heat treated at 200°C in nitrogen gas, and reinforced with adhesive. The inner diameter of the iron core 1a is determined by the current capacity of the load, and in this example, the load current is 3 phases, 10
It will be about 0 to 200A. Of course, what is detected is leakage current, so the required range is 15 to 500 mA. The high frequency type B8 is a 50Kilz rectangular wave, and the low frequency ilt
The wave generator 12 has a cutoff frequency of IKHz, and the DC remover 13
used a capacitor. FIG. 6 shows a relationship diagram between detected current and output of this device.
第6図のように被検出電流500mAまではよい直線性
を有し、高精度で検出することができる。この零相電流
検出装置では鉄心重量を従来装置の鉄心に比べて1/1
00以下にすることが可能となる。As shown in FIG. 6, the current to be detected has good linearity up to 500 mA and can be detected with high accuracy. This zero-phase current detection device has a core weight that is 1/1 that of the core of conventional devices.
00 or less.
高周波動磁電流の周波数は被検出電流の高周波成分と低
域濾波器12の遮断周波数とで決まり、この実施例の周
波数特性はlK11zで一3dBであり、商用周波数の
電流検出においては歪波形でもこの程度で十分である。The frequency of the high-frequency magnetodynamic current is determined by the high-frequency component of the current to be detected and the cutoff frequency of the low-pass filter 12, and the frequency characteristic of this embodiment is -3 dB at lK11z, and even with a distorted waveform in current detection at a commercial frequency. This level is sufficient.
さらに高周波側を検出する場合は高周波動磁電流の周波
数と低域濾波器12の遮断周波数とを高くすればよく、
この実施例の10倍程度までは可能である。また高周波
電流は半波を用いるのであるから、直流を一定時間毎に
切って矩形波状にしてもよく、高周波型tA8は一般的
なタイマー用ICを用いることができ、この場合整流器
9も不要となるから経済性の点で有利である。高周波電
源8の電圧は正弦波、矩形波、三角波などどのような波
形でも差支えな%s。Furthermore, when detecting the high frequency side, it is sufficient to increase the frequency of the high frequency magnetodynamic current and the cutoff frequency of the low pass filter 12.
It is possible to do up to about 10 times that of this embodiment. Furthermore, since the high frequency current uses a half wave, the DC current may be cut off at regular intervals to form a rectangular wave, and a general timer IC can be used for the high frequency type tA8, in which case the rectifier 9 is also unnecessary. Therefore, it is advantageous in terms of economy. The voltage of the high frequency power supply 8 can be any waveform such as a sine wave, rectangular wave, or triangular wave.
以上本発明装置による交流電流の検出につし1て述べた
が、被検出電流に直流分を含む場合は、被検出電流が流
れていないときの出力電圧を出力側で打消すようにする
。その例を第1図の一部構成図として第7図に模式的に
示す。抵抗11に接続される入力側は第1図と同じであ
るから図示を省略し、ここでは抵抗11の出力側のみを
示した。The detection of alternating current by the device of the present invention has been described above, but when the current to be detected includes a direct current component, the output voltage when the current to be detected is not flowing is canceled on the output side. An example thereof is schematically shown in FIG. 7 as a partial configuration diagram of FIG. 1. Since the input side connected to the resistor 11 is the same as in FIG. 1, illustration thereof is omitted, and only the output side of the resistor 11 is shown here.
第7図において出力部14aは低域濾波器12a、直流
基準電源15.差動増幅器16から構成し、被検出電流
が流れていないときは、濾波器12a力痰パよ高周波動
磁電流の直流分が出力され、これと同じ値の直流電圧を
直流基準電源15から出力し、これら両電圧を差動増幅
器16に入力して両電圧の差が出力されるように接続す
ることにより出力電圧を零にすることができる。このよ
うに装置を↑前底し設定すれば、被検出itsが直流、
交流、もしくは直流と交流の重畳したときのJ、zずれ
の場合も検出可能となる。In FIG. 7, the output section 14a includes a low-pass filter 12a, a DC reference power source 15. Consisting of a differential amplifier 16, when the current to be detected is not flowing, the filter 12a outputs the DC component of the high frequency magnetic dynamic current, and a DC voltage of the same value is output from the DC reference power source 15. However, by inputting these two voltages to the differential amplifier 16 and connecting the differential amplifier 16 so that the difference between the two voltages is output, the output voltage can be made zero. If the device is set up in this way, the detected objects will be DC,
It is also possible to detect J and Z deviations when alternating current or direct current and alternating current are superimposed.
第8図は第7図のように構成した装置にさらに鉄心1b
を加えたものの模式的な構成図である。Figure 8 shows an additional iron core 1b in the device configured as shown in Figure 7.
FIG.
すなわち、鉄心1aのほかにこれと同一仕様の鉄心1b
を付加し、2個の鉄心を備えたものである。That is, in addition to the iron core 1a, there is also an iron core 1b with the same specifications as this.
It is equipped with two iron cores.
ここでは高周波動磁コイルの説明は省略する。−次導体
2aによって両鉄心1aとtbが逆向きGこ磁化される
ように配置し、抵抗11.113の両端の電圧は出力部
14bの低域濾波器12a、12bを介して差動増幅器
16に入力され、差動増幅器16の出力は再入力の差に
なるように接続してしする。第8図では第7図で用いた
直流基準電TA15は不要となる。被検出電流i、が流
れないときは、抵抗11.11aの両端の電圧は同じで
あるから、差動増幅器16の出力は零である。被検出電
流11が流れると、鉄心1a、lbの磁化方向が互に逆
向きとなっているので抵抗11.llaの両端の電圧に
含まれる被検出電流分は位相が180度異なるため、差
動増幅器16の出力は両電圧の和になる。すなわち、こ
のように構成すれば鉄心1aが1個の場合に比べ、出力
を2倍にすることができ、さらに精度も向上する。なお
鉄心1bを付加するのは第1図の装置でも可能であり、
また第8図の装置が直流、交流1両者の重畳のいずれの
場合も検出できることは勿論である。A description of the high frequency magnetic dynamic coil will be omitted here. - The iron cores 1a and tb are arranged so that they are magnetized in opposite directions by the secondary conductor 2a, and the voltage across the resistor 11.113 is applied to the differential amplifier 16 via the low-pass filters 12a, 12b of the output section 14b. The output of the differential amplifier 16 is connected so as to be the difference between the two inputs. In FIG. 8, the DC reference voltage TA15 used in FIG. 7 is unnecessary. When the detected current i does not flow, the voltage across the resistor 11.11a is the same, so the output of the differential amplifier 16 is zero. When the detected current 11 flows, the magnetization directions of the iron cores 1a and lb are opposite to each other, so that the resistance 11. Since the detected current included in the voltage across lla has a phase difference of 180 degrees, the output of the differential amplifier 16 is the sum of both voltages. That is, with this configuration, the output can be doubled compared to the case where there is only one iron core 1a, and the accuracy is also improved. Note that it is also possible to add the iron core 1b using the device shown in Figure 1.
It goes without saying that the device shown in FIG. 8 can detect both direct current and alternating current (DC) superimposed.
従来の電流検出装置は鉄心の磁化特性が曲線部をもって
いるために抵抗を接続し、鉄心の寸法。Conventional current detection devices connect a resistor because the magnetization characteristics of the iron core have curved parts, and the dimensions of the iron core are measured.
重量を大きくしなければならなかったのに対し、本発明
の装置では実施例で述べたごとく、CO系アモルファス
合金に特定の温度条件で熱処理したものを鉄心に用いた
ことにより、鉄心の磁化特性が飽和磁束近傍までよい直
線性を示し、しかもこの鉄心を高周波動磁しておき、被
検出電流の磁界により鉄心の磁束密度が変化するので、
被検出電流に対応して増減する高周波動磁電流を動磁コ
イルに接続した抵抗の電圧降下としてとり出すことがで
き、被検出電流による高周波動磁電流の変り方が大きい
ことから大きな出力が得られる。その結果、本発明の装
置は鉄心の磁路断面積1重量を大幅に低減することがで
きるだけでなく、電流検出精度を向上させるという大き
な効果をもつものである。In contrast, in the device of the present invention, as described in the examples, the magnetization characteristics of the iron core are improved by using a CO-based amorphous alloy heat-treated under specific temperature conditions for the iron core. shows good linearity up to the vicinity of saturation magnetic flux, and this iron core is subjected to high-frequency dynamic magnetism, and the magnetic flux density of the iron core changes depending on the magnetic field of the detected current.
The high-frequency magneto-dynamic current that increases or decreases in response to the current to be detected can be extracted as a voltage drop across the resistor connected to the magneto-dynamic coil, and since the high-frequency magneto-dynamic current changes greatly depending on the current to be detected, a large output can be obtained. It will be done. As a result, the device of the present invention not only can significantly reduce the magnetic path cross-sectional area of the iron core per unit weight, but also has the great effect of improving current detection accuracy.
第1図は本発明装置の模式的な構成図、第2図は本発明
装置に用いる鉄心の熱処理後の磁化特性線図、第3図は
同じく鉄心の熱処理温度と残留磁束密度の関係線図、第
4図は同じく鉄心の使用時における磁化状態を模式的に
示した線図、第5図は高周波動磁電流と被検出電流の電
流波形図、第6図は本発明を零相電流検出装置に用いた
ときの被検出電流と出力電圧の関係線図、第7図は第1
図とは異なる例の本発明装置の模式的な部分構成図、第
8図は同じく2個の鉄心を用いた本発明装置の模式的な
構成図、第9図、第10図は従来の変流器の模式的な説
明図、第11図は従来装置の鉄心の磁化特性線図である
。
1、l a、1 b−鉄心、2a、2b−一次導体、5
、11. lla・・・抵抗、8・・・高周波電源、9
・・・整流器、10・・・高周波動磁コイル、12.1
2a、 12b・・・低域濾波器、13・・・直流除去
器、■、■土、14b、、、出力部、15・・・直流基
準電源、16・・・差動増幅器。
31 図
租界(AA)
′t62図
pIL処理1度(°C)
153 図
34 図
′E、5 図
オ皮稜工電テし尖女f)値(処A)
葛 6 図
′87 図
I58 図
第11 口Fig. 1 is a schematic configuration diagram of the device of the present invention, Fig. 2 is a diagram of magnetization characteristics after heat treatment of the iron core used in the device of the present invention, and Fig. 3 is a diagram of the relationship between the heat treatment temperature of the iron core and the residual magnetic flux density. , Fig. 4 is a diagram schematically showing the magnetization state when the iron core is used, Fig. 5 is a current waveform diagram of the high frequency magnetodynamic current and the current to be detected, and Fig. 6 is a diagram showing the current waveform of the high frequency magnetodynamic current and the current to be detected. Figure 7 is a relationship diagram between detected current and output voltage when used in the device.
FIG. 8 is a schematic partial configuration diagram of the device of the present invention which is a different example from the one shown in the figure. FIG. 8 is a schematic diagram of the device of the present invention using two iron cores. FIGS. FIG. 11, which is a schematic explanatory diagram of a flow vessel, is a magnetization characteristic diagram of an iron core of a conventional device. 1, l a, 1 b - iron core, 2a, 2b - primary conductor, 5
, 11. lla...Resistance, 8...High frequency power supply, 9
... Rectifier, 10 ... High frequency dynamic magnetic coil, 12.1
2a, 12b...Low pass filter, 13...DC remover, ■, ■Sat, 14b,... Output section, 15...DC reference power supply, 16...Differential amplifier. 31 Figure Concession (AA) 't62 Figure pIL treatment 1 degree (°C) 153 Figure 34 Figure 'E, 5 Figure Okinryo Kogyo Denteshi Senme f) Value (Process A) Kuzu 6 Figure '87 Figure I58 Figure 11th mouth
Claims (1)
中心孔を通り、かつ組成が重量%で82.0Co−2.
0Ni−4.5Fe−8.5Si−3.0Bを有するア
モルファス合金薄帯から形成して170〜230℃で熱
処理した少くとも一つの筒状の鉄心, ii)高周波電源に直列に接続して配置する整流器,前
記鉄心の肉厚部に巻回した高周波動磁コイルおよび抵抗
, iii)前記抵抗の両端に接続した出力部 を備えたことを特徴とする電流検出装置。[Claims] 1) i) At least one of the primary conductors through which the current to be detected flows passes through the center hole, and the composition is 82.0 Co-2.
at least one cylindrical iron core formed from an amorphous alloy ribbon having 0Ni-4.5Fe-8.5Si-3.0B and heat-treated at 170-230°C; ii) arranged in series with a high frequency power source; 1. A current detection device comprising: a rectifier having a rectifier, a high-frequency magnetic dynamic coil wound around the thick part of the iron core, and a resistor; iii) an output section connected to both ends of the resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139766A JPH01308004A (en) | 1988-06-07 | 1988-06-07 | Current detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139766A JPH01308004A (en) | 1988-06-07 | 1988-06-07 | Current detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01308004A true JPH01308004A (en) | 1989-12-12 |
Family
ID=15252898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63139766A Pending JPH01308004A (en) | 1988-06-07 | 1988-06-07 | Current detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01308004A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005537631A (en) * | 2002-02-08 | 2005-12-08 | メトグラス・インコーポレーテッド | Current transformer having a core mainly composed of amorphous Fe |
JP2010533856A (en) * | 2007-07-19 | 2010-10-28 | エアバス オペラシオン(エス.ア.エス) | Improved current sensor |
-
1988
- 1988-06-07 JP JP63139766A patent/JPH01308004A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005537631A (en) * | 2002-02-08 | 2005-12-08 | メトグラス・インコーポレーテッド | Current transformer having a core mainly composed of amorphous Fe |
JP2010533856A (en) * | 2007-07-19 | 2010-10-28 | エアバス オペラシオン(エス.ア.エス) | Improved current sensor |
US8773112B2 (en) | 2007-07-19 | 2014-07-08 | Airbus Operations Sas | Current sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5223789A (en) | AC/DC current detecting method | |
CN103969488B (en) | Current transformer and its current detection circuit | |
JP2016181620A (en) | Magnetic core for current transformer, current transformer and watthour meter | |
JP2007316042A (en) | Direct current sensor and direct-current detector | |
EP1851557A1 (en) | Current sensor with magnetic toroid | |
JP2021063711A (en) | Double solenoid magnetic fluid magnetic field sensor and double solenoid magnetic fluid current sensor | |
JP6024162B2 (en) | Current detector | |
JP2012233718A (en) | Current detection device | |
JPH01308004A (en) | Current detector | |
Bruce et al. | Remanent flux in current-transformer cores | |
US2811689A (en) | Magnetic transformer apparatus | |
JP2586156B2 (en) | AC / DC dual-purpose current detection method | |
JPH01158365A (en) | Method and apparatus for detecting small current | |
Geyger | New Type of Flux‐Gate Magnetometer | |
US2929017A (en) | Quadripole magnetic amplifier | |
JPH03221886A (en) | Method for measuring core loss | |
WO2015070345A1 (en) | Simultaneous measurement technique for line current, geomagnetically induced currents (gic) and transient currents in power systems | |
Wilk et al. | Nonlinear model of a wound iron core traction transformer with the account of magnetic | |
JPH02196967A (en) | Small current detection method | |
de Souza et al. | A novel nanocrystalline-based current transformer working on saturated region | |
JPH02203279A (en) | Detector for minute current | |
JPH0247557A (en) | Current detecting apparatus | |
US3333192A (en) | Second harmonic magnetic modulator measuring system | |
JPH01285866A (en) | Small current detector | |
JPH0440372A (en) | Detection of current |