JPH01158365A - Method and apparatus for detecting small current - Google Patents

Method and apparatus for detecting small current

Info

Publication number
JPH01158365A
JPH01158365A JP63116192A JP11619288A JPH01158365A JP H01158365 A JPH01158365 A JP H01158365A JP 63116192 A JP63116192 A JP 63116192A JP 11619288 A JP11619288 A JP 11619288A JP H01158365 A JPH01158365 A JP H01158365A
Authority
JP
Japan
Prior art keywords
iron core
current
magnetic
small current
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63116192A
Other languages
Japanese (ja)
Inventor
Terushi Katsuyama
勝山 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63116192A priority Critical patent/JPH01158365A/en
Publication of JPH01158365A publication Critical patent/JPH01158365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To enhance sensitivity and accuracy, by detecting the small current of the conductor passing through the center hole of a cylindrical iron core using a high permeability material whose magnetic histeresis curve has a square- shaped characteristic from the induced voltage of the detection coil wound around the iron core. CONSTITUTION:An iron core 1a composed of a high permeability material is formed into a closed magnetic path and the conductor 2a passing through the center hole of the iron core 1a is connected between the power supply of an apparatus to be detected and load. The high frequency exciting coil 7 connected to a high frequency power supply 10 through a control circuit 9 and the detection coil 12 connected to an output part 15 are wound around the iron core 1a through a control circuit 9. The exciting current of a high frequency exciting part 11 is set to the linear inclined part in the vicinity of the coercive force of the magnetic histeresis curve of the iron core 1a and, when a small magnetic field is applied by a conductor 2a, large change is imparted to a magnetic field and large voltage is induced in the coil 12. Therefore, a small current can be detected with high sensitivity and high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は漏電遮断器などに用いられ、鉄心の磁気現象を
利用した小電流検出方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a small current detection method and device that are used in earth leakage circuit breakers and the like and utilize magnetic phenomena of an iron core.

〔従来の技術〕[Conventional technology]

小電流検出装置の主な用途として例えば漏電遮断器など
の零相変流器が知られている。第15図は零相変流器の
作動原理を説明するために、その要部構成を示した模式
図である。第15図において、高遇磁率を有する環状の
鉄心1の中心孔を通る2本の導体2.鉄心lに巻回した
検出コイル3の両端近傍に接続する抵抗4で構成され、
導体2の両端はそれぞれ交流電源5および負荷6に接続
されている。正常な状態では2本の導体2を流れ矢印で
方向を示した往復の電流1 、、 I 1の値は同じで
あり、方向が逆であるから鉄心1は磁化されることなく
、検出コイル3には電圧が誘起されない。
2. Description of the Related Art Zero-phase current transformers such as earth leakage circuit breakers are known as a main use of small current detection devices. FIG. 15 is a schematic diagram showing the main structure of a zero-phase current transformer in order to explain its operating principle. In FIG. 15, two conductors 2. It consists of a resistor 4 connected near both ends of a detection coil 3 wound around an iron core l,
Both ends of the conductor 2 are connected to an AC power source 5 and a load 6, respectively. Under normal conditions, the values of the reciprocating currents 1 , , I 1 flowing through the two conductors 2 and whose directions are indicated by arrows are the same, and since the directions are opposite, the iron core 1 is not magnetized and the detection coil 3 no voltage is induced in

負荷6側で漏電が生じると、電流! 、、 I gの値
が変り、その差電流が鉄心1を磁化し、このとき発生す
る誘起電圧によって小抵抗4に電流が流れ、小抵抗4の
両端の電圧降下分を制御信号として取り出すことができ
る。
When a leakage occurs on the load 6 side, the current! ,, The value of I g changes, the difference current magnetizes the iron core 1, the induced voltage generated at this time causes current to flow through the small resistor 4, and the voltage drop across the small resistor 4 can be taken out as a control signal. can.

なお第15図は単相の場合を示したが3相の場合は導体
2を3本として表わせばよく、原理的には単相と同じで
ある。
Although FIG. 15 shows the case of single phase, in the case of three phases, the conductor 2 may be represented as three, and the principle is the same as that of single phase.

この零相変流器の検出電流は5〜30■Aと小さいため
鉄心にFe−Ni合金、例えば商品名パーマロイのよう
な高透磁率材を用いても第16図に示した磁化曲線のご
とくその検出磁界も小さいので得られる磁束も低く、検
出コイル3に誘起される電圧は非常に小さい、したがっ
てこのような零相変流器はさらに高感度のものが好まし
く、また使用機器によって小型化することが強(望まれ
ている。
The detected current of this zero-phase current transformer is as small as 5 to 30 A, so even if the iron core is made of a high magnetic permeability material such as Fe-Ni alloy, such as Permalloy (trade name), the magnetization curve shown in Figure 16 will not change. Since the detected magnetic field is small, the magnetic flux obtained is also low, and the voltage induced in the detection coil 3 is very small. Therefore, it is preferable that such a zero-phase current transformer has higher sensitivity, and it can be made smaller depending on the equipment used. It is strongly (desired).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、以上の構造をもつ零相変流器の感度を高
め、より低い電流まで検出するためには以下のような問
題がある。出力電圧を太き(するには例えば第15図の
鉄心1の磁路断面積を太き(する方法や導体2を鉄心l
に多数巻回して鉄心1に印加する磁界を大きくする方法
などがあるが、鉄心1の磁路断面積を太き(するのは、
当然のことながら装置の寸法増大につながり、導体2の
鉄心1への巻数を多くするのは、この導体2には主回路
の電流が流れるので線径を大きくしてあり、同様に鉄心
1の寸法が大きくなるのを避けることができない、した
がって通常は小型の鉄心1の中心孔に導体2を通し、検
出コイル3の巻数を多くしてその誘起電圧を電子回路に
より増幅する方法がとられている。しかし、この方法に
より検出コイル3を1000回程度巻回しても5■A以
下を検出することは非常に困難である。また検出コイル
3を1000回程度巻くと、細線を用いたとしても鉄心
1を含むコイル部の外径寸法が大きくなる。検出コイル
3に用いる被ri銅線の径は原理的には小さくてもよい
が、S線作業のとき線自体の強度が必要であるから、あ
まり細いものを用いることはできない0以上のことから
、検出コイル3の巻回数を増すことなく、すなわち鉄心
1を含む検出コイル部の外径寸法が大きくならず、5■
A以下の小電流が検出可能であることが望ましい。
However, in order to increase the sensitivity of the zero-phase current transformer having the above structure and detect even lower currents, there are the following problems. To increase the output voltage (for example, increase the magnetic path cross-sectional area of iron core 1 in Fig. 15) or change the conductor 2 to
There is a method of increasing the magnetic field applied to the iron core 1 by winding the iron core 1 a large number of times.
Naturally, this leads to an increase in the dimensions of the device, and the reason why the number of turns of the conductor 2 around the iron core 1 is increased is because the current of the main circuit flows through this conductor 2, so the wire diameter is increased, and similarly, the wire diameter is increased. An increase in size is unavoidable, and therefore the method is usually to pass the conductor 2 through the center hole of a small iron core 1, increase the number of turns of the detection coil 3, and amplify the induced voltage using an electronic circuit. There is. However, even if the detection coil 3 is wound approximately 1,000 times using this method, it is very difficult to detect less than 5 A. Further, when the detection coil 3 is wound approximately 1000 times, the outer diameter of the coil portion including the iron core 1 becomes large even if a thin wire is used. The diameter of the ri copper wire used for the detection coil 3 may be small in principle, but since the strength of the wire itself is required for S wire work, it is impossible to use a wire that is too thin. , without increasing the number of windings of the detection coil 3, that is, without increasing the outer diameter of the detection coil portion including the iron core 1.
It is desirable that small currents of A or less can be detected.

度かつ高精度に小電流を検出することができる小電流検
出装置およびその装置を提供することにある。
An object of the present invention is to provide a small current detection device that can detect small currents with high precision and accuracy, and the device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は閉磁路の筒状鉄心の中心孔を通る導体に流れる
小電流を検出するために、被検出電流の電源とは別の高
周波電源で鉄心の磁気ヒステリシス曲線における正側磁
界はほぼ飽和する点、負側磁界は保磁力近傍の微分12
1m率の大きい点にそれぞれ設定し、鉄心を励磁してお
き、これに被検出電流の小電流が加わるとa磁界側の僅
かな変化によって鉄心の磁束が大きく変化し、小電流に
対しても大きな誘起電圧が得られることから、装置の構
成は以下のように、鉄心に巻回した高周波励磁コイルを
、鉄心に生ずる正負青磁界を所定の大きさに定める制御
回路を介して高周波電源に接続した高周波励磁部および
高周波励磁コイルとは別に鉄心に巻回した検出コイルに
接続し、高周波lll磁部による磁束と導体の被検出電
流による磁束とが重畳される全磁束による誘起電圧を検
出して導体電流の誘起電圧骨を分離する回路をも出力部
を備lえた小電流検出装置である。
In order to detect a small current flowing through a conductor passing through the center hole of a cylindrical core in a closed magnetic circuit, the present invention uses a high-frequency power source separate from the power source of the current to be detected, so that the positive magnetic field in the magnetic hysteresis curve of the core is almost saturated. point, the negative magnetic field is the differential 12 near the coercive force
1m ratio is set at each point, and the iron core is excited. When a small current of the current to be detected is added to this, the magnetic flux of the iron core changes greatly due to a slight change in the a magnetic field side, and even for small currents. Since a large induced voltage can be obtained, the device's configuration is as follows: A high-frequency excitation coil wound around an iron core is connected to a high-frequency power source via a control circuit that sets the positive and negative celadon magnetic fields generated in the iron core to a predetermined magnitude. It is connected to a detection coil wound around an iron core separately from the high frequency excitation section and the high frequency excitation coil, and detects the induced voltage due to the total magnetic flux in which the magnetic flux due to the high frequency Ill magnetic section and the magnetic flux due to the current to be detected in the conductor are superimposed. This is a small current detection device that also includes an output section and a circuit that separates the induced voltage of conductor current.

〔作用〕[Effect]

本発明の小電流検出方法およびその装置は以上のように
、高周波励磁部による励磁電流(磁界)を、鉄心の磁気
ヒステリシス曲線の保磁力近傍の直線部の傾斜すなわち
微分透磁率の大きい点に設定することができるので、導
体の被検出電流による小さな磁界が加わったときも磁束
は大幅な変化を示し、検出コイルには大きな電圧が誘起
する。
As described above, the small current detection method and device of the present invention set the excitation current (magnetic field) by the high-frequency excitation section to the slope of the straight line near the coercive force of the magnetic hysteresis curve of the iron core, that is, to the point where the differential permeability is large. Therefore, even when a small magnetic field due to the current to be detected in the conductor is applied, the magnetic flux shows a significant change, and a large voltage is induced in the detection coil.

しかも鉄心の磁化を励磁コイルにより高周波電流で行な
っているから磁束変化に要する時間が速い。
Moreover, since the core is magnetized using a high-frequency current using an excitation coil, the time required for the magnetic flux to change is fast.

したがって本発明の方法およびその装置では常時高周波
励磁部による磁界をかけておき、これに導体の被検出電
流による磁界を重畳させたときの全磁束による誘起電圧
を検出し、さらに高周波分。
Therefore, in the method and device of the present invention, a magnetic field is constantly applied by a high-frequency excitation section, and when a magnetic field due to a current to be detected in a conductor is superimposed on this magnetic field, the induced voltage due to the total magnetic flux is detected, and the induced voltage due to the total magnetic flux is detected.

直流分を除去することにより出力部端から正しい検出電
流波形をもつ出力電圧を取り出すことができ、以上のこ
とから、高感度、高精度で、より小さい電流の検出を可
能とする。
By removing the DC component, an output voltage with a correct detection current waveform can be extracted from the output end, and from the above, it is possible to detect smaller currents with high sensitivity and precision.

〔実施例〕〔Example〕

以下実施例に基づき本発明を説明する。 The present invention will be explained below based on Examples.

第1図は本発明による小電流検出装置の要部構成を説明
するための模式図であって、以下の図に本発明の方法も
含めて述べる。まず第1図において鉄心1aは磁気ヒス
テリシス曲線が角形特性を示し高i3磁率を有する材料
からなり、閉磁路の例えば環状に形成されている。この
鉄心1aの中心孔を通って導体2aが被検出装置の電源
と負荷に接続されているが、これらの図示は省略しであ
る。また零相電流を検出するには導体2aは2本もしく
は3本になり、各導体間の差電流を利用するが、原理的
には単線の小電流を検出するのと同じであるから、ここ
では導体2aは1本で表わし、方向を矢印で示した被検
出電流をIoとして以後の説明を進める。また鉄心1a
にはその肉厚部に巻回した高周波励磁コイル7を、例え
ば直列に接続した整流器8aと抵抗R11整流器8bと
抵抗R1の2組が並列に接続されてなる制御回路9を介
して高周波電源10に接続した高周波励磁部11を設け
てあり、一方高周波励磁コイル7とは別に鉄心1aに巻
回した検出コイル12は整流器8cを介在させて低域濾
波器13.直流除去器14の順に接続した出力部15を
形成する。
FIG. 1 is a schematic diagram for explaining the main part configuration of a small current detection device according to the present invention, and the method of the present invention will also be described in the following figures. First, in FIG. 1, the iron core 1a is made of a material whose magnetic hysteresis curve exhibits rectangular characteristics and has a high i3 magnetic coefficient, and is formed into a closed magnetic path, for example, in the shape of a ring. A conductor 2a is connected to the power supply and load of the detected device through the center hole of the iron core 1a, but these are not shown. In addition, to detect zero-sequence current, there are two or three conductors 2a, and the difference current between each conductor is used, but the principle is the same as detecting a small current in a single wire, so here In the following description, the conductor 2a is represented by one conductor, and the current to be detected whose direction is indicated by an arrow is Io. Also, iron core 1a
The high-frequency excitation coil 7 wound around the thick part of the high-frequency excitation coil 7 is connected to the high-frequency power supply 10 via a control circuit 9 formed by, for example, two sets of a rectifier 8a, a resistor R11, a rectifier 8b, and a resistor R1 connected in series. A high-frequency excitation section 11 connected to the high-frequency excitation coil 7 is provided, and a detection coil 12 wound around the iron core 1a separately from the high-frequency excitation coil 7 is connected to a low-pass filter 13. with a rectifier 8c interposed therebetween. An output section 15 is formed in which the DC remover 14 is connected in this order.

直流除去器14はコンデンサまたは絶縁変圧器で容易に
構成することができる0以上のごとく本発明装置は鉄心
1aに励磁コイル7を有する高周波励磁部11.検出コ
イル12を有する出力部15の二つの要素を備えたもの
であり、使用に際して鉄心1aの中心孔に被検出装置の
導体2aを通してそれを流れる小電流1oを検出するも
のである。
The DC remover 14 can be easily constructed with a capacitor or an insulating transformer.As described above, the device of the present invention has a high frequency excitation section 11. which has an excitation coil 7 on the iron core 1a. It is equipped with two elements: an output section 15 having a detection coil 12, and in use, detects a small current 1o flowing through a conductor 2a of a device to be detected through a center hole of an iron core 1a.

次に第2図、第3図は鉄心1aの磁気ヒステリシス曲線
を示したものであり、第2図は磁界の強さ(H)と磁束
密度(B)との関係でこの磁気ヒステリシス曲線が単に
角形性をもつことを示した概念図であるが、第3図では
以下の説明の便宜上第2図を拡大しである。第3図にお
けるB、〜−B4の直線部分はHの僅かな変化でBが太
き(変り、この磁束の変化による誘起電圧は磁束をφ1
時間をtとするとdφ/dtに比例するので、磁化電流
が高周波になるほど大きくなる0本発明はこれらの点を
有効に利用した所に特徴をもつものであり、以下その作
動について第1図の装置構成と第3図の磁気ヒステリシ
ス曲線およびその他必要な図面を加え、これらを併用し
て説明する。
Next, Figures 2 and 3 show the magnetic hysteresis curve of the iron core 1a, and Figure 2 shows that the magnetic hysteresis curve is simply the relationship between the magnetic field strength (H) and the magnetic flux density (B). Although this is a conceptual diagram showing the squareness, FIG. 3 is an enlarged version of FIG. 2 for convenience of explanation below. In the straight line section B, ~-B4 in Fig. 3, B becomes thicker due to a slight change in H (changes), and the induced voltage due to this change in magnetic flux increases the magnetic flux by φ1.
If time is t, it is proportional to dφ/dt, so the higher the frequency, the larger the magnetizing current becomes.The present invention is characterized by the effective use of these points, and its operation will be explained below as shown in Fig. 1. The device configuration, the magnetic hysteresis curve shown in FIG. 3, and other necessary drawings will be added to the description.

鉄心1aは通常は第1図の高周波励磁部11の高周波電
流により、磁界は第3閏の正側ではHa、負側は−H3
まで加わっている。その波形は第4図に示したように正
側の方が負側より高周波励磁電流lが大きい、磁界のH
a、  H+ は制御回路9の整流器8a+8b、抵抗
R+、R*を適切に選ぶことによって設定する。なおこ
の抵抗R+ 、 Rzは導体2aの電流すなわち被検出
電流!0による高周波励磁コイルlの変動を防ぐために
も必要なものである。抵抗R++R8が小さいと高周波
励磁電流iが被検出電流1゜の大きさによって変るから
、抵抗R+、Riのインピーダンスは高周波励磁コイル
7のインピーダンスの2倍以上とするのがよい。
The magnetic field of the iron core 1a is normally Ha on the positive side of the third leap and -H3 on the negative side due to the high frequency current of the high frequency excitation section 11 shown in FIG.
It has been added up to. The waveform is as shown in Figure 4, where the high-frequency excitation current l is larger on the positive side than on the negative side, and the magnetic field H
a and H+ are set by appropriately selecting rectifiers 8a+8b and resistors R+ and R* of control circuit 9. Note that these resistors R+ and Rz are the current of the conductor 2a, that is, the current to be detected! This is also necessary to prevent fluctuations in the high frequency excitation coil l due to zero. If the resistor R++R8 is small, the high frequency excitation current i changes depending on the magnitude of the detected current 1°, so the impedance of the resistors R+ and Ri is preferably at least twice the impedance of the high frequency excitation coil 7.

このとき鉄心1aに加わる磁束、磁界は第3図における
B+*(Hm)、B +(−Ht)t  Bm(Hs)
の順に矢印方向に変化するヒステリシス曲線Aを画き、
検出コイル12に電圧が誘起している。その電圧波形を
第5図talに示す0次に導体2aに交流正弦波電流が
流れると、この電流1oによって正側に磁界ΔH1負側
は磁界−ΔBが発生し、その磁界波形は第5図中)であ
る、そしてΔH1−ΔHに対応して磁束が正負両方向に
それぞれΔB変化し、磁気ヒステリシス曲線は、正側Δ
Hは第3図において点線の矢印で示したCのループとな
り、負側−ΔBは一点鎖線の矢印で示したDのループを
画く、誘起電圧はΔBが正方向では小さく、負方向では
大きくなり、電圧波形は第5図Telに示したように変
調波になる。なお第5図の横軸はいずれも(al (b
) (C)に共通な時間軸としである。
At this time, the magnetic flux and magnetic field applied to the iron core 1a are B + * (Hm) and B + (-Ht)t Bm (Hs) in Fig. 3.
Draw a hysteresis curve A that changes in the direction of the arrow in the order of
A voltage is induced in the detection coil 12. When an AC sinusoidal current flows through the zero-order conductor 2a, the voltage waveform of which is shown in FIG. (middle), and the magnetic flux changes by ΔB in both positive and negative directions corresponding to ΔH1-ΔH, and the magnetic hysteresis curve is on the positive side Δ
H forms the loop of C shown by the dotted arrow in Figure 3, and the negative side -ΔB forms the loop of D shown by the dashed-dotted arrow.The induced voltage is small when ΔB is in the positive direction, and large when ΔB is in the negative direction. , the voltage waveform becomes a modulated wave as shown in FIG. Note that the horizontal axis in Figure 5 is (al (b
) (C) has a common time axis.

第5図(C)の波形から出力部15の低域濾波器13で
高周波分、直流除去器14で直流分を除くことにより、
検出電流波形を正確に再現して求めることができる。し
たがって本発明によれば以上の作動原理から明らかなよ
うに、歪波形、矩形波などいかなる波形をもつ小電流に
対しても検出可能である。
By removing the high frequency component from the waveform of FIG. 5(C) with the low-pass filter 13 of the output section 15 and the DC component with the DC remover 14,
The detected current waveform can be accurately reproduced and determined. Therefore, according to the present invention, as is clear from the above operating principle, it is possible to detect a small current having any waveform such as a distorted waveform or a rectangular wave.

本発明は鉄心1aの磁気ヒステリシス曲線の第2象限と
第3象限の間の直線部分、第3図ではBm−〜−B9の
磁束が磁界の僅かな変化で大きく変ることを利用してい
るが、鉄心1aのこの磁気特性の有効な使い方は、前に
述べた高周波励磁により得られ基準となるヒステリシス
曲線Aを定める磁界を、検出電流が小さいときはΔBが
直線部を外れない範囲でB9にできるだけ近くなるよう
に設定するのがよい、このようにすると高周波励磁によ
り常時誘起する電圧を低くすることができるので、この
誘起電圧と検出電流1oによる誘起電圧との比が大きく
なって検出精度が向上し、鉄心1aの損失も低いという
点で有利である。また基準となるAループの磁界を−H
cすなわち鉄心1aのB−0の保磁力に設定すると、そ
のとき検出可能な電流値が本発明における検出限界電流
である。
The present invention utilizes the fact that the magnetic flux in the straight line between the second and third quadrants of the magnetic hysteresis curve of the iron core 1a, Bm- to -B9 in FIG. 3, changes greatly with a slight change in the magnetic field. , the effective use of this magnetic property of the iron core 1a is to set the magnetic field that is obtained by the high-frequency excitation described above and determines the reference hysteresis curve A to B9 within a range where ΔB does not deviate from the linear section when the detected current is small. It is best to set them as close as possible. In this way, the voltage constantly induced by high frequency excitation can be lowered, and the ratio between this induced voltage and the induced voltage due to the detection current 1o increases, increasing the detection accuracy. This is advantageous in that the loss of the iron core 1a is also low. Also, the magnetic field of the A loop, which is the reference, is −H
When the coercive force is set to c, that is, B-0 of the iron core 1a, the detectable current value at that time is the detection limit current in the present invention.

高周波励磁電流lの波形は第4図に示したように正弦波
として説明したが、ほかの波形であっても差し支えない
、この電流iの正負の値の設定は、別に直流バイアスを
加えてもよく、例えば高周波電源10にオフセントを加
えて第6図のように点線で示したはじめの零点を実線ま
で移動するなどの方法をとってもよい、第6図のように
すると制御回路9の整流器8a、8bや抵抗Rr 、 
R*などの使用数量を減らすことができる。
Although the waveform of the high-frequency excitation current l has been described as a sine wave as shown in Figure 4, other waveforms may be used. For example, you may add an offset to the high frequency power supply 10 and move the initial zero point shown by the dotted line to the solid line as shown in FIG. 6. If you do this as shown in FIG. 8b and resistance Rr,
The quantity of R* etc. used can be reduced.

高周波励磁電流iの周波数は原理的には高いほどよいが
、実用上は被検出電流の周波数とその高調波成分、要求
される検出精度、鉄心材料の周波数特性などを堪案して
決めなければならない、この周波数は商用周」モミ流を
検出するときは5 kHz、 +程度、高次の周波数成
分を含む場合は20kHz程度である。鉄心1aの磁気
特性は既に述べた第3図から明らかなように、高周波電
流の磁化に対してヒステリシス曲線の角形性が良好であ
り、け東密度の絶対値が大きく、保持力の小さいもので
あることが必要である。
In principle, the higher the frequency of the high-frequency excitation current i, the better, but in practice it must be determined by carefully considering the frequency of the current to be detected, its harmonic components, the required detection accuracy, the frequency characteristics of the iron core material, etc. This frequency is about 5 kHz when detecting a commercial frequency stream, and about 20 kHz when high-order frequency components are included. As is clear from Fig. 3 already mentioned, the magnetic properties of the iron core 1a are such that the hysteresis curve has good squareness with respect to the magnetization of high-frequency current, the absolute value of the core density is large, and the coercive force is small. It is necessary that there be.

これまで被検出電流1oが交流の場合について述べてき
たが、出力部15の回路を変えることにより直流を検出
することも可能である。第7図はその要部回路構成図を
示したものであり、導体2aと高周波励磁部11は第1
図と同じであるから図示を省略し、第7図により回路構
成を作用とともに述べる0図示してない導体2aに被検
出電流が流れていない状態で、図示してない高周波励磁
部11による検出コイル12の誘起電圧を整流器8c、
低域濾波器13aで正の成分として、差動増幅器16の
e端子に入力し、この電圧と同じ値の基準電圧を直流電
源17により差動増幅器16のΦ端子に入力することに
より差動増幅器16の出力はOになる一次に図示してな
い導体2aに正の電流が流れると、検出コイル12の誘
起電圧は小さくなり、基準電圧との差は負の値になるが
、差動増幅器16の出力は正負が逆転されるので、差動
増幅器16に゛2被検出電流に比例した正の電圧が得ら
れる。被検出電流が負の場合もこれと同様の原理で電流
に比例した負電圧を得ることができる。かくして本発明
によれば被検出電流が直流のみ、直流と交流の重なった
とき、交流のみのいずれかの場合でも検出することがで
きる。なお直流のみ検出するときは第7図の低域濾波器
13aの部分を平滑回路に変えてもよい。
Although the case where the detected current 1o is AC has been described so far, it is also possible to detect DC by changing the circuit of the output section 15. FIG. 7 shows the circuit configuration diagram of the main part, and the conductor 2a and the high frequency excitation section 11 are connected to the first
Since it is the same as the figure, the illustration is omitted, and the circuit configuration will be described with reference to FIG. rectifier 8c,
The low-pass filter 13a inputs the positive component to the e terminal of the differential amplifier 16, and a reference voltage having the same value as this voltage is input to the Φ terminal of the differential amplifier 16 by the DC power supply 17. The output of the differential amplifier 16 becomes O. When a positive current flows through the primary conductor 2a (not shown), the induced voltage in the detection coil 12 becomes small and the difference from the reference voltage becomes a negative value, but the differential amplifier 16 Since the positive and negative outputs of the outputs are reversed, a positive voltage proportional to the current to be detected is obtained at the differential amplifier 16. Even when the current to be detected is negative, a negative voltage proportional to the current can be obtained using the same principle. Thus, according to the present invention, it is possible to detect whether the current to be detected is only a direct current, a combination of a direct current and an alternating current, or only an alternating current. Note that when only direct current is detected, the low-pass filter 13a in FIG. 7 may be replaced with a smoothing circuit.

以上本発明の方法を用いた小電流検出装置の構成と作動
について基本的な事柄を説明したが、次に本発明の具体
的な事例を再び第1図、第3図を参照して述べる。鉄心
1aは重量%で82.OCo −2,ONl −4,5
Fe −8,5SL −3,OBの組成を有し、所定の
熱処理を行なったCo系アモルファス合金薄帯を用いて
これを円筒状の巻鉄心として形成した。このアモルファ
ス合金は磁気特性がすぐれている上に、磁歪が非常に小
さいために、磁気特性に対する応力の影響が非常に小さ
く、取り扱いが容易であり、鉄心1aとして用いるには
好適である。
The basic matters regarding the configuration and operation of a small current detection device using the method of the present invention have been explained above, and next, a specific example of the present invention will be described with reference to FIGS. 1 and 3 again. Iron core 1a has a weight percentage of 82. OCo −2, ONl −4,5
A Co-based amorphous alloy ribbon having a composition of Fe-8,5SL-3,OB and subjected to a predetermined heat treatment was used to form a cylindrical wound core. This amorphous alloy has excellent magnetic properties and has very low magnetostriction, so the influence of stress on the magnetic properties is very small, and it is easy to handle, making it suitable for use as the iron core 1a.

鉄心1aの寸法は外径20tm、内径15fl、高さ 
(薄帯の幅) 2mである。導体2aは直径2fiφの
銅線を用いた。高周波励磁コイル7および検出コイル1
2はいずれも直径0.1fiφのホルマール絶縁銅線を
用いて鉄心1aの肉厚部にそれぞれ20回、40回巻回
して作製した。高周波励磁コイル7の高周波電流は小さ
いので、この程度の細線を用いても十分である。高周波
励磁コイルは正弦波100kHzであり、負側の磁界は
第3図のB、に対応する磁界−H4より負方向に約3 
A / m移動した点に設定した。なお被検出電流が正
弦波における実効値30mAの場合の第3図のΔHの絶
対値はほぼ2.4A/mとなる。
The dimensions of the iron core 1a are outer diameter 20tm, inner diameter 15fl, and height.
(Width of thin strip) 2m. A copper wire with a diameter of 2fiφ was used as the conductor 2a. High frequency excitation coil 7 and detection coil 1
In each case, formal insulated copper wire with a diameter of 0.1 fiφ was wound 20 times and 40 times around the thick part of the iron core 1a. Since the high frequency current of the high frequency excitation coil 7 is small, it is sufficient to use such a thin wire. The high frequency excitation coil has a sine wave of 100kHz, and the magnetic field on the negative side is about 3 in the negative direction from the magnetic field -H4 corresponding to B in Figure 3.
It was set at a point moved by A/m. Note that when the detected current is a sine wave with an effective value of 30 mA, the absolute value of ΔH in FIG. 3 is approximately 2.4 A/m.

検出コイル12の誘起電圧は、整流器8cで磁束が負方
向に変化する場合の誘起電圧の正成分のみとした後、遮
断周波数が1 kHzの低域濾波器13を通して高周波
骨を除き、直流除去器14により、直流分を除いた。な
お直流除去器14にはコンデンサを使用した。検出コイ
ル12の誘起電圧は正負の両側を用いて出力を2倍にす
ることも可能であるが、ここでは正側骨のみを用いた。
After the induced voltage of the detection coil 12 is reduced to only the positive component of the induced voltage when the magnetic flux changes in the negative direction by the rectifier 8c, it is passed through a low-pass filter 13 with a cut-off frequency of 1 kHz to remove high-frequency components, and then passed through a DC remover. 14, the direct current component was removed. Note that a capacitor was used as the DC remover 14. Although it is possible to double the output by using both the positive and negative sides of the induced voltage of the detection coil 12, only the positive side bone was used here.

次に以上のようにして本発明により交流50H2の正弦
波電流実効値0.51Aを検出したときの出力波形と被
検出電流の原波形を第8図に示す、同様に交流50Hz
の矩形波状電流(最大値0.7mA)を検出した場合の
波形を第9図に示した。第8図、第9図とも出力波形は
被検出電流の原波形と全く同じであり、第9図からはと
くにこのような小電流でしかも多くの高調波成分を有す
る波形に対しても正確に検出できることがわかる。第1
0図は交?A30Hzの正弦波電流を検出する場合に得
られる出力NLbに対して被検出電流値との関係を求め
た線図である。第10図には比較のために従来の例えば
第11図の鉄心lに商品名パーマロイを用い、鉄心1.
1体2の寸法を前に述べた本発明のものと同じにして検
出コイル3の巻回数を1000回とした場合の出力特性
も併記しである。第10図において実線の特性線イが本
発明をIわし、点線の特性線口が従来の場合を表わして
いる。第10図かられかるように、410両特性線とも
非常によい直線性を示すが、本発明の方が高い出力電圧
が得られ、検出コイルの巻数は1/25であるにも拘ら
ず出力は約9倍にもなる0本発明による装置の出力は検
出コイルの巻数に比例するので、従来装置と同様に10
00回にすれば出力を25倍にすることもできる。しか
し本発明では鉄心1aの外径寸法が従来と同じであって
も高周波励磁コイル7と検出コイル12の巻数は少(て
済み、しかも高い出力が得られる所がら小型化が可能と
なるものであるから、コイル部の巻数を増してさらに高
い出力を得ようとするのは小型化の指向に反する。した
がってこのような場合、実用的には検出コイル12の巻
数は簡易な電子回路で増幅できる程度として所望の電圧
まで増幅するのが好ましい。
Next, FIG. 8 shows the output waveform and the original waveform of the current to be detected when an AC 50H2 sinusoidal current effective value of 0.51A is detected according to the present invention as described above.
FIG. 9 shows the waveform when a rectangular wave current (maximum value 0.7 mA) was detected. The output waveforms in both Figures 8 and 9 are exactly the same as the original waveform of the current to be detected, and Figure 9 shows that the output waveforms are accurate even for such small currents and waveforms that have many harmonic components. It can be seen that it can be detected. 1st
Is the 0 figure intersecting? It is a diagram showing the relationship between the detected current value and the output NLb obtained when detecting a 30 Hz sine wave current. For comparison, FIG. 10 shows a conventional iron core 1, for example, using the trade name Permalloy for the iron core 1 in FIG.
The output characteristics when the dimensions of the body 2 are the same as those of the present invention described above and the number of windings of the detection coil 3 is 1000 are also shown. In FIG. 10, a solid characteristic line A represents the present invention, and a dotted characteristic line represents the conventional case. As can be seen from Figure 10, both 410 characteristic lines show very good linearity, but the present invention can obtain a higher output voltage, and even though the number of turns of the detection coil is 1/25, the output Since the output of the device according to the present invention is proportional to the number of turns of the detection coil, the output of the device according to the present invention is approximately 9 times as large as 10
If you set it to 00 times, you can increase the output by 25 times. However, in the present invention, even if the outer diameter of the iron core 1a is the same as the conventional one, the number of turns of the high-frequency excitation coil 7 and the detection coil 12 is small, and it is possible to downsize while still obtaining high output. Therefore, trying to obtain even higher output by increasing the number of turns in the coil section goes against the trend of miniaturization. Therefore, in such a case, practically, the number of turns of the detection coil 12 can be amplified with a simple electronic circuit. It is preferable to amplify the voltage to a desired level.

次に本発明装置と従来装置の鉄心を含むコイル巻線後の
寸法比較の1例を第1表に示す0巻線の径(0,1m)
と鉄心寸法は両者に共通である。
Next, an example of a comparison of dimensions after coil winding including the iron core between the device of the present invention and the conventional device is shown in Table 1. Diameter of 0 winding (0.1 m)
and core dimensions are common to both.

第1表 本発明装置は第1表のように従来と同じ寸法の鉄心を用
いても両コイルの巻回数が少ないので鉄心の外周からは
み出すSvAの部分が少なく、巻線後のはみ出し部分の
外径としては従来に比べてかなり小さくなる。また鉄心
内径側も本発明の方が巻線によって占められる領域が少
なく、内径が大きくとれるので、本発明では検出感度1
巻線径などを考慮して導体を通すことができる範囲で鉄
心の中心孔を小さくすることができる。
Table 1 As shown in Table 1, even if the device of the present invention uses an iron core with the same dimensions as the conventional one, the number of turns of both coils is small, so the SvA portion protruding from the outer periphery of the iron core is small, and the protruding portion after winding is small. The diameter is considerably smaller than before. Also, on the inner diameter side of the iron core, the area occupied by the windings is smaller in the present invention, and the inner diameter can be larger, so the detection sensitivity of the present invention is 1.
The center hole of the iron core can be made small to the extent that the conductor can be passed through, taking into consideration the winding diameter and the like.

また本発明では以上と同様の原理に基づき、1μA〜1
−A程度のさらに小さい電流を検出することも可能であ
る。第11図はその装置の要部構成を示した模式図であ
り、第1図と共通部分を同一符号で表わしである。第1
1図が第1図と異なる所は導体2bが鉄心1bの中心孔
を通って鉄心1bの肉厚部に巻回した励磁コイル2cを
形成していることであり、その他は第1図と同じである
。また被検出電流の検出方法も原理的にこれまで述べて
きたのと同じであるから、それらの説明は省略する。
In addition, in the present invention, based on the same principle as above, the
It is also possible to detect even smaller currents on the order of -A. FIG. 11 is a schematic diagram showing the main structure of the device, and parts common to those in FIG. 1 are denoted by the same reference numerals. 1st
The difference between Fig. 1 and Fig. 1 is that the conductor 2b passes through the center hole of the iron core 1b and forms an excitation coil 2c wound around the thick part of the iron core 1b; other aspects are the same as Fig. 1. It is. Furthermore, since the method of detecting the detected current is basically the same as that described above, the explanation thereof will be omitted.

次に第11図の装置の鉄心1bに関する寸法例と出力特
性について述べる。鉄心1bの原寸法は外径12鶴、内
径10fl、高さ2fiであり、巻線後は巻線部を含め
て外径14鶴、内径7鶴、高さ4鶴である。
Next, an example of the dimensions and output characteristics of the iron core 1b of the device shown in FIG. 11 will be described. The original dimensions of the iron core 1b are an outer diameter of 12 mm, an inner diameter of 10 fl, and a height of 2 fi, and after winding, including the winding portion, the outer diameter is 14 mm, the inner diameter is 7 mm, and the height is 4 mm.

巻線部はいずれも直径0.1 fiのホルマール絶縁銅
線を用いて鉄心1bの肉厚部に励磁コイル2c、高周波
励磁コイル7、検出コイル12をそれぞれ50回。
For the winding portion, each of the excitation coil 2c, the high frequency excitation coil 7, and the detection coil 12 was wound 50 times on the thick part of the iron core 1b using formal insulated copper wire with a diameter of 0.1 fi.

30回、200回巻回したものである。この装置により
交流50Hzの正弦波量婚電流実効(![4μAを検出
2したときの出力波形と被検出電流の原波形を第12図
に示す、同様に交流50Hzの三角波状電流(最大値5
66 μA)を検出した場合の波形を第13図に示した
。第12図、第13図は前に述べた第8図、第9図に対
応するものであり、第12図、第13図から出力波形は
被検出電流の原波形とよく一致しており、このような微
小電流に対しても正確に検出できることがわかる。第1
4図は前述の第10図に対応するものであり、第11図
の装置について交流50Hzの正弦波電流を検出する場
合に得られる出力電圧に対して被検出電流値との関係を
求めた線図であるが出力特性は非常によい直線性を示し
ている。
It is wound 30 times and 200 times. With this device, the output waveform when AC 50 Hz sinusoidal current effective (!
66 μA) is shown in FIG. 13. Figures 12 and 13 correspond to Figures 8 and 9 mentioned above, and from Figures 12 and 13, the output waveform matches well with the original waveform of the current to be detected. It can be seen that even such a minute current can be detected accurately. 1st
Figure 4 corresponds to the above-mentioned Figure 10, and is a line showing the relationship between the detected current value and the output voltage obtained when detecting an AC 50 Hz sinusoidal current using the device in Figure 11. As shown in the figure, the output characteristics show very good linearity.

例えば従来装置を用いて各コイルの巻回数を同じにして
巻線後の鉄心寸法を第11図の装置と同様にしても、検
出可能な電流値は100μ八程度が限界であることから
も、小型形状を保持したまま数μAという微小電流を検
出することができる本発明の有効性が十分認識される。
For example, even if a conventional device is used and the number of turns of each coil is the same and the core dimensions after winding are the same as the device shown in Fig. 11, the detectable current value is limited to about 100μ8. The effectiveness of the present invention, which is capable of detecting a minute current of several μA while maintaining a small size, is fully recognized.

なお前にも述べたように本発明の小環1検出装置は1本
の導体を用いたものとして説明してきたが上述のごとく
被検出電流と出力電圧との間に波形の一致やよい直線性
が得られることから、本発明の装置は2本ないし3本の
導体の差電流を用いる電流検出機器への適用も勿論十分
に可能であり、その他にも必要に応じて広範囲に利用す
ることができるものである。
As mentioned above, the small ring 1 detection device of the present invention has been described as using one conductor, but as mentioned above, it is important that the waveform match and good linearity exist between the current to be detected and the output voltage. Therefore, the device of the present invention can of course be fully applied to current detection equipment that uses differential current between two or three conductors, and can be used in a wide range of other ways as necessary. It is something.

〔発明の効果〕〔Effect of the invention〕

従来、小電流の構出装置は例えば零相変流器のように、
検出コイルによる鉄心の磁化力が弱(、誘起電圧が小さ
いので、小電流を高感度に精度よく検出するにはなお十
分でなく、またコイル巻線の巻回数を多くしなければな
らないので、巻線部の外径寸法を小さくすることができ
なかったのに対し、本発明によれば実施例で説明したご
とく、鉄心の角形磁気特性の微分透磁率の大きい点に磁
界を設定する高周波励磁コイルを検出コイルとは別に設
けて鉄心を磁化し、より短時間に小さな磁界変化で大き
な磁束変化を起こさせ、高周波励磁による誘起電圧を検
出コイルに誘起する電圧に重ねて、この重畳された電圧
から高調渡分、直流分を除去することにより得られる出
力電圧波形と被検出電流波形が同じになるようにしたた
め、交流正弦波電流に限ることなく、直流やその他姓か
なfる波形をもつ被検出電流に対しても、従来に比べて
さらに微小な電流まで正確に検出することができ、しか
も励磁コイル、Mk出ココイルも巻回数が従来より少な
くて済ませることができるので、巻線による寸法増はほ
とんどなく、鉄心の小型化も可能となる。
Conventionally, small current configuration devices, such as zero-phase current transformers,
The magnetizing force of the iron core by the detection coil is weak (and the induced voltage is small, so it is still not sufficient to detect small currents with high sensitivity and accuracy, and the number of turns of the coil winding must be increased. While it has not been possible to reduce the outer diameter of the wire portion, according to the present invention, as explained in the embodiment, a high frequency excitation coil is used to set the magnetic field at a point where the differential permeability of the rectangular magnetic characteristics of the iron core is large. is installed separately from the detection coil, magnetizes the iron core, causes a large magnetic flux change with a small magnetic field change in a shorter time, and superimposes the induced voltage due to high frequency excitation on the voltage induced in the detection coil, and from this superimposed voltage. Since the output voltage waveform obtained by removing harmonic components and DC components is made to be the same as the detected current waveform, the detected current is not limited to AC sine wave current, but can also be detected with direct current or other similar waveforms. It is also possible to accurately detect even minute currents compared to conventional methods, and the number of turns of the excitation coil and Mk output coil can be reduced compared to conventional methods, so there is no increase in size due to winding. This makes it possible to downsize the iron core.

これらのことから、本発明による装置は零相変流器は勿
論、その他の電流検出機器に適用するとき、小型で高感
度、高速の機能を果たす小’l流検出装置として有用な
ものである。
For these reasons, the device according to the present invention is useful as a small current detection device that is compact, has high sensitivity, and performs high-speed functions when applied to not only zero-phase current transformers but also other current detection devices. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の要部構成を示した模式図、
第2図は鉄心材料の磁気ヒステリシス曲線の形を示した
概念図、第3図は第2図の拡大図、第4図は高周波励磁
電流の波形図、第5図は高周波励磁したときの検出コイ
ルの誘起電圧の波形(a)。 さらに被検出電流が流れたときの磁界波形(blと誘起
電圧波形(C)、第6図は第4図とは異なる高周波励磁
電流波形図、第7図は第1図とは異なる出力部の回路構
成図、第8図は本発明装置による出力電圧と検出した交
流正弦波電流の波形図、第9図は同じく出力電圧と検出
した交流矩形波電流の波形図、第10図は同じく出力電
圧と検出した交流正弦波電流値との関係線図、第11図
は第1図とは別の本発明による装置の要部構成を示した
模式図、第12図は第11図の装置による出力電圧と検
出した交流正弦波電流の波形図、第13図は同じく出力
電圧と検出した交流三角波電流の波形図、第14図は同
じく出力電圧と検出した交流正弦波電流値との関係線図
、第15図は従来の零相変流器の作動を説明するための
要部構成を示した模式図、第16図は第15図の鉄心材
料の磁化曲線の形を示した概念図である。 1 、 la、 lb:鉄心、2.2a、 2b:導体
、2C:励磁コイル、3.12;検出コイル、7:高周
波励磁コイル、8a、 8b+ 8c :整流器、9:
制御回路、lO:高周波電源、11:高周波励磁部、1
3,13a:低域濾波器、14:直流除去器、15:出
力部、16:差温1図 ・−4 第4図 時間 第6図 埼z1 第8図 第9図 第10図 第11図 時間 第12図 時間 嬉13図 第14図 第15図 第16図
FIG. 1 is a schematic diagram showing the main part configuration of the device according to the present invention,
Figure 2 is a conceptual diagram showing the shape of the magnetic hysteresis curve of the iron core material, Figure 3 is an enlarged view of Figure 2, Figure 4 is a waveform diagram of high-frequency excitation current, and Figure 5 is detection when high-frequency excitation is performed. Waveform of induced voltage in the coil (a). Furthermore, when the current to be detected flows, the magnetic field waveform (bl) and the induced voltage waveform (C), Figure 6 is a diagram of the high frequency excitation current waveform that is different from Figure 4, and Figure 7 is a diagram of the output section that is different from Figure 1. A circuit configuration diagram, Fig. 8 is a waveform diagram of the output voltage and detected AC sine wave current by the device of the present invention, Fig. 9 is a waveform diagram of the output voltage and detected AC rectangular current, and Fig. 10 is the same output voltage. and the detected AC sine wave current value, FIG. 11 is a schematic diagram showing the main part configuration of the device according to the present invention, different from FIG. 1, and FIG. 12 is the output from the device of FIG. 11. A waveform diagram of the voltage and the detected AC sine wave current, FIG. 13 is a waveform diagram of the output voltage and the detected AC triangular current, and FIG. 14 is a relationship diagram between the output voltage and the detected AC sine wave current value. FIG. 15 is a schematic diagram showing the main part configuration for explaining the operation of a conventional zero-phase current transformer, and FIG. 16 is a conceptual diagram showing the shape of the magnetization curve of the iron core material in FIG. 15. 1, la, lb: iron core, 2.2a, 2b: conductor, 2C: excitation coil, 3.12; detection coil, 7: high frequency excitation coil, 8a, 8b+8c: rectifier, 9:
Control circuit, lO: high frequency power supply, 11: high frequency excitation section, 1
3, 13a: Low-pass filter, 14: DC remover, 15: Output section, 16: Temperature difference 1/-4 Figure 4 Time Figure 6 z1 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16

Claims (1)

【特許請求の範囲】 1)磁気ヒステリシス曲線が角形特性を示す高透磁率材
料を用いて閉磁路を形成した筒状鉄心の中心孔を通る導
体に流れる小電流によって前記鉄心に生ずる磁界の強さ
を変化させ、前記鉄心に巻回した検出コイルの誘起電圧
から前記小電流を検出する方法であって、以下の手順に
より行なうことを特徴とする小電流検出方法。 i)前記鉄心をその磁気ヒステリシス曲線における正側
の最大磁界をほぼ飽和する点,負側の最大磁界を保磁力
の点を通る直線部分まで高周波励磁しておく、 ii)この励磁状態で前記鉄心に前記導体の小電流によ
る磁界を加え、高周波励磁された負側の最大磁界を前記
ヒステリシス曲線の直線部上で僅かに移動させることに
より前記鉄心の磁束密度を大きく変化させる、 iii)前記高周波励磁によって生ずる磁束と前記導体
の小電流によって生ずる磁束とが重畳した前記鉄心の全
磁束の誘起電圧を検出した後、この誘起電圧から前記導
体の小電流の誘起電圧分を分離する。 2)磁気ヒステリシス曲線が角形特性を示す高透磁率材
料を用いて閉磁路を形成した筒状鉄心の中心孔を通る導
体に流れる小電流によって前記鉄心に生ずる磁界の強さ
を変化させ、前記鉄心に巻回した検出コイルの誘起電圧
から前記小電流を検出する装置であって、 i)前記鉄心の中心孔を通って肉厚部に巻回した高周波
励磁コイルを、前記鉄心に生ずる正負両磁界を所定の大
きさに設定する制御回路を介して高周波電源に接続した
高周波励磁部、 ii)前記高周波励磁コイルとは別に前記鉄心の中心孔
を通って肉厚部に巻回した検出コイルに接続され、前記
高周波励磁部によって生ずる磁束と前記導体の小電流に
よって生ずる磁束とが重畳した全磁束を検出した後前記
導体の小電流の誘起電圧分を分離する回路を有する出力
部、 を備えたことを特徴とする小電流検出装置。 3)筒状鉄心の中心孔を通る導体がこの鉄心の肉厚部に
巻回された励磁コイルを形成したことを特徴とする請求
項2)項記載の小電流検出装置。
[Scope of Claims] 1) Strength of magnetic field generated in the core by a small current flowing through a conductor passing through the center hole of a cylindrical core in which a closed magnetic path is formed using a high permeability material whose magnetic hysteresis curve exhibits rectangular characteristics. 1. A method of detecting the small current from the induced voltage of a detection coil wound around the iron core by changing the current, the method comprising: changing the current of the small current; i) The iron core is excited at high frequency up to the point where the maximum magnetic field on the positive side is almost saturated in the magnetic hysteresis curve and the maximum magnetic field on the negative side is a straight line passing through the point of coercive force, and ii) The iron core is excited in this excited state. iii) greatly changing the magnetic flux density of the iron core by applying a magnetic field due to a small current of the conductor to and slightly moving the maximum magnetic field on the negative side of the high-frequency excitation on the straight line part of the hysteresis curve; iii) the high-frequency excitation After detecting the induced voltage of the total magnetic flux of the iron core in which the magnetic flux generated by the magnetic flux and the magnetic flux generated by the small current of the conductor are superimposed, the induced voltage of the small current of the conductor is separated from this induced voltage. 2) The strength of the magnetic field generated in the core is changed by a small current flowing through a conductor passing through the center hole of a cylindrical core in which a closed magnetic path is formed using a high magnetic permeability material whose magnetic hysteresis curve exhibits square characteristics. A device for detecting the small current from the induced voltage of a detection coil wound around the iron core, the device comprising: i) passing through the center hole of the iron core and winding a high frequency excitation coil around the thick part of the iron core to generate both positive and negative magnetic fields in the iron core; ii) A high frequency excitation section connected to a high frequency power source via a control circuit that sets the high frequency excitation coil to a predetermined size; ii) connected to a detection coil wound around the thick part of the iron core through the center hole of the iron core, separate from the high frequency excitation coil; and an output section having a circuit that separates the induced voltage component of the small current in the conductor after detecting the total magnetic flux in which the magnetic flux generated by the high frequency excitation section and the magnetic flux generated by the small current in the conductor are superimposed. A small current detection device featuring: 3) The small current detection device according to claim 2), wherein the conductor passing through the center hole of the cylindrical core forms an excitation coil wound around the thick part of the core.
JP63116192A 1987-09-24 1988-05-13 Method and apparatus for detecting small current Pending JPH01158365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116192A JPH01158365A (en) 1987-09-24 1988-05-13 Method and apparatus for detecting small current

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-239181 1987-09-24
JP23918187 1987-09-24
JP63116192A JPH01158365A (en) 1987-09-24 1988-05-13 Method and apparatus for detecting small current

Publications (1)

Publication Number Publication Date
JPH01158365A true JPH01158365A (en) 1989-06-21

Family

ID=26454576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116192A Pending JPH01158365A (en) 1987-09-24 1988-05-13 Method and apparatus for detecting small current

Country Status (1)

Country Link
JP (1) JPH01158365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430487U (en) * 1990-07-05 1992-03-11
US5223789A (en) * 1989-06-23 1993-06-29 Fuji Electric Co., Ltd. AC/DC current detecting method
JPH08146054A (en) * 1994-11-17 1996-06-07 Nec Corp Electric energy measuring circuit and digital wattmeter
WO2009099082A1 (en) * 2008-02-06 2009-08-13 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
JP2010066145A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Current measuring apparatus and current measuring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223789A (en) * 1989-06-23 1993-06-29 Fuji Electric Co., Ltd. AC/DC current detecting method
JPH0430487U (en) * 1990-07-05 1992-03-11
JPH08146054A (en) * 1994-11-17 1996-06-07 Nec Corp Electric energy measuring circuit and digital wattmeter
WO2009099082A1 (en) * 2008-02-06 2009-08-13 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
AU2009211720B2 (en) * 2008-02-06 2012-08-23 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
US8476895B2 (en) 2008-02-06 2013-07-02 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
JP5235908B2 (en) * 2008-02-06 2013-07-10 三菱電機株式会社 Power measurement system, equipment control system
JP2010066145A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Current measuring apparatus and current measuring system

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
USRE31613E (en) Measuring transformer
US4309655A (en) Measuring transformer
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
JPS6323405A (en) Magnetic amplifier
US7145321B2 (en) Current sensor with magnetic toroid
JPH01158365A (en) Method and apparatus for detecting small current
JP2012233718A (en) Current detection device
JP2586156B2 (en) AC / DC dual-purpose current detection method
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
US2929017A (en) Quadripole magnetic amplifier
WO2015070345A1 (en) Simultaneous measurement technique for line current, geomagnetically induced currents (gic) and transient currents in power systems
JPH01308004A (en) Current detector
JPH0510980A (en) Current detection method
JPH01285866A (en) Small current detector
JPH0247557A (en) Current detecting apparatus
WO2007021347A1 (en) Current sensor with magnetic toroid dual frequency detection scheme
Bushida et al. Sensitive magneto-inductive effect in amorphous wires using high-pass filter and micro field sensor
JPH02196967A (en) Small current detection method
JPH02203279A (en) Detector for minute current
JP2000055940A (en) Dc current sensor
JP3746359B2 (en) DC current sensor
KR102039269B1 (en) A Residual Current Detection Circuit
JPH0677065A (en) Differential transformer
KR102039271B1 (en) A Earth Leakage Current Detection Circuit