WO2017169062A1 - Chopper circuit - Google Patents

Chopper circuit Download PDF

Info

Publication number
WO2017169062A1
WO2017169062A1 PCT/JP2017/003126 JP2017003126W WO2017169062A1 WO 2017169062 A1 WO2017169062 A1 WO 2017169062A1 JP 2017003126 W JP2017003126 W JP 2017003126W WO 2017169062 A1 WO2017169062 A1 WO 2017169062A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
energization path
current
chopper circuit
energization
Prior art date
Application number
PCT/JP2017/003126
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 田代
将義 廣田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017169062A1 publication Critical patent/WO2017169062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a chopper circuit.
  • This application claims priority based on Japanese Patent Application No. 2016-72125 filed on Mar. 31, 2016, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 discloses a DC-DC converter provided with a coupled inductor formed by magnetically coupling two coils.
  • the coupled inductor has a loop with a very low magnetic resistance and a very large magnetic flux flows even with a small magnetomotive force difference, the core may be magnetically saturated due to the current bias of the first coil and the second coil.
  • Non-Patent Document 1 as a method for preventing current bias in the coupled inductor, the current of each phase, that is, the current on the first coil side and the current on the second coil side of the coupled inductor is measured, and the current of each phase is measured.
  • An interleaved step-up chopper circuit that balances the above is disclosed.
  • the chopper circuit includes a first coil and a second coil provided respectively in a first energization path and a second energization path connected in parallel, and the first energization path and the second energization path are alternately turned on and off.
  • the first energization path and the second energization path are partially arranged in antiparallel, and have conducting wire portions whose energization directions are opposite to each other, and the first energization path and the second energization path A current sensor having a magnetic sensor core surrounding the conductor portion of the path; and a controller for controlling energization time of the first energization path and the second energization path based on a detection result of the current sensor.
  • the present application can be realized not only as a chopper circuit having such a characteristic processing unit, but also as a chopper circuit driving method using such characteristic processing as a step, It can be realized as a program for execution. Also, it can be realized as a semiconductor integrated circuit that realizes part or all of the chopper circuit, or as another system including the chopper circuit.
  • FIG. 6 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a first embodiment of the present invention. It is a schematic diagram which shows the structure of a current sensor. It is a flowchart which shows the process sequence of a control part. It is a graph which shows the bias
  • FIG. 6 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a second embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a third embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration example of a boost chopper circuit according to a fourth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration example of a step-up / down chopper circuit according to a fifth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration example of a power factor correction circuit according to a sixth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration example of a step-up / down chopper circuit according to a seventh embodiment.
  • 15 is a flowchart illustrating a processing procedure of a control unit according to the seventh embodiment.
  • a chopper circuit includes a first coil and a second coil provided respectively in a first energization path and a second energization path connected in parallel, and the first energization path and the second energization path are provided.
  • the first energization path and the second energization path are partially disposed in antiparallel, and include conducting wire portions in which the energization directions are opposite to each other.
  • a current sensor having a magnetic sensor core surrounding the conductor portion of the second energization path, and a control unit for controlling energization time of the first energization path and the second energization path based on a detection result of the current sensor; Is provided.
  • an interleaved chopper circuit is configured having a first energization path provided with the first coil and a second energization path provided with the second coil.
  • the first energization path and the second energization path of this aspect have conductor portions that are partially arranged in antiparallel and in which the energization directions are opposite to each other. Since the sensor core of the current sensor surrounds the conductor portion, the current sensor can detect the difference between the current flowing through the first energization path and the current flowing through the second energization path. That is, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be detected by one current sensor.
  • the control unit can control the energization time of the first energization path and the second energization path based on the difference between the currents flowing through the first coil and the second coil.
  • the difference between the current flowing through the first coil side of the coupled inductor and the current flowing through the second coil side can be controlled by one current sensor.
  • control unit controls the energization time of the first energization path and the second energization path so as to balance the currents flowing through the first coil and the second coil.
  • the current flowing through the first coil side of the coupled inductor and the current flowing through the second coil side can be balanced by one current sensor.
  • the current sensor outputs a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path, and is further output from the current sensor.
  • An integration circuit that integrates the received signal, and the control unit energizes the first energization path and the second energization path so that the voltage of the integration signal obtained by the integration by the integration circuit becomes a predetermined potential.
  • the structure which controls is preferable.
  • the integration circuit integrates the signal output from the current sensor.
  • the integrated signal obtained by integrating by the integrating circuit corresponds to the time average of the difference between the current flowing through the first coil of the coupled inductor and the current on the second coil side.
  • the control unit controls the energization time of the first energization path and the second energization path so that the integration signal becomes a predetermined potential. Therefore, the difference in current between the first coil side and the second coil side of the coupled inductor can be controlled with higher accuracy.
  • the current sensor outputs a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path, and is further output from the current sensor.
  • a filter circuit for smoothing the received signal, and the control unit includes the first energization path and the second energization path so that the voltage of the signal output from the current sensor via the filter circuit becomes a predetermined potential.
  • a configuration in which the energization time is controlled is preferable.
  • the current sensor outputs a signal having a voltage corresponding to the difference between the current flowing through the first energization path and the current flowing through the second energization path, and is output from the current sensor.
  • the signal is smoothed by the filter circuit and input to the control unit.
  • the smoothed signal corresponds to the time average of the current difference.
  • the control unit controls the energization time of the first energization path and the second energization path so that the input signal becomes a predetermined potential. Therefore, the difference in current between the first coil side and the second coil side of the coupled inductor can be accurately controlled with a simple circuit configuration.
  • the first input unit and the second input unit having one end connected to the first input unit and the other end connected to one end of the first coil, and one end
  • the other end is preferably provided with a capacitive element connected to the other end of the first coil and the second coil.
  • an interleaved step-down chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor.
  • a step-down power factor correction circuit can be configured using the step-down chopper circuit.
  • a capacitor element having the other end connected to the second input part.
  • an interleaved step-up chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor.
  • a boost type power factor correction circuit can be configured using the boost chopper circuit.
  • a first input unit a first switching element having one end connected to the first input unit, and the other end connected to one end of the first coil, and one end connected to the first input unit.
  • a second switching element having the other end connected to one end of the second coil, a second input connected to the other end of the first coil and the second coil, and a cathode
  • a first diode connected to the other end of the first switching element; a second diode having a cathode connected to the other end of the second switching element; and one end of the first diode and the second diode.
  • a configuration including a capacitive element connected to the anode and having the other end connected to the second input unit is preferable.
  • step-up / step-down chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor.
  • a step-up / step-down power factor correction circuit can be configured using the step-up / step-down chopper circuit.
  • the conducting wire portion and the current sensor are provided on the end side where the first energization path and the second energization path are not turned on / off, of the end portions of the first coil and the second coil. A configuration is preferred.
  • the conductive wire portions in which the energization directions are opposite to each other, that is, the conductive wire portion where the difference in current is detected are provided at a location where the influence of switching noise is low. Therefore, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be accurately detected, and the difference can be controlled.
  • the current sensor is configured to detect a difference between currents flowing through the first coil and the second coil at an intermediate point in the on period of the first energization path or an intermediate point in the on period of the second energization path. Is preferred.
  • the difference in current is detected when the influence of switching noise is low. Therefore, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be accurately detected, and the difference can be controlled.
  • FIG. 1 is a circuit diagram showing a configuration example of a step-down chopper circuit 1 according to Embodiment 1 of the present invention.
  • the step-down chopper circuit 1 according to the first embodiment includes a first terminal 1a (first input unit) and a second terminal (second input unit) 1b connected to a DC power source 2, and an output terminal to which a load 3 is connected.
  • the circuit includes a pair 1c and steps down the voltage input to the first terminal 1a and the second terminal 1b and outputs the stepped down voltage from the output terminal pair 1c to the load 3.
  • the step-down chopper circuit 1 is an interleave type, and includes a first energization path 11 and a second energization path 12, first and second switching elements SW1 and SW2, and first and second diodes D1 related to step-down. , D2, a coupled inductor 13, a capacitive element 14, a current sensor 15, and a control unit 16.
  • the first and second energization paths 11 and 12 are connected in parallel, and the coupled inductor 13 includes a first coil 13 a provided in the first energization path 11 and a second coil 13 b provided in the second energization path 12. And have.
  • the first coil 13a and the second coil 13b are wound around a common core 13c and are magnetically coupled so that currents i1 and i2 in the same direction flow through the first energizing path 11 and the second energizing path 12.
  • the core 13c is, for example, an EE type (see FIG. 2), and is formed of a soft magnetic material made of ferrite, a magnetic metal, a laminated steel plate, a magnetic powder compact, or the like.
  • the first switching element SW1, the first diode D1, and the first coil 13a are step-down circuit elements provided in the first energization path 11, and the second switching element SW2, the second diode D2, and the second coil 13b are The step-down element is provided in the second energization path 12.
  • the first switching element SW1 and the second switching element SW2 are power devices such as IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • One end of the first switching element SW1 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the first coil 13a.
  • one end of the second switching element SW2 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the second coil 13b coil.
  • the anodes of the first diode D1 and the second diode D2 are connected to the second terminal 1b.
  • the cathode of the first diode D1 is connected to the other end of the first switching element SW1 and one end of the first coil 13a.
  • the cathode of the second diode D2 is connected to the other end of the second switching element SW2 and one end of the second coil 13b.
  • the capacitive element 14 is, for example, an electrolytic capacitor. One end of the capacitive element 14 is connected to the other ends of the first coil 13a and the second coil 13b, and the other end is connected to the second terminal 1b. .
  • the current sensor 15 is a sensor that detects a difference between a current flowing through the first energization path 11 and a current flowing through the second energization path 12 and outputs a signal corresponding to the difference to the control unit 16.
  • FIG. 2 is a schematic diagram showing the configuration of the current sensor 15.
  • the first energization path 11 and the second energization path 12 have conductor portions 11a and 12a that are partially arranged in antiparallel and in which the energization directions are opposite to each other.
  • the first energization path 11 and the second energization path 12 are arranged so that a current flows substantially in a predetermined direction (for example, from the left side to the right side in FIG. 2).
  • 11 is folded back in the middle.
  • the folded conductive wire portion 11a is in parallel with the conductive wire portion 12a of the second energization path 12, and the conductive wire portion 11a and the conductive wire portion 12a are bundled so that currents in opposite directions flow in parallel.
  • the current sensor 15 includes a sensor core 15a made of a magnetic material that bundles and surrounds the conductive wire portions 11a and 12a of the first and second energization paths 11 and 12, and a sensor core 15a by current flowing through the first and second energization paths 11 and 12.
  • a magnetic flux detector 15b for detecting the magnetic flux generated.
  • the sensor core 15a is, for example, an annular shape having a gap.
  • the magnetic flux detection unit 15b includes a Hall element disposed in the gap between the sensor cores 15a, and the Hall elements have a voltage level corresponding to the magnetic flux generated in the sensor core 15a due to the current flowing through the first and second energization paths 11 and 12. Output a signal.
  • the magnetic flux detection unit 15b may include an amplifier that amplifies a signal output from the Hall element.
  • the magnetic flux detection part 15b is good to arrange
  • the current sensor 15 corresponds to the difference in current flowing through the first coil 13a and the second coil 13b of the coupled inductor 13. Output a signal.
  • the current sensor 15 outputs a signal at a voltage level corresponding to a difference value obtained by subtracting the value of the current flowing through the second coil 13b from the value of the current flowing through the first coil 13a. .
  • FIG. 3 is a flowchart showing a processing procedure of the control unit 16, and FIG. 4 is a graph showing current bias.
  • the horizontal axis indicates time, and the vertical axis indicates the current i1 of the first coil 13a and the current i2 of the second coil 13b.
  • the control unit 16 that has started the operation of the step-down chopper circuit 1 performs control to alternately switch between a conduction state in which the first switching element SW1 is turned on and a conduction state in which the second switching element SW2 is turned on (step) S11). For example, the control unit 16 turns on and off the first and second switching elements SW1 and SW2 with the same duty ratio of 50%.
  • the control unit 16 AD-converts the signal output from the current sensor 15 to obtain a current difference value ⁇ i indicating a difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b.
  • a value obtained by subtracting the current i2 from the current i1 is defined as a current difference value ⁇ i.
  • step S13 When it is determined that the current difference value ⁇ i is negative (step S13: YES), the control unit 16 increases the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2.
  • the ON times of the first and second switching elements SW1 and SW2 are set (step S14). Specifically, if the duty ratio of the first switching element SW1 is set large and the duty ratio of the second switching element SW2 is set small, the average current of the current i1 is large and the average current of the current i2 is small.
  • the difference value ⁇ i can be brought close to zero.
  • step S14 determines whether or not the current difference value ⁇ i is positive.
  • step S15 determines whether or not the current difference value ⁇ i is positive.
  • step S15: YES the control unit 16 decreases the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2.
  • the on-time of the first and second switching elements SW1, SW2 is set (step S16).
  • step S16 When the process of step S16 is finished or when it is determined in step S15 that the current difference value ⁇ i is not positive (step S15: NO), the control unit 16 satisfies a predetermined condition for stopping the operation of the step-down chopper circuit 1. Whether or not (step S17). When it determines with not satisfy
  • the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced using a single current sensor 15, and magnetic saturation of the coupled inductor 13 is prevented. be able to.
  • the difference can be detected with higher accuracy than the structure in which the current difference is detected by using two current sensors.
  • the current detection error range is doubled and the detection accuracy is lowered.
  • the current detection error range is one detection error range. Can be within the range. Therefore, the difference between the currents of the first coil 13a and the second coil 13b can be detected with high accuracy, and each current can be balanced.
  • the detection result signal is smaller than the structure in which the current difference is detected by using two current sensors.
  • the number of input AD conversion input ports can be reduced.
  • the two-phase interleaved step-down chopper circuit 1 has been described.
  • the present embodiment can also be applied to a four-phase or more multi-phase interleaved step-down chopper circuit.
  • the current sensor according to the present embodiment may be provided for each of two energization paths with two phases as a set.
  • route 12 in which the conducting wire parts 11a and 12a were formed is not mentioned, the length of the said conducting wire parts 11a and 12a, in other words, is mentioned.
  • a configuration in which electrical characteristics such as electrical resistance are substantially the same is preferable.
  • FIG. 5 is a circuit diagram illustrating a configuration example of the step-down chopper circuit 201 according to the second embodiment.
  • the configuration of the step-down chopper circuit 201 according to the second embodiment is the same as that of the first embodiment, and is different from the first embodiment in that it further includes an integration circuit 218 that integrates the signal output from the current sensor 15. Such differences will be described. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step-down chopper according to the second embodiment includes an integration circuit 218 that integrates a signal output from the current sensor 15 and outputs a signal obtained by integration to the control unit 16.
  • the integration circuit 218 may be a known circuit.
  • the integration circuit 218 includes a differential amplifier.
  • the inverting input terminal of the differential amplifier is connected to the current sensor 15 via a resistor, and the non-inverting input terminal is connected to the reference potential.
  • a capacitor is provided having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the output terminal of the differential amplifier.
  • the signal output from the current sensor 15 is integrated by the integration circuit 218 and input to the control unit 16.
  • a signal corresponding to a time-averaged difference between the currents of the first and second coils 13 a and 13 b of the coupled inductor 13 is input to the control unit 16.
  • the controller 16 increases or decreases the on / off times of the first and second switching elements SW1 and SW2 so that the integrated signal becomes a reference potential, for example, zero volts. Therefore, according to the second embodiment, the currents i1 and i2 of the first and second coils 13a and 13b can be balanced with higher accuracy, and magnetic saturation of the coupled inductor 13 can be prevented.
  • FIG. 6 is a circuit diagram illustrating a configuration example of the step-down chopper circuit 301 according to the third embodiment.
  • the configuration of the step-down chopper circuit 301 according to the third embodiment is the same as that of the first embodiment, and differs from the first embodiment in that it further includes a filter circuit 318 that smoothes the signal output from the current sensor 15. The difference concerning will be described. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step-down chopper according to the third embodiment includes a filter circuit 318 that smoothes a signal output from the current sensor 15 and outputs the smoothed signal to the control unit 16.
  • the filter circuit 318 is, for example, a low pass filter.
  • the low-pass filter includes, for example, a resistor and a capacitor. One end of the resistor is connected to the current sensor 15, and the other end is connected to the control unit 16. The other end of the capacitor whose one end is connected to the reference potential is connected to the other end of the resistor.
  • the signal output from the current sensor 15 is smoothed by the filter circuit 318 and input to the control unit 16.
  • a signal corresponding to a temporally smoothed difference between the currents of the first and second coils 13 a and 13 b of the coupled inductor 13 is input to the control unit 16.
  • the controller 16 increases or decreases the on / off times of the first and second switching elements SW1 and SW2 so that the smoothed signal becomes a reference potential, for example, zero volts. Therefore, according to the third embodiment, the currents i1 and i2 of the first and second coils 13a and 13b can be balanced with a simple circuit configuration with high accuracy, and magnetic saturation of the coupled inductor 13 can be prevented.
  • FIG. 7 is a circuit diagram showing a configuration example of the boost chopper circuit 401 according to the fourth embodiment.
  • the coupled inductor 13 and the current sensor 15 according to this aspect are applied to a step-up chopper circuit 401.
  • the boost chopper circuit 401 according to the fourth embodiment is different from the first embodiment only in the circuit configuration related to boosting, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step-up chopper circuit 401 is an interleave type, and includes a first energization path 411 and a second energization path 412, first and second switching elements SW 41 and SW 42, and first and second diodes D 41 for boosting. , D42, coupled inductor 13, capacitive element 414, current sensor 15 and control unit 416.
  • the first and second energization paths 411 and 412 are connected in parallel, and the coupled inductor 13 is provided in the first coil 13a provided in the first energization path 411 and the second energization path 412 as in the first embodiment.
  • the first coil 13a and the second coil 13b are magnetically coupled so that currents i1 and i2 in the same direction flow through the first energization path 411 and the second energization path 412. .
  • One end portions of the first coil 13a and the second coil 13b are connected to the first terminal 1a on the positive electrode side.
  • One ends of the first switching element SW41 and the second switching element SW42 are connected to the second terminal 1b, the other end of the first switching element SW41 is connected to the other end of the first coil 13a, and the second switching element.
  • the other end of the SW 42 is connected to the other end of the second coil 13b.
  • the anode of the first diode D41 is connected to the other end of the first coil 13a, and the anode of the second diode D42 is connected to the other end of the second coil 13b.
  • the capacitive element 414 is, for example, an electrolytic capacitor. One end of the capacitive element 414 is connected to the cathodes of the first diode D41 and the second diode D42, and the other end is connected to the second terminal 1b.
  • the control unit 416 alternately switches between the conduction state in which the first switching element SW41 is in the on state and the conduction state in which the second switching element SW42 is in the on state.
  • the voltage input to the terminals 1a and 1b is boosted.
  • the current sensor 15 detects the difference between the current flowing through the first energization path 411 and the current flowing through the second energization path 412, and outputs a signal corresponding to the difference to the control unit 416.
  • a signal output from the current sensor 15 is input to the control unit 416.
  • the control unit 416 obtains a current difference value ⁇ i corresponding to the difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b by AD converting the signal output from the current sensor 15. Then, the control unit 416 controls the on / off times of the first and second switching elements SW41 and SW42 so that the current difference value ⁇ i becomes zero.
  • the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced by using one current sensor 15, and magnetic saturation of the coupled inductor 13 is prevented. be able to.
  • FIG. 8 is a circuit diagram illustrating a configuration example of the step-up / step-down chopper circuit 501 according to the fifth embodiment.
  • the coupled inductor 13 and the current sensor 15 according to this aspect are applied to the step-up / step-down chopper circuit 501.
  • the step-up / down chopper circuit 501 according to the fifth embodiment is different from the first embodiment only in the circuit configuration related to the step-up / step-down, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step-up / step-down chopper circuit 501 is an interleave type, and includes a first energization path 511 and a second energization path 512, first and second switching elements SW51, SW52, first and second, which relate to the step-up / step-down.
  • Diodes D51 and D52, a coupled inductor 13, a capacitive element 514, a current sensor 15 and a control unit 516 are provided.
  • the first and second energization paths 511 and 512 are connected in parallel, and the coupled inductor 13 is connected to the first energization path 5 as in the first embodiment. 11 and a second coil 13b provided in the second energization path 512.
  • the first coil 13a and the second coil 13b are the first energization path 511 and the second energization path.
  • 512 is magnetically coupled so that currents i1 and i2 in the same direction flow.
  • first switching element SW51 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the first coil 13a and the cathode of the first diode D51.
  • second switching element SW52 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the second coil 13b coil and the cathode of the second diode D52.
  • the anodes of the first and second diodes D51 and D52 are connected to the second terminal 1b.
  • the capacitive element 514 is, for example, an electrolytic capacitor. One end of the capacitive element 514 is connected to the second terminal 1b, and the other end is connected to the other ends of the first and second coils 13a and 13b.
  • the control unit 516 alternately switches between the conduction state in which the first switching element SW51 is turned on and the conduction state in which the second switching element SW52 is turned on, so that the first terminal 1a and Boosts or steps down the voltage input to the negative input terminal.
  • the current sensor 15 detects a difference between the current flowing through the first energization path 511 and the current flowing through the second energization path 512 and outputs a signal corresponding to the difference to the control unit 516.
  • the control unit 516 receives a signal output from the current sensor 15.
  • the control unit 516 obtains a current difference value ⁇ i corresponding to the difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b by AD converting the signal output from the current sensor 15. Then, the control unit 516 controls the on / off times of the first and second switching elements SW51 and SW52 so that the current difference value ⁇ i becomes zero.
  • the step-up / step-down chopper circuit 501 configured in this way, the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced using one current sensor 15, and the magnetic saturation of the coupled inductor 13 is achieved. Can be prevented.
  • FIG. 9 is a circuit diagram illustrating a configuration example of the power factor correction circuit 601 according to the sixth embodiment. Since the power factor correction circuit 601 according to the sixth embodiment is different from the first embodiment only in the circuit configuration related to power factor improvement, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the power factor correction circuit 601 includes a first terminal 1a and a second terminal 1b connected to the AC power source 602, and an output terminal pair 1c to which the load 3 is connected. This is a circuit for converting the alternating current input to the terminals 1a and 1b into direct current and improving the power factor.
  • the power factor correction circuit 601 according to the sixth embodiment includes an input capacitor 610 having both ends connected to the first and second terminals 1a and 1b, and a smoothing capacitor having both ends connected to the output terminal pair 1c. And an element 617.
  • the power factor correction circuit 601 is connected to one end of the input capacitor 610, and includes a first energization path 611 and a second energization path 612, a positive-side coupled inductor 615, and first and second switching elements that constitute the positive electrode side. SW61, SW62, first and second diodes D61, D62, and a positive current sensor 618 are provided.
  • the power factor correction circuit 601 is connected to the other end portion side of the input capacitor 610, and includes a third energization path 613 and a fourth energization path 614, a negative electrode side coupled inductor 616, a third and a fourth, which constitute the negative electrode side. Switching elements SW63 and SW64, third and fourth diodes D63 and D64, and a negative current sensor 619 are provided.
  • the first and second energization paths 611 and 612 are connected in parallel.
  • the positive-side coupled inductor 615 has a first coil 615a provided in the first energization path 611 and a second coil 615b provided in the second energization path 612.
  • the first coil 615a and the second coil 615b are
  • the first current path 611 and the second current path 612 are magnetically coupled so that currents i1 and i2 in the same direction flow.
  • One end portions of the first coil 615 a and the second coil 615 b are connected to one end portion of the input capacitor 610.
  • One ends of the first switching element SW61 and the second switching element SW62 are connected to the negative electrode side of the output terminal pair 1c, the other end of the first switching element SW61 is connected to the other end of the first coil 615a, and The other end of the two switching element SW62 is connected to the other end of the second coil 615b.
  • the anode of the first diode D61 is connected to the other end of the first coil 615a, and the anode of the second diode D62 is connected to the other end of the second coil 615b.
  • the cathodes of the first and second diodes D61 and D62 are connected to the positive terminal of the capacitive element 617.
  • the circuit configuration on the negative electrode side is the same as that on the positive electrode side, and the third and fourth energization paths 613 and 614 are connected in parallel.
  • the negative-side coupled inductor 616 has a third coil 616a provided in the third energization path 613 and a fourth coil 616b provided in the fourth energization path 614.
  • the third coil 616a and the fourth coil 616b are The third current path 613 and the fourth current path 614 are magnetically coupled so that currents i3 and i4 in the same direction flow.
  • One end portions of the third coil 616 a and the fourth coil 616 b are connected to the other end portion of the input capacitor 610.
  • One ends of the third switching element SW63 and the fourth switching element SW64 are connected to the negative electrode side of the output terminal pair 1c, the other end of the third switching element SW63 is connected to the other end of the third coil 616a, and The other end of the 4 switching element SW64 is connected to the other end of the fourth coil 616b.
  • the anode of the third diode D63 is connected to the other end of the third coil 616a, and the anode of the fourth diode D64 is connected to the other end of the fourth coil 616b.
  • the cathodes of the third and fourth diodes D63 and D64 are connected to the positive terminal of the capacitive element 617.
  • the positive current sensor 618 detects a difference between the current flowing through the first energization path 611 and the current flowing through the second energization path 612 and outputs a signal corresponding to the difference to the control unit 620.
  • the negative electrode side current sensor 619 detects a difference between the current flowing through the third energization path 613 and the current flowing through the fourth energization path 614, and outputs a signal corresponding to the difference to the control unit 620.
  • the current of the first coil 615a and the second coil 615b of the positive-side coupled inductor 615 is balanced by using one current sensor 15, and the magnetic force of the coupled inductor 13 is increased. Saturation can be prevented.
  • the current of the third coil 616a and the fourth coil 616b of the negative side coupled inductor 616 can be balanced by using one current sensor 15, and magnetic saturation of the coupled inductor 13 can be prevented.
  • FIG. 10 is a circuit diagram illustrating a configuration example of the step-down chopper circuit according to the seventh embodiment.
  • the step-down chopper circuit 701 according to the seventh embodiment is an interleaved chopper circuit that does not include a coupled inductor, and the arrangement of the current sensor 15 and the conductor portions 11a and 12a (see FIG. 2) and the processing procedure of the control unit 16 are the embodiments. The difference will be mainly described below. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step-down chopper circuit 701 includes a first coil 713a and a second coil 713b that are not magnetically coupled to each other, instead of the coupled inductor 13 of the first embodiment.
  • the first coil 713 a is provided in the first energization path 11, and the second coil 713 b is provided in the second energization path 12.
  • the configurations and connection relationships of the first and second switching elements SW1 and SW2, the first and second diodes D1 and D2, the capacitive element 14, and the control unit 16 are the same as in the first embodiment.
  • the current sensor 15 and the conductor portions 11a and 12a have the same configuration as that of the first embodiment, but are different in arrangement.
  • the current sensor 15 and the conductive wire portions 11a and 12a according to the seventh embodiment are on the end portion side of the first coil 713a and the second coil 713b where the first and second switching elements SW1 and SW2 are not connected. Is provided. That is, the first and second switching elements SW1 and SW2 are connected to one end portions of the first coil 713a and the second coil 713b, and the conductive wire portions 11a and 12a are formed at the other end portions of the first coil 713a and the second coil 713b.
  • the current sensor 15 is provided.
  • FIG. 11 is a flowchart illustrating a processing procedure of the control unit according to the seventh embodiment.
  • the control unit 16 that has started the operation of the step-down chopper circuit 701 alternately performs a conduction state in which the first switching element SW1 is turned on and a conduction state in which the second switching element SW2 is turned on at a specific duty ratio. Switching control is performed (step S711).
  • control unit 16 specifies an intermediate time point of the ON period of the first energization path 11 or an intermediate time point of the ON period of the second energization path 12 based on the switching duty ratio and the ON / OFF cycle (step S712).
  • the signal output from the current sensor 15 at the intermediate time is AD converted to obtain a current difference value ⁇ i indicating a difference between the current i1 of the first coil 713a and the current i2 of the second coil 713b (step) S713).
  • the control unit 16 determines whether or not the current difference value ⁇ i is less than the predetermined current difference ⁇ I0 (step S714).
  • the predetermined current difference ⁇ I0 is a value stored in advance by the control unit 16.
  • the predetermined current difference ⁇ I0 can be arbitrarily determined according to various characteristics of the step-down chopper circuit 701 in order to solve a required problem. For example, when the heat dissipation characteristics of the first switching element SW1 and the second switching element SW2 are different, the first energization path 11 and the second energization path 12 are set so that the temperatures of the first and second switching elements SW1 and SW2 are uniform.
  • a predetermined bias may be provided in the flowing current.
  • the predetermined current is set so that the current in the first energizing path 11 is lower than the current in the second energizing path 12. It is preferable to set the current difference ⁇ I0.
  • the control unit 16 determines that the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2 is The ON times of the first and second switching elements SW1 and SW2 are set so as to increase (step S715).
  • step S715 When the process of step S715 is completed, or when it is determined in step S714 that the current difference value ⁇ i is not less than the predetermined current difference ⁇ I0 (step S714: NO), the control unit 16 determines that the current difference value ⁇ i is the predetermined current difference ⁇ I0. It is determined whether it is over (step S716). When it is determined that the current difference value ⁇ i is greater than the predetermined current difference ⁇ I0 (step S716: YES), the control unit 16 determines that the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2 is The ON times of the first and second switching elements SW1 and SW2 are set so as to decrease (step S717).
  • step S717 When the process of step S717 is completed, or when it is determined in step S716 that the current difference value ⁇ i is not greater than the predetermined current difference (step S716: NO), the control unit 16 performs a predetermined operation to stop the operation of the step-down chopper circuit 701. It is determined whether or not the condition is satisfied (step S718). When it is determined that the predetermined stop condition is not satisfied (step S718: NO), the control unit 16 returns the process to step S711. When it is determined that the predetermined stop condition is satisfied (step S718: YES), the control unit 16 ends the process.
  • the difference between the currents flowing through the first and second energization paths 11 and 12 can be controlled to the predetermined current difference ⁇ I0 by using one current sensor 15.
  • the control unit 16 can control the temperature of the first switching element SW1 and the second switching element SW having different heat dissipation characteristics to be uniform.
  • the conductive wire portions 11a and 12a where the difference in current is detected are provided at a place where the influence of switching noise is low, the current flowing through the first coil 713a side and the second coil 713b It is possible to accurately detect the difference between the currents flowing through the sides and control the current difference to be a predetermined current difference.
  • the current sensor 15 has a current flowing through the first coil 713a and the second coil 713b at an intermediate time point of the ON period of the first energization path 11 or an intermediate time point of the ON period of the second energization path 12.
  • the difference of is detected. Therefore, the control unit 16 can detect the difference in current when the influence of the switching noise is low, and accurately detect the difference between the current flowing in the first coil 13a side and the current flowing in the second coil 713b side.
  • the current difference can be controlled.
  • the configuration for controlling the difference between the currents flowing through the first and second energization paths 11 and 12 to be the predetermined current difference ⁇ I0 is not limited to the first embodiment but the second, third, fourth, fifth, and sixth embodiments. It can be applied to both.
  • the structure which provides the conductor part 11a, 12a in which the difference of an electric current is detected in the place where the influence of switching noise is low is not only in Embodiment 1, but in any of Embodiment 2, 3, 4, 5, 6 Can also be applied.
  • the configuration for detecting the difference in current at the intermediate point in the ON period can be applied not only to the first embodiment but also to any of the second, third, fourth, fifth, and sixth embodiments.
  • Step-down chopper circuit 401 Step-up chopper circuit 501 Buck-boost chopper circuit 601 Power factor correction circuit 1a First terminal 1b Second terminal 1c Output terminal pair 2 DC power supply 3 Load 11, 411, 511, 611 First Current path 12, 412, 512, 612 Second current path 11a, 12a Conductor part 13 Coupling inductor 13a, 615a, 713a First coil 13b, 615b, 713b Second coil 13c Core 14, 414, 514, 617 Capacitance element 15 Current Sensor 15a Sensor core 15b Magnetic flux detector 16, 416, 516, 620 Controller D1, D41, D51, D61 First diode D2, D42, D52, D62 Second diode D63 Third diode D64 Fourth diode SW1, SW41, SW51, S 61 1st switching element SW2, SW42, SW52, SW62 2nd switching element SW63 3rd switching element SW64 4th switching element 218 Integration circuit 318

Abstract

A chopper circuit equipped with a coupling inductor that has a first and a second coil provided respectively in a first and a second conduction path, and that is magnetically coupled such that currents flow in the same direction in each path. The first and second conduction paths have a conductive wire portion through which the currents flow in parallel in opposite directions. The chopper circuit is equipped with a current sensor having a magnetic body sensor core surrounding the conductive wire portions of the first and second conduction paths, and a control unit that controls the conduction time of the first and second conduction paths on the basis of the detection result from the current sensor so as to balance the currents flowing through the first and the second conduction paths.

Description

チョッパ回路Chopper circuit
 本発明はチョッパ回路に関する。本出願は、2016年3月31日出願の日本出願第2016-72125号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present invention relates to a chopper circuit. This application claims priority based on Japanese Patent Application No. 2016-72125 filed on Mar. 31, 2016, and incorporates all the description content described in the above Japanese application.
 大電流のDC-DCコンバータにおいては、電流を2相化したインターリーブ方式と呼ばれる駆動方式が用いられている。しかし、電流を2相化させると、必要なコイル部品が2倍に増加してしまうという問題がある。この問題を解決する方法として、特許文献1には、2個のコイルを磁気的に結合させてなる結合インダクタを備えたDC-DCコンバータが開示されている。 In a large current DC-DC converter, a driving method called an interleave method in which current is two-phased is used. However, there is a problem that when the current is made into two phases, the necessary coil parts are doubled. As a method for solving this problem, Patent Document 1 discloses a DC-DC converter provided with a coupled inductor formed by magnetically coupling two coils.
 一方、電流を2相化すると、相ごとに電流の偏りが生じるという問題がある。結合インダクタは非常に磁気抵抗の低いループを持ち、小さな起磁力の差でも非常に大きな磁束が流れるため、第1コイル及び第2コイルの電流の偏りによりコアが磁気飽和してしまう恐れがある。 On the other hand, when the current is made into two phases, there is a problem that current bias occurs for each phase. Since the coupled inductor has a loop with a very low magnetic resistance and a very large magnetic flux flows even with a small magnetomotive force difference, the core may be magnetically saturated due to the current bias of the first coil and the second coil.
 非特許文献1には、結合インダクタにおける電流の偏りを防ぐ方法として、各相の電流、即ち結合インダクタの第1コイル側の電流と、第2コイル側の電流とを測定し、各相の電流を平衡させるインターリーブ方式の昇圧チョッパ回路が開示されている。 In Non-Patent Document 1, as a method for preventing current bias in the coupled inductor, the current of each phase, that is, the current on the first coil side and the current on the second coil side of the coupled inductor is measured, and the current of each phase is measured. An interleaved step-up chopper circuit that balances the above is disclosed.
特開2013-198211号公報JP2013-19821A
 本態様に係るチョッパ回路は、並列接続された第1通電経路及び第2通電経路にそれぞれ設けられた第1コイル及び第2コイルを備え、前記第1通電経路及び第2通電経路を交互にオンオフさせるチョッパ回路において、前記第1通電経路及び第2通電経路は、部分的に逆平行的に配され、通電方向が互いに逆向きになる導線部分を有し、前記第1通電経路及び第2通電経路の前記導線部分を囲繞した磁性体のセンサコアを有する電流センサと、該電流センサの検出結果に基づいて、前記第1通電経路及び第2通電経路の通電時間を制御する制御部とを備える。 The chopper circuit according to this aspect includes a first coil and a second coil provided respectively in a first energization path and a second energization path connected in parallel, and the first energization path and the second energization path are alternately turned on and off. In the chopper circuit to be performed, the first energization path and the second energization path are partially arranged in antiparallel, and have conducting wire portions whose energization directions are opposite to each other, and the first energization path and the second energization path A current sensor having a magnetic sensor core surrounding the conductor portion of the path; and a controller for controlling energization time of the first energization path and the second energization path based on a detection result of the current sensor.
 なお、本願は、このような特徴的な処理部を備えるチョッパ回路として実現することができるだけでなく、かかる特徴的な処理をステップとするチョッパ回路の駆動方法として実現したり、かかるステップをコンピュータに実行させるためのプログラムとして実現したりすることができる。また、チョッパ回路の一部又は全部を実現する半導体集積回路として実現したり、チョッパ回路を含むその他のシステムとして実現したりすることができる。 The present application can be realized not only as a chopper circuit having such a characteristic processing unit, but also as a chopper circuit driving method using such characteristic processing as a step, It can be realized as a program for execution. Also, it can be realized as a semiconductor integrated circuit that realizes part or all of the chopper circuit, or as another system including the chopper circuit.
本発明の実施形態1に係る降圧チョッパ回路の一構成例を示す回路図である。1 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a first embodiment of the present invention. 電流センサの構成を示す模式図である。It is a schematic diagram which shows the structure of a current sensor. 制御部の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a control part. 電流の偏りを示すグラフである。It is a graph which shows the bias | inclination of an electric current. 実施形態2に係る降圧チョッパ回路の一構成例を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a second embodiment. 実施形態3に係る降圧チョッパ回路の一構成例を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration example of a step-down chopper circuit according to a third embodiment. 実施形態4に係る昇圧チョッパ回路の一構成例を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration example of a boost chopper circuit according to a fourth embodiment. 実施形態5に係る昇降圧チョッパ回路の一構成例を示す回路図である。FIG. 10 is a circuit diagram illustrating a configuration example of a step-up / down chopper circuit according to a fifth embodiment. 実施形態6に係る力率改善回路の一構成例を示す回路図である。FIG. 10 is a circuit diagram illustrating a configuration example of a power factor correction circuit according to a sixth embodiment. 実施形態7に係る昇降圧チョッパ回路の一構成例を示す回路図である。FIG. 10 is a circuit diagram illustrating a configuration example of a step-up / down chopper circuit according to a seventh embodiment. 実施形態7に係る制御部の処理手順を示すフローチャートである。15 is a flowchart illustrating a processing procedure of a control unit according to the seventh embodiment.
[発明が解決しようとする課題]
 非特許文献1に記載の昇圧チョッパ回路においては、各相の電流を測定するために2個の電流センサが必要であり、コストが増大するという問題がある。
 また、結合インダクタを備えないインターリーブ方式のチョッパ回路においても、各相のスイッチング素子の放熱特性に偏りがある場合等、種々の理由により各相の電流を測定して電流の差分を制御する必要がある場合、上記した同様の問題が生ずる。
 本開示の目的は、インターリーブ方式のチョッパ回路において、1個の電流センサを用いて各コイルを流れる電流の差分を制御することができるチョッパ回路を提供することにある。
[Problems to be solved by the invention]
In the step-up chopper circuit described in Non-Patent Document 1, two current sensors are required to measure the current of each phase, which increases the cost.
Even in an interleaved chopper circuit that does not have a coupled inductor, there is a need to control the current difference by measuring the current of each phase for various reasons, such as when there is a bias in the heat dissipation characteristics of the switching elements of each phase. In some cases, similar problems as described above arise.
The objective of this indication is providing the chopper circuit which can control the difference of the electric current which flows through each coil using one current sensor in an interleave type chopper circuit.
[発明の効果]
 本開示によれば、インターリーブ方式のチョッパ回路において、1個の電流センサを用いて各コイルを流れる電流の差分を制御することができるチョッパ回路を提供することが可能となる。
[本願発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[The invention's effect]
According to the present disclosure, it is possible to provide a chopper circuit capable of controlling a difference between currents flowing through the coils using a single current sensor in an interleaved chopper circuit.
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described. Moreover, you may combine arbitrarily at least one part of embodiment described below.
(1)本態様に係るチョッパ回路は、並列接続された第1通電経路及び第2通電経路にそれぞれ設けられた第1コイル及び第2コイルを備え、前記第1通電経路及び第2通電経路を交互にオンオフさせるチョッパ回路において、前記第1通電経路及び第2通電経路は、部分的に逆平行的に配され、通電方向が互いに逆向きになる導線部分を有し、前記第1通電経路及び第2通電経路の前記導線部分を囲繞した磁性体のセンサコアを有する電流センサと、該電流センサの検出結果に基づいて、前記第1通電経路及び第2通電経路の通電時間を制御する制御部とを備える。 (1) A chopper circuit according to this aspect includes a first coil and a second coil provided respectively in a first energization path and a second energization path connected in parallel, and the first energization path and the second energization path are provided. In the chopper circuit that is alternately turned on and off, the first energization path and the second energization path are partially disposed in antiparallel, and include conducting wire portions in which the energization directions are opposite to each other. A current sensor having a magnetic sensor core surrounding the conductor portion of the second energization path, and a control unit for controlling energization time of the first energization path and the second energization path based on a detection result of the current sensor; Is provided.
 本態様にあっては、第1コイルが設けられた第1通電経路と、第2コイルが設けられた第2通電経路とを有し、インターリーブ方式のチョッパ回路が構成される。特に本態様の第1通電経路及び第2通電経路は、部分的に逆平行的に配され、通電方向が互いに逆向きになる導線部分を有する。電流センサのセンサコアは、当該導線部分を囲繞しているため、当該電流センサは、第1通電経路を流れる電流と、第2通電経路を流れる電流との差分を検出することができる。つまり、1個の電流センサによって、第1コイル側を流れる電流と、第2コイル側を流れる電流との差分を検出することができる。制御部は、第1コイル及び第2コイルを流れる電流の差分に基づいて、第1通電経路及び第2通電経路の通電時間を制御することができる。 In this aspect, an interleaved chopper circuit is configured having a first energization path provided with the first coil and a second energization path provided with the second coil. In particular, the first energization path and the second energization path of this aspect have conductor portions that are partially arranged in antiparallel and in which the energization directions are opposite to each other. Since the sensor core of the current sensor surrounds the conductor portion, the current sensor can detect the difference between the current flowing through the first energization path and the current flowing through the second energization path. That is, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be detected by one current sensor. The control unit can control the energization time of the first energization path and the second energization path based on the difference between the currents flowing through the first coil and the second coil.
(2)前記第1通電経路及び第2通電経路に同方向の電流が流れるように磁気結合させてなる結合インダクタを備える構成が好ましい。 (2) A configuration including a coupled inductor that is magnetically coupled so that a current in the same direction flows through the first energization path and the second energization path is preferable.
 本態様にあっては、1個の電流センサによって、結合インダクタの第1コイル側を流れる電流と、第2コイル側を流れる電流との差分を制御することができる。 In this embodiment, the difference between the current flowing through the first coil side of the coupled inductor and the current flowing through the second coil side can be controlled by one current sensor.
(3)前記制御部は、前記第1コイル及び第2コイルを流れる電流を平衡させるように、前記第1通電経路及び第2通電経路の通電時間を制御する構成が好ましい。 (3) Preferably, the control unit controls the energization time of the first energization path and the second energization path so as to balance the currents flowing through the first coil and the second coil.
 本態様にあっては、1個の電流センサによって、結合インダクタの第1コイル側を流れる電流と、第2コイル側を流れる電流とを平衡させることができる。 In this aspect, the current flowing through the first coil side of the coupled inductor and the current flowing through the second coil side can be balanced by one current sensor.
(4)前記電流センサは、前記第1通電経路を流れる電流と、前記第2通電経路を流れる電流との差分に応じた電圧を有する信号を出力しており、更に、前記電流センサから出力された信号を積分する積分回路を備え、前記制御部は、前記積分回路にて積分して得られた積分信号の電圧が所定電位になるように前記第1通電経路及び第2通電経路の通電時間を制御する構成が好ましい。 (4) The current sensor outputs a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path, and is further output from the current sensor. An integration circuit that integrates the received signal, and the control unit energizes the first energization path and the second energization path so that the voltage of the integration signal obtained by the integration by the integration circuit becomes a predetermined potential. The structure which controls is preferable.
 本態様にあっては、積分回路は、電流センサから出力された信号を積分する。積分回路によって積分して得られる積分信号は、結合インダクタの第1コイルを流れる電流と、第2コイル側の電流との差分の時間平均に相当する。制御部は、積分信号が所定電位になるように第1通電経路及び第2通電経路の通電時間を制御する。従って、より精度良く、結合インダクタの第1コイル側及び第2コイル側の電流の差分を制御することができる。 In this aspect, the integration circuit integrates the signal output from the current sensor. The integrated signal obtained by integrating by the integrating circuit corresponds to the time average of the difference between the current flowing through the first coil of the coupled inductor and the current on the second coil side. The control unit controls the energization time of the first energization path and the second energization path so that the integration signal becomes a predetermined potential. Therefore, the difference in current between the first coil side and the second coil side of the coupled inductor can be controlled with higher accuracy.
(5)前記電流センサは、前記第1通電経路を流れる電流と、前記第2通電経路を流れる電流との差分に応じた電圧を有する信号を出力しており、更に、前記電流センサから出力された信号を平滑化するフィルタ回路を備え、前記制御部は、前記フィルタ回路を介して前記電流センサから出力された信号の電圧が所定電位になるように、前記第1通電経路及び第2通電経路の通電時間を制御する構成が好ましい。 (5) The current sensor outputs a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path, and is further output from the current sensor. A filter circuit for smoothing the received signal, and the control unit includes the first energization path and the second energization path so that the voltage of the signal output from the current sensor via the filter circuit becomes a predetermined potential. A configuration in which the energization time is controlled is preferable.
 本態様にあっては、電流センサは、第1通電経路を流れる電流と、前記第2通電経路を流れる電流との差分に応じた電圧を有する信号を出力しており、電流センサから出力された信号はフィルタ回路によって平滑化されて制御部に入力される。平滑化された信号は、いわば前記電流の差分の時間平均に相当する。制御部は、入力された信号が所定電位になるように第1通電経路及び第2通電経路の通電時間を制御する。従って、簡単な回路構成で精度良く、結合インダクタの第1コイル側及び第2コイル側の電流の差分を制御することができる。 In this aspect, the current sensor outputs a signal having a voltage corresponding to the difference between the current flowing through the first energization path and the current flowing through the second energization path, and is output from the current sensor. The signal is smoothed by the filter circuit and input to the control unit. The smoothed signal corresponds to the time average of the current difference. The control unit controls the energization time of the first energization path and the second energization path so that the input signal becomes a predetermined potential. Therefore, the difference in current between the first coil side and the second coil side of the coupled inductor can be accurately controlled with a simple circuit configuration.
(6)第1入力部及び第2入力部と、一端部が前記第1入力部に接続され、他端部が前記第1コイルの一端部に接続された第1スイッチング素子と、一端部が前記第1入力部に接続され、他端部が前記第2コイルの一端部に接続された第2スイッチング素子と、アノードが前記第2入力部に接続され、カソードが前記第1コイルの前記一端部に接続された第1ダイオードと、アノードが前記第2入力部に接続され、カソードが前記第2コイルの前記一端部に接続された第2ダイオードと、一端部が前記第2入力部に接続され、他端部が前記第1コイル及び第2コイルの他端部に接続された容量素子とを備える構成が好ましい。 (6) The first input unit and the second input unit, the first switching element having one end connected to the first input unit and the other end connected to one end of the first coil, and one end A second switching element connected to the first input section and having the other end connected to one end of the second coil; an anode connected to the second input; and a cathode connected to the one end of the first coil. A first diode connected to a part, an anode connected to the second input part, a cathode connected to the one end of the second coil, and one end connected to the second input part The other end is preferably provided with a capacitive element connected to the other end of the first coil and the second coil.
 本態様にあっては、結合インダクタを備え、1個の電流センサで第1コイル側及び第2コイル側の電流の差分を制御することができるインターリーブ方式の降圧チョッパ回路を構成することができる。また、当該降圧チョッパ回路を用いて、降圧型の力率改善回路を構成することもできる。 In this aspect, it is possible to configure an interleaved step-down chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor. In addition, a step-down power factor correction circuit can be configured using the step-down chopper circuit.
(7)前記第1コイル及び第2コイルの一端部に接続される第1入力部と、第2入力部と、一端部が前記第2入力部に接続され、他端部が前記第1コイルの他端部に接続された第1スイッチング素子と、一端部が前記第2入力部に接続され、他端部が前記第2コイルの他端部に接続された第2スイッチング素子と、アノードが前記第1コイルの前記他端部に接続された第1ダイオードと、アノードが前記第2コイルの前記他端部に接続された第2ダイオードと、一端部が前記第1ダイオード及び前記第2ダイオードのカソードに接続され、他端部が前記第2入力部に接続された容量素子とを備える構成が好ましい。 (7) A first input unit connected to one end of the first coil and the second coil, a second input unit, one end connected to the second input unit, and the other end connected to the first coil. A first switching element connected to the other end of the first switching element, a second switching element having one end connected to the second input part, and the other end connected to the other end of the second coil, and an anode A first diode connected to the other end of the first coil; a second diode having an anode connected to the other end of the second coil; and one end of the first diode and the second diode. And a capacitor element having the other end connected to the second input part.
 本態様にあっては、結合インダクタを備え、1個の電流センサで第1コイル側及び第2コイル側の電流の差分を制御することができるインターリーブ方式の昇圧チョッパ回路を構成することができる。また、当該昇圧チョッパ回路を用いて、昇圧型の力率改善回路を構成することもできる。 In this aspect, it is possible to configure an interleaved step-up chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor. In addition, a boost type power factor correction circuit can be configured using the boost chopper circuit.
(8)第1入力部と、一端部が前記第1入力部に接続され、他端部が前記第1コイルの一端部に接続された第1スイッチング素子と、一端部が前記第1入力部に接続され、他端部が前記第2コイルの一端部に接続された第2スイッチング素子と、前記第1コイル及び第2コイルの他端部に接続される第2入力部と、カソードが前記第1スイッチング素子の他端部に接続された第1ダイオードと、カソードが前記第2スイッチング素子の他端部に接続された第2ダイオードと、一端部が前記第1ダイオード及び前記第2ダイオードのアノードに接続され、他端部が第2入力部に接続された容量素子とを備える構成が好ましい。 (8) A first input unit, a first switching element having one end connected to the first input unit, and the other end connected to one end of the first coil, and one end connected to the first input unit. A second switching element having the other end connected to one end of the second coil, a second input connected to the other end of the first coil and the second coil, and a cathode A first diode connected to the other end of the first switching element; a second diode having a cathode connected to the other end of the second switching element; and one end of the first diode and the second diode. A configuration including a capacitive element connected to the anode and having the other end connected to the second input unit is preferable.
 本態様にあっては、結合インダクタを備え、1個の電流センサで第1コイル側及び第2コイル側の電流の差分を制御することができるインターリーブ方式の昇降圧チョッパ回路を構成することができる。また、当該昇降圧チョッパ回路を用いて、昇降圧型の力率改善回路を構成することもできる。 In this aspect, it is possible to configure an interleaved step-up / step-down chopper circuit that includes a coupled inductor and can control the difference between the currents on the first coil side and the second coil side with a single current sensor. . In addition, a step-up / step-down power factor correction circuit can be configured using the step-up / step-down chopper circuit.
(9)前記導線部分及び前記電流センサは、前記第1コイル及び第2コイルの端部の内、前記第1通電経路及び第2通電経路のオンオフが行われない端部側に設けられている構成が好ましい。 (9) The conducting wire portion and the current sensor are provided on the end side where the first energization path and the second energization path are not turned on / off, of the end portions of the first coil and the second coil. A configuration is preferred.
 本態様にあっては、通電方向が互いに逆向きになる導線部分、即ち電流の差分の検出が行われる導線部分は、スイッチングノイズの影響が低い箇所に設けられている。従って、第1コイル側を流れる電流と、第2コイル側を流れる電流の差分を精度良く検出し、当該差分を制御することができる。 In this embodiment, the conductive wire portions in which the energization directions are opposite to each other, that is, the conductive wire portion where the difference in current is detected are provided at a location where the influence of switching noise is low. Therefore, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be accurately detected, and the difference can be controlled.
(10)前記電流センサは、前記第1通電経路のオン期間の中間時点、又は前記第2通電経路のオン期間の中間時点で前記第1コイル及び第2コイルを流れる電流の差分を検出する構成が好ましい。 (10) The current sensor is configured to detect a difference between currents flowing through the first coil and the second coil at an intermediate point in the on period of the first energization path or an intermediate point in the on period of the second energization path. Is preferred.
 本態様にあっては、スイッチングノイズの影響が低い時点で電流の差分が検出される。従って、第1コイル側を流れる電流と、第2コイル側を流れる電流の差分を精度良く検出し、当該差分を制御することができる。 In this mode, the difference in current is detected when the influence of switching noise is low. Therefore, the difference between the current flowing through the first coil side and the current flowing through the second coil side can be accurately detected, and the difference can be controlled.
[本発明の実施形態の詳細]
 本発明の実施形態に係るチョッパ回路の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of a chopper circuit according to an embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
(実施形態1)
 図1は、本発明の実施形態1に係る降圧チョッパ回路1の一構成例を示す回路図である。本実施形態1に係る降圧チョッパ回路1は、直流電源2に接続される第1端子1a(第1入力部)及び第2端子(第2入力部)1bと、負荷3が接続される出力端子対1cとを備え、第1端子1a及び第2端子1bに入力された電圧を降圧し、降圧された電圧を出力端子対1cから負荷3へ出力する回路である。本実施形態1に係る降圧チョッパ回路1は、インターリーブ方式であり、降圧に係る第1通電経路11及び第2通電経路12、第1及び第2スイッチング素子SW1、SW2、第1及び第2ダイオードD1、D2、結合インダクタ13、容量素子14、電流センサ15及び制御部16を備える。第1及び第2通電経路11、12は並列接続されており、結合インダクタ13は、第1通電経路11に設けられた第1コイル13aと、第2通電経路12に設けられた第2コイル13bとを有する。第1コイル13a及び第2コイル13bは、共通のコア13cに巻回され、第1通電経路11及び第2通電経路12に同方向の電流i1、i2が流れるように磁気結合している。コア13cは、例えばEE型であり(図2参照)、フェライト、磁性金属、積層鋼板、磁性粉の圧粉体等からなる軟磁性体等で形成されている。第1スイッチング素子SW1、第1ダイオードD1及び第1コイル13aは、第1通電経路11に設けられた降圧に係る回路素子であり、第2スイッチング素子SW2、第2ダイオードD2及び第2コイル13bは、第2通電経路12に設けられた降圧に係る素子である。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration example of a step-down chopper circuit 1 according to Embodiment 1 of the present invention. The step-down chopper circuit 1 according to the first embodiment includes a first terminal 1a (first input unit) and a second terminal (second input unit) 1b connected to a DC power source 2, and an output terminal to which a load 3 is connected. The circuit includes a pair 1c and steps down the voltage input to the first terminal 1a and the second terminal 1b and outputs the stepped down voltage from the output terminal pair 1c to the load 3. The step-down chopper circuit 1 according to the first embodiment is an interleave type, and includes a first energization path 11 and a second energization path 12, first and second switching elements SW1 and SW2, and first and second diodes D1 related to step-down. , D2, a coupled inductor 13, a capacitive element 14, a current sensor 15, and a control unit 16. The first and second energization paths 11 and 12 are connected in parallel, and the coupled inductor 13 includes a first coil 13 a provided in the first energization path 11 and a second coil 13 b provided in the second energization path 12. And have. The first coil 13a and the second coil 13b are wound around a common core 13c and are magnetically coupled so that currents i1 and i2 in the same direction flow through the first energizing path 11 and the second energizing path 12. The core 13c is, for example, an EE type (see FIG. 2), and is formed of a soft magnetic material made of ferrite, a magnetic metal, a laminated steel plate, a magnetic powder compact, or the like. The first switching element SW1, the first diode D1, and the first coil 13a are step-down circuit elements provided in the first energization path 11, and the second switching element SW2, the second diode D2, and the second coil 13b are The step-down element is provided in the second energization path 12.
 第1スイッチング素子SW1及び第2スイッチング素子SW2は、例えばIGBT(Insulated Gate Bipolar Transistor)又はMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等のパワーデバイスである。第1スイッチング素子SW1の一端部は、正極側の第1端子1aに接続され、他端部は第1コイル13aの一端部に接続されている。同様に、第2スイッチング素子SW2の一端部は、正極側の第1端子1aに接続され、他端部は第2コイル13bコイルの一端部に接続されている。 The first switching element SW1 and the second switching element SW2 are power devices such as IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). One end of the first switching element SW1 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the first coil 13a. Similarly, one end of the second switching element SW2 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the second coil 13b coil.
 第1ダイオードD1及び第2ダイオードD2のアノードは第2端子1bに接続されている。第1ダイオードD1のカソードは、第1スイッチング素子SW1の他端部及び第1コイル13aの一端部に接続されている。同様に、第2ダイオードD2のカソードは、第2スイッチング素子SW2の他端部及び第2コイル13bの一端部に接続されている。 The anodes of the first diode D1 and the second diode D2 are connected to the second terminal 1b. The cathode of the first diode D1 is connected to the other end of the first switching element SW1 and one end of the first coil 13a. Similarly, the cathode of the second diode D2 is connected to the other end of the second switching element SW2 and one end of the second coil 13b.
 容量素子14は、例えば電解コンデンサであり、容量素子14の一端部は、第1コイル13a及び第2コイル13bの他端部にそれぞれ接続され、他端部は第2端子1bに接続されている。 The capacitive element 14 is, for example, an electrolytic capacitor. One end of the capacitive element 14 is connected to the other ends of the first coil 13a and the second coil 13b, and the other end is connected to the second terminal 1b. .
 電流センサ15は、第1通電経路11を流れる電流と、第2通電経路12を流れる電流との差分を検出し、当該差分に相当する信号を制御部16へ出力するセンサである。 The current sensor 15 is a sensor that detects a difference between a current flowing through the first energization path 11 and a current flowing through the second energization path 12 and outputs a signal corresponding to the difference to the control unit 16.
 図2は、電流センサ15の構成を示す模式図である。第1通電経路11及び第2通電経路12は、部分的に逆平行的に配され、通電方向が互いに逆向きになる導線部分11a、12aを有する。具体的には、第1通電経路11及び第2通電経路12は、概ね所定方向(例えば、図2中、左側から右側)へ向かって電流が流れるように配されているが、第1通電経路11は途中で逆向きに折り返されている。折り返された導線部分11aは、第2通電経路12の導線部分12aに並列しており、導線部分11a及び導線部分12aは、逆方向の電流が並行して通流するように束ねられている。 FIG. 2 is a schematic diagram showing the configuration of the current sensor 15. The first energization path 11 and the second energization path 12 have conductor portions 11a and 12a that are partially arranged in antiparallel and in which the energization directions are opposite to each other. Specifically, the first energization path 11 and the second energization path 12 are arranged so that a current flows substantially in a predetermined direction (for example, from the left side to the right side in FIG. 2). 11 is folded back in the middle. The folded conductive wire portion 11a is in parallel with the conductive wire portion 12a of the second energization path 12, and the conductive wire portion 11a and the conductive wire portion 12a are bundled so that currents in opposite directions flow in parallel.
 電流センサ15は、第1及び第2通電経路11、12の導線部分11a、12aを束ねて囲繞した磁性体材料からなるセンサコア15a、第1及び第2通電経路11、12に流れる電流によってセンサコア15aに発生した磁束を検出する磁束検出部15b等を備える。センサコア15aは、例えば間隙を有する環状である。磁束検出部15bは、センサコア15aの間隙に配されたホール素子を備え、ホール素子は、第1及び第2通電経路11、12に流れる電流によってセンサコア15aに生じた磁束に応じた電圧レベルを有する信号を出力する。また、磁束検出部15bは、ホール素子から出力される信号を増幅する増幅器を備えても良い。
 なお、磁束検出部15bは、導線部分11a側及び導線部分12a側の内、折り返されていない導線部分側に配置すると良い。図2の例では、導線部分12a側に配置すると良い。このように構成することによって、各種導線の配索が容易になる。
The current sensor 15 includes a sensor core 15a made of a magnetic material that bundles and surrounds the conductive wire portions 11a and 12a of the first and second energization paths 11 and 12, and a sensor core 15a by current flowing through the first and second energization paths 11 and 12. Are provided with a magnetic flux detector 15b for detecting the magnetic flux generated. The sensor core 15a is, for example, an annular shape having a gap. The magnetic flux detection unit 15b includes a Hall element disposed in the gap between the sensor cores 15a, and the Hall elements have a voltage level corresponding to the magnetic flux generated in the sensor core 15a due to the current flowing through the first and second energization paths 11 and 12. Output a signal. The magnetic flux detection unit 15b may include an amplifier that amplifies a signal output from the Hall element.
In addition, the magnetic flux detection part 15b is good to arrange | position to the conducting wire part side which is not return | folded among the conducting wire part 11a side and the conducting wire part 12a side. In the example of FIG. 2, it is good to arrange | position on the conducting wire part 12a side. By configuring in this way, it is easy to route various conductors.
 センサコア15aの中心を通る導線部分11a及び導線部分12aの電流の向きは逆向きであるため、電流センサ15は、結合インダクタ13の第1コイル13a及び第2コイル13bを流れる電流の差分に応じた信号を出力する。本実施形態では、電流センサ15は、第1コイル13aに流れる電流の値から第2コイル13bに流れる電流の値を減算して得られる差分値に相当する電圧レベルの信号を出力するものとする。この場合、第1コイル13aの電流が、第2コイル13bの電流よりも大きい場合、正電圧レベルの信号が出力され、第2コイル13bの電流が、第1コイル13aの電流よりも大きい場合、負電圧レベルの信号が出力される。第1コイル13a及び第2コイル13bの電流が平衡している場合、電流センサ15から出力される信号の電圧レベルは基準電位になる。 Since the directions of the currents of the lead wire portion 11a and the lead wire portion 12a passing through the center of the sensor core 15a are opposite, the current sensor 15 corresponds to the difference in current flowing through the first coil 13a and the second coil 13b of the coupled inductor 13. Output a signal. In the present embodiment, the current sensor 15 outputs a signal at a voltage level corresponding to a difference value obtained by subtracting the value of the current flowing through the second coil 13b from the value of the current flowing through the first coil 13a. . In this case, when the current of the first coil 13a is larger than the current of the second coil 13b, a positive voltage level signal is output, and when the current of the second coil 13b is larger than the current of the first coil 13a, A negative voltage level signal is output. When the currents of the first coil 13a and the second coil 13b are balanced, the voltage level of the signal output from the current sensor 15 becomes the reference potential.
 制御部16は、第1及び第2スイッチング素子SW1、SW2のオンオフをPWM制御する回路である。具体的には、制御部16は、第1スイッチング素子SW1をオン状態にした導通状態と、第2スイッチング素子SW2をオン状態にした導通状態とを交互に切り替えることにより、第1及び第2端子1a、1bに入力された電圧を降圧させる。
 また、制御部16には、電流センサ15から出力された信号が入力される。制御部16は、電流センサ15から出力される信号をAD変換することによって、第1コイル13aの電流i1と、第2コイル13bの電流i2との差分に相当する電流差分値Δi=i1-i2を取得する。電流差分値Δiは、電流センサ15の検出結果に相当する。そして、制御部16は、電流差分値Δiがゼロになるように、第1及び第2スイッチング素子SW1、SW2のオンオフ時間を制御する。
The control unit 16 is a circuit that performs PWM control of on / off of the first and second switching elements SW1 and SW2. Specifically, the control unit 16 switches the first and second terminals by alternately switching between a conduction state in which the first switching element SW1 is turned on and a conduction state in which the second switching element SW2 is turned on. The voltage input to 1a and 1b is stepped down.
Further, the signal output from the current sensor 15 is input to the control unit 16. The control unit 16 performs AD conversion on the signal output from the current sensor 15, thereby a current difference value Δi = i1-i2 corresponding to the difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b. To get. The current difference value Δi corresponds to the detection result of the current sensor 15. Then, the control unit 16 controls the on / off times of the first and second switching elements SW1 and SW2 so that the current difference value Δi becomes zero.
 図3は、制御部16の処理手順を示すフローチャート、図4は、電流の偏りを示すグラフである。図4中、横軸は時間、縦軸は第1コイル13aの電流i1及び第2コイル13bの電流i2を示している。降圧チョッパ回路1の動作を開始した制御部16は、第1スイッチング素子SW1をオン状態にした導通状態と、第2スイッチング素子SW2をオン状態にした導通状態とを交互に切り替える制御を行う(ステップS11)。例えば、制御部16は第1及び第2スイッチング素子SW1、SW2を同じデューティ比50%でオンオフさせる。 FIG. 3 is a flowchart showing a processing procedure of the control unit 16, and FIG. 4 is a graph showing current bias. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the current i1 of the first coil 13a and the current i2 of the second coil 13b. The control unit 16 that has started the operation of the step-down chopper circuit 1 performs control to alternately switch between a conduction state in which the first switching element SW1 is turned on and a conduction state in which the second switching element SW2 is turned on (step) S11). For example, the control unit 16 turns on and off the first and second switching elements SW1 and SW2 with the same duty ratio of 50%.
 次いで、制御部16は、電流センサ15から出力された信号をAD変換することによって、第1コイル13aの電流i1と、第2コイル13bの電流i2との差分を示した電流差分値Δiを取得する(ステップS12)。ここでは、電流i1から電流i2を減算した値を電流差分値Δiとする。 Next, the control unit 16 AD-converts the signal output from the current sensor 15 to obtain a current difference value Δi indicating a difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b. (Step S12). Here, a value obtained by subtracting the current i2 from the current i1 is defined as a current difference value Δi.
 そして、制御部16は、電流差分値Δiが負であるか否かを判定する(ステップS13)。例えば、配線抵抗のバラツキなどによって、図4に示すように第2コイル13bの電流i2が、第1コイル13aの電流i1よりも大きい状況にあるとする。第1コイル13a及び第2コイル13bの電流i1、i2が平衡していると、電流差分値Δi=i1-i2は0[A]になるが、図4に示す例では、電流i2の方が電流i1より大きいため、電流差分値Δi=i1-i2は負となる。電流差分値Δiが負であると判定した場合(ステップS13:YES)、制御部16は、第1スイッチング素子SW1のオン時間と、第2スイッチング素子SW2のオン時間との差分が増加するように、第1及び第2スイッチング素子SW1、SW2のオン時間を設定する(ステップS14)。具体的には、第1スイッチング素子SW1のデューティ比を大きく設定し、第2スイッチング素子SW2のデューティ比を小さく設定すれば、電流i1の平均電流が大きく、電流i2の平均電流が小さくなり、電流差分値Δiをゼロに近づけることができる。 And the control part 16 determines whether the electric current difference value (DELTA) i is negative (step S13). For example, it is assumed that the current i2 of the second coil 13b is larger than the current i1 of the first coil 13a as shown in FIG. 4 due to variations in wiring resistance. When the currents i1 and i2 of the first coil 13a and the second coil 13b are balanced, the current difference value Δi = i1−i2 becomes 0 [A]. However, in the example shown in FIG. Since it is larger than the current i1, the current difference value Δi = i1-i2 is negative. When it is determined that the current difference value Δi is negative (step S13: YES), the control unit 16 increases the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2. The ON times of the first and second switching elements SW1 and SW2 are set (step S14). Specifically, if the duty ratio of the first switching element SW1 is set large and the duty ratio of the second switching element SW2 is set small, the average current of the current i1 is large and the average current of the current i2 is small. The difference value Δi can be brought close to zero.
 ステップS14の処理を終えた場合、又はステップS13において電流差分値Δiが負で無いと判定した場合(ステップS13:NO)、制御部16は、電流差分値Δiが正であるか否かを判定する(ステップS15)。電流差分値Δiが正であると判定した場合(ステップS15:YES)、制御部16は、第1スイッチング素子SW1のオン時間と、第2スイッチング素子SW2のオン時間との差分が減少するように、第1及び第2スイッチング素子SW1、SW2のオン時間を設定する(ステップS16)。具体的には、第1スイッチング素子SW1のデューティ比を小さく設定し、第2スイッチング素子SW2のデューティ比を大きく設定すれば、電流i1の平均電流が小さく、電流i2の平均電流が大きくなり、電流差分値Δiをゼロに近づけることができる。
 ステップS16の処理を終えた場合、又はステップS15において電流差分値Δiが正で無いと判定した場合(ステップS15:NO)、制御部16は、降圧チョッパ回路1の動作を停止させる所定条件を満たすか否かを判定する(ステップS17)。停止の所定条件を満たさないと判定した場合(ステップS17:NO)、制御部16は処理をステップS11へ戻す。停止の所定条件を満たすと判定した場合(ステップS17:YES)、制御部16は処理を終える。
When the process of step S14 is completed, or when it is determined in step S13 that the current difference value Δi is not negative (step S13: NO), the control unit 16 determines whether or not the current difference value Δi is positive. (Step S15). When it is determined that the current difference value Δi is positive (step S15: YES), the control unit 16 decreases the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2. The on-time of the first and second switching elements SW1, SW2 is set (step S16). Specifically, if the duty ratio of the first switching element SW1 is set small and the duty ratio of the second switching element SW2 is set large, the average current of the current i1 is small and the average current of the current i2 is large. The difference value Δi can be brought close to zero.
When the process of step S16 is finished or when it is determined in step S15 that the current difference value Δi is not positive (step S15: NO), the control unit 16 satisfies a predetermined condition for stopping the operation of the step-down chopper circuit 1. Whether or not (step S17). When it determines with not satisfy | filling the stop predetermined conditions (step S17: NO), the control part 16 returns a process to step S11. When it is determined that the predetermined stop condition is satisfied (step S17: YES), the control unit 16 ends the process.
 このように構成された降圧チョッパ回路1によれば、1個の電流センサ15を用いて結合インダクタ13の第1コイル13a及び第2コイル13bの電流を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。 According to the step-down chopper circuit 1 configured as described above, the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced using a single current sensor 15, and magnetic saturation of the coupled inductor 13 is prevented. be able to.
 また、1個の電流センサ15を用いて電流の差分を検出する構成であるため、2個の電流センサを用いて電流の差分を検出する構成に比べて当該差分を精度良く検出することができる。2個の電流センサを用いた場合、電流の検出誤差範囲も2倍になり、検出精度が落ちるが、1個の電流センサ15を用いた場合、電流の検出誤差範囲を1個分の検出誤差範囲内に収めることができる。従って、第1コイル13a及び第2コイル13bの電流の差分を精度良く検出することができ、各電流を平衡させることができる。 In addition, since the current difference is detected by using one current sensor 15, the difference can be detected with higher accuracy than the structure in which the current difference is detected by using two current sensors. . When two current sensors are used, the current detection error range is doubled and the detection accuracy is lowered. However, when one current sensor 15 is used, the current detection error range is one detection error range. Can be within the range. Therefore, the difference between the currents of the first coil 13a and the second coil 13b can be detected with high accuracy, and each current can be balanced.
 更に、制御部16の1個の電流センサ15を用いて電流の差分を検出する構成であるため、2個の電流センサを用いて電流の差分を検出する構成に比べて、検出結果の信号が入力されるAD変換入力ポートの数を低減することができる。 Furthermore, since the current difference is detected by using one current sensor 15 of the control unit 16, the detection result signal is smaller than the structure in which the current difference is detected by using two current sensors. The number of input AD conversion input ports can be reduced.
 なお、本実施形態1では、2相のインターリーブ方式の降圧チョッパ回路1を説明したが、4相以上の多相のインターリーブ方式の降圧チョッパ回路にも本実施形態を適用することができる。多相の場合、例えば、2相を一組として、2本の通電経路毎に本実施形態に係る電流センサを設けると良い。
 また、本実施形態1では、導線部分11a、12aが形成された第1通電経路11及び第2通電経路12の長さに言及していないが、当該導線部分11a、12aの長さ、言い換えると電気抵抗等の電気特性が略同一である構成が好ましい。
In the first embodiment, the two-phase interleaved step-down chopper circuit 1 has been described. However, the present embodiment can also be applied to a four-phase or more multi-phase interleaved step-down chopper circuit. In the case of multiphase, for example, the current sensor according to the present embodiment may be provided for each of two energization paths with two phases as a set.
Moreover, in this Embodiment 1, although the length of the 1st electricity supply path | route 11 and the 2nd electricity supply path | route 12 in which the conducting wire parts 11a and 12a were formed is not mentioned, the length of the said conducting wire parts 11a and 12a, in other words, is mentioned. A configuration in which electrical characteristics such as electrical resistance are substantially the same is preferable.
(実施形態2)
 図5は、実施形態2に係る降圧チョッパ回路201の一構成例を示す回路図である。実施形態2に係る降圧チョッパ回路201の構成は実施形態1と同様であり、電流センサ15から出力された信号を積分する積分回路218を更に備える点が実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 5 is a circuit diagram illustrating a configuration example of the step-down chopper circuit 201 according to the second embodiment. The configuration of the step-down chopper circuit 201 according to the second embodiment is the same as that of the first embodiment, and is different from the first embodiment in that it further includes an integration circuit 218 that integrates the signal output from the current sensor 15. Such differences will be described. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 実施形態2に係る降圧チョッパは、電流センサ15から出力される信号を積分し、積分して得た信号を制御部16へ出力する積分回路218を備える。積分回路218は公知の回路を用いれば良い。例えば、積分回路218は差動増幅器を備える。差動増幅器の反転入力端子は抵抗器を介して電流センサ15に接続され、非反転入力端子は基準電位に接続されている。また、差動増幅器の反転入力端子に一端部が接続され、他端部が差動増幅器の出力端子に接続されたコンデンサを備える。 The step-down chopper according to the second embodiment includes an integration circuit 218 that integrates a signal output from the current sensor 15 and outputs a signal obtained by integration to the control unit 16. The integration circuit 218 may be a known circuit. For example, the integration circuit 218 includes a differential amplifier. The inverting input terminal of the differential amplifier is connected to the current sensor 15 via a resistor, and the non-inverting input terminal is connected to the reference potential. In addition, a capacitor is provided having one end connected to the inverting input terminal of the differential amplifier and the other end connected to the output terminal of the differential amplifier.
 このように構成された降圧チョッパ回路201によれば、電流センサ15から出力される信号は、積分回路218によって積分されて制御部16に入力される。言い換えると、結合インダクタ13の第1及び第2コイル13a、13bの電流の差分を時間平均したものに相当する信号が制御部16に入力される。制御部16は、積分された信号が基準電位、例えばゼロボルトになるように、第1及び第2スイッチング素子SW1、SW2のオンオフ時間を増減させる。
 従って、実施形態2によれば、より精度良く第1及び第2コイル13a、13bの電流i1、i2を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。
According to the step-down chopper circuit 201 configured as described above, the signal output from the current sensor 15 is integrated by the integration circuit 218 and input to the control unit 16. In other words, a signal corresponding to a time-averaged difference between the currents of the first and second coils 13 a and 13 b of the coupled inductor 13 is input to the control unit 16. The controller 16 increases or decreases the on / off times of the first and second switching elements SW1 and SW2 so that the integrated signal becomes a reference potential, for example, zero volts.
Therefore, according to the second embodiment, the currents i1 and i2 of the first and second coils 13a and 13b can be balanced with higher accuracy, and magnetic saturation of the coupled inductor 13 can be prevented.
(実施形態3)
 図6は、実施形態3に係る降圧チョッパ回路301の一構成例を示す回路図である。実施形態3に係る降圧チョッパ回路301の構成は実施形態1と同様であり、電流センサ15から出力された信号を平滑化するフィルタ回路318を更に備える点が実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 3)
FIG. 6 is a circuit diagram illustrating a configuration example of the step-down chopper circuit 301 according to the third embodiment. The configuration of the step-down chopper circuit 301 according to the third embodiment is the same as that of the first embodiment, and differs from the first embodiment in that it further includes a filter circuit 318 that smoothes the signal output from the current sensor 15. The difference concerning will be described. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 実施形態3に係る降圧チョッパは、電流センサ15から出力される信号を平滑化し、平滑化された信号を制御部16へ出力するフィルタ回路318を備える。フィルタ回路318は、例えばローパスフィルタである。ローパスフィルタは、例えば、抵抗器及びコンデンサを備える。抵抗器の一端部は電流センサ15に接続され、他端部は制御部16に接続されている。一端部が基準電位に接続されたコンデンサの他端部は、抵抗器の前記他端部に接続されている。 The step-down chopper according to the third embodiment includes a filter circuit 318 that smoothes a signal output from the current sensor 15 and outputs the smoothed signal to the control unit 16. The filter circuit 318 is, for example, a low pass filter. The low-pass filter includes, for example, a resistor and a capacitor. One end of the resistor is connected to the current sensor 15, and the other end is connected to the control unit 16. The other end of the capacitor whose one end is connected to the reference potential is connected to the other end of the resistor.
 このように構成された降圧チョッパ回路301によれば、電流センサ15から出力される信号は、フィルタ回路318によって平滑化されて制御部16に入力される。言い換えると、結合インダクタ13の第1及び第2コイル13a、13bの電流の差分を時間的に平滑化したものに相当する信号が制御部16に入力される。制御部16は、平滑化された信号が基準電位、例えばゼロボルトになるように、第1及び第2スイッチング素子SW1、SW2のオンオフ時間を増減させる。
 従って、実施形態3によれば、簡単な回路構成で精度良く第1及び第2コイル13a、13bの電流i1、i2を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。
According to the step-down chopper circuit 301 configured as described above, the signal output from the current sensor 15 is smoothed by the filter circuit 318 and input to the control unit 16. In other words, a signal corresponding to a temporally smoothed difference between the currents of the first and second coils 13 a and 13 b of the coupled inductor 13 is input to the control unit 16. The controller 16 increases or decreases the on / off times of the first and second switching elements SW1 and SW2 so that the smoothed signal becomes a reference potential, for example, zero volts.
Therefore, according to the third embodiment, the currents i1 and i2 of the first and second coils 13a and 13b can be balanced with a simple circuit configuration with high accuracy, and magnetic saturation of the coupled inductor 13 can be prevented.
(実施形態4)
 図7は、実施形態4に係る昇圧チョッパ回路401の一構成例を示す回路図である。実施形態4は、本態様に係る結合インダクタ13及び電流センサ15を昇圧チョッパ回路401に適用したものである。本実施形態4に係る昇圧チョッパ回路401は、昇圧に係る回路構成のみが実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 4)
FIG. 7 is a circuit diagram showing a configuration example of the boost chopper circuit 401 according to the fourth embodiment. In the fourth embodiment, the coupled inductor 13 and the current sensor 15 according to this aspect are applied to a step-up chopper circuit 401. Since the boost chopper circuit 401 according to the fourth embodiment is different from the first embodiment only in the circuit configuration related to boosting, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態4に係る昇圧チョッパ回路401は、インターリーブ方式であり、昇圧に係る第1通電経路411及び第2通電経路412、第1及び第2スイッチング素子SW41、SW42、第1及び第2ダイオードD41、D42、結合インダクタ13、容量素子414、電流センサ15及び制御部416を備える。第1及び第2通電経路411、412は並列接続されており、結合インダクタ13は、実施形態1と同様、第1通電経路411に設けられた第1コイル13aと、第2通電経路412に設けられた第2コイル13bとを有し、第1コイル13a及び第2コイル13bは、第1通電経路411及び第2通電経路412に同方向の電流i1、i2が流れるように磁気結合している。第1コイル13a及び第2コイル13bの一端部は、正極側の第1端子1aに接続されている。 The step-up chopper circuit 401 according to the fourth embodiment is an interleave type, and includes a first energization path 411 and a second energization path 412, first and second switching elements SW 41 and SW 42, and first and second diodes D 41 for boosting. , D42, coupled inductor 13, capacitive element 414, current sensor 15 and control unit 416. The first and second energization paths 411 and 412 are connected in parallel, and the coupled inductor 13 is provided in the first coil 13a provided in the first energization path 411 and the second energization path 412 as in the first embodiment. The first coil 13a and the second coil 13b are magnetically coupled so that currents i1 and i2 in the same direction flow through the first energization path 411 and the second energization path 412. . One end portions of the first coil 13a and the second coil 13b are connected to the first terminal 1a on the positive electrode side.
 第1スイッチング素子SW41及び第2スイッチング素子SW42の一端部は、第2端子1bに接続され、第1スイッチング素子SW41の他端部は第1コイル13aの他端部に接続され、第2スイッチング素子SW42の他端部は第2コイル13bの他端部に接続されている。 One ends of the first switching element SW41 and the second switching element SW42 are connected to the second terminal 1b, the other end of the first switching element SW41 is connected to the other end of the first coil 13a, and the second switching element. The other end of the SW 42 is connected to the other end of the second coil 13b.
 第1ダイオードD41のアノードは、第1コイル13aの他端部に接続され、第2ダイオードD42のアノードは第2コイル13bの他端部に接続されている。 The anode of the first diode D41 is connected to the other end of the first coil 13a, and the anode of the second diode D42 is connected to the other end of the second coil 13b.
 容量素子414は、例えば電解コンデンサであり、容量素子414の一端部は、第1ダイオードD41及び第2ダイオードD42のカソードにそれぞれ接続され、他端部は第2端子1bに接続されている。 The capacitive element 414 is, for example, an electrolytic capacitor. One end of the capacitive element 414 is connected to the cathodes of the first diode D41 and the second diode D42, and the other end is connected to the second terminal 1b.
 制御部416は、実施形態1と同様、第1スイッチング素子SW41をオン状態にした導通状態と、第2スイッチング素子SW42をオン状態にした導通状態とを交互に切り替えることにより、第1及び第2端子1a、1bに入力された電圧を昇圧させる。
 電流センサ15は、第1通電経路411を流れる電流と、第2通電経路412を流れる電流との差分を検出し、当該差分に相当する信号を制御部416へ出力する。制御部416には、電流センサ15から出力された信号が入力される。制御部416は、電流センサ15から出力される信号をAD変換することによって、第1コイル13aの電流i1と、第2コイル13bの電流i2との差分に相当する電流差分値Δiを取得する。そして、制御部416は、電流差分値Δiがゼロになるように、第1及び第2スイッチング素子SW41、SW42のオンオフ時間を制御する。
As in the first embodiment, the control unit 416 alternately switches between the conduction state in which the first switching element SW41 is in the on state and the conduction state in which the second switching element SW42 is in the on state. The voltage input to the terminals 1a and 1b is boosted.
The current sensor 15 detects the difference between the current flowing through the first energization path 411 and the current flowing through the second energization path 412, and outputs a signal corresponding to the difference to the control unit 416. A signal output from the current sensor 15 is input to the control unit 416. The control unit 416 obtains a current difference value Δi corresponding to the difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b by AD converting the signal output from the current sensor 15. Then, the control unit 416 controls the on / off times of the first and second switching elements SW41 and SW42 so that the current difference value Δi becomes zero.
 このように構成された昇圧チョッパ回路401によれば、1個の電流センサ15を用いて結合インダクタ13の第1コイル13a及び第2コイル13bの電流を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。 According to the boost chopper circuit 401 configured as described above, the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced by using one current sensor 15, and magnetic saturation of the coupled inductor 13 is prevented. be able to.
(実施形態5)
 図8は、実施形態5に係る昇降圧チョッパ回路501の一構成例を示す回路図である。実施形態5は、本態様に係る結合インダクタ13及び電流センサ15を昇降圧チョッパ回路501に適用したものである。本実施形態5に係る昇降圧チョッパ回路501は、昇降圧に係る回路構成のみが実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 5)
FIG. 8 is a circuit diagram illustrating a configuration example of the step-up / step-down chopper circuit 501 according to the fifth embodiment. In the fifth embodiment, the coupled inductor 13 and the current sensor 15 according to this aspect are applied to the step-up / step-down chopper circuit 501. Since the step-up / down chopper circuit 501 according to the fifth embodiment is different from the first embodiment only in the circuit configuration related to the step-up / step-down, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態5に係る昇降圧チョッパ回路501は、インターリーブ方式であり、昇降圧に係る第1通電経路511及び第2通電経路512、第1及び第2スイッチング素子SW51、SW52、第1及び第2ダイオードD51、D52、結合インダクタ13、容量素子514、電流センサ15及び制御部516を備える。第1及び第2通電経路511、512は並列接続されており、結合インダクタ13は、実施形態1と同様、第1通電経路5
11に設けられた第1コイル13aと、第2通電経路512に設けられた第2コイル13bとを有し、第1コイル13a及び第2コイル13bは、第1通電経路511及び第2通電経路512に同方向の電流i1、i2が流れるように磁気結合している。
The step-up / step-down chopper circuit 501 according to the fifth embodiment is an interleave type, and includes a first energization path 511 and a second energization path 512, first and second switching elements SW51, SW52, first and second, which relate to the step-up / step-down. Diodes D51 and D52, a coupled inductor 13, a capacitive element 514, a current sensor 15 and a control unit 516 are provided. The first and second energization paths 511 and 512 are connected in parallel, and the coupled inductor 13 is connected to the first energization path 5 as in the first embodiment.
11 and a second coil 13b provided in the second energization path 512. The first coil 13a and the second coil 13b are the first energization path 511 and the second energization path. 512 is magnetically coupled so that currents i1 and i2 in the same direction flow.
 第1スイッチング素子SW51の一端部は、正極側の第1端子1aに接続され、他端部は第1コイル13aの一端部及び第1ダイオードD51のカソードに接続されている。同様に、第2スイッチング素子SW52の一端部は、正極側の第1端子1aに接続され、他端部は第2コイル13bコイルの一端部及び第2ダイオードD52のカソードに接続されている。第1及び第2ダイオードD51、D52のアノードは第2端子1bに接続されている。 One end of the first switching element SW51 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the first coil 13a and the cathode of the first diode D51. Similarly, one end of the second switching element SW52 is connected to the first terminal 1a on the positive electrode side, and the other end is connected to one end of the second coil 13b coil and the cathode of the second diode D52. The anodes of the first and second diodes D51 and D52 are connected to the second terminal 1b.
 容量素子514は、例えば電解コンデンサであり、容量素子514の一端部は、第2端子1bに接続され、他端部は第1及び第2コイル13a、13bの他端部に接続されている。 The capacitive element 514 is, for example, an electrolytic capacitor. One end of the capacitive element 514 is connected to the second terminal 1b, and the other end is connected to the other ends of the first and second coils 13a and 13b.
 制御部516は、実施形態1と同様、第1スイッチング素子SW51をオン状態にした導通状態と、第2スイッチング素子SW52をオン状態にした導通状態とを交互に切り替えることにより、第1端子1a及び負極入力端子に入力された電圧を昇圧又は降圧させる。電流センサ15は、第1通電経路511を流れる電流と、第2通電経路512を流れる電流との差分を検出し、当該差分に相当する信号を制御部516へ出力する。また、制御部516には、電流センサ15から出力された信号が入力される。制御部516は、電流センサ15から出力される信号をAD変換することによって、第1コイル13aの電流i1と、第2コイル13bの電流i2との差分に相当する電流差分値Δiを取得する。そして、制御部516は、電流差分値Δiがゼロになるように、第1及び第2スイッチング素子SW51、SW52のオンオフ時間を制御する。 As in the first embodiment, the control unit 516 alternately switches between the conduction state in which the first switching element SW51 is turned on and the conduction state in which the second switching element SW52 is turned on, so that the first terminal 1a and Boosts or steps down the voltage input to the negative input terminal. The current sensor 15 detects a difference between the current flowing through the first energization path 511 and the current flowing through the second energization path 512 and outputs a signal corresponding to the difference to the control unit 516. In addition, the control unit 516 receives a signal output from the current sensor 15. The control unit 516 obtains a current difference value Δi corresponding to the difference between the current i1 of the first coil 13a and the current i2 of the second coil 13b by AD converting the signal output from the current sensor 15. Then, the control unit 516 controls the on / off times of the first and second switching elements SW51 and SW52 so that the current difference value Δi becomes zero.
 このように構成された昇降圧チョッパ回路501によれば、1個の電流センサ15を用いて結合インダクタ13の第1コイル13a及び第2コイル13bの電流を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。 According to the step-up / step-down chopper circuit 501 configured in this way, the current of the first coil 13a and the second coil 13b of the coupled inductor 13 is balanced using one current sensor 15, and the magnetic saturation of the coupled inductor 13 is achieved. Can be prevented.
(実施形態6)
 実施形態6は、本態様に係る結合インダクタ及び電流センサを昇圧型の力率改善回路に適用したものである。
 図9は、実施形態6に係る力率改善回路601の一構成例を示す回路図である。本実施形態6に係る力率改善回路601は、力率改善に係る回路構成のみが実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 6)
In the sixth embodiment, the coupled inductor and the current sensor according to this aspect are applied to a step-up type power factor correction circuit.
FIG. 9 is a circuit diagram illustrating a configuration example of the power factor correction circuit 601 according to the sixth embodiment. Since the power factor correction circuit 601 according to the sixth embodiment is different from the first embodiment only in the circuit configuration related to power factor improvement, the following mainly describes the differences. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態6に係る力率改善回路601は、交流電源602に接続される第1端子1a及び第2端子1bと、負荷3が接続される出力端子対1cとを備え、第1及び第2端子1a、1bに入力された交流を直流に変換すると共に力率の改善を図る回路である。実施形態6に係る力率改善回路601は、両端部がそれぞれ第1及び第2端子1a、1bに接続された入力コンデンサ610と、両端部がそれぞれ出力端子対1cに接続された平滑用の容量素子617とを備える。
 また、力率改善回路601は、入力コンデンサ610の一端部側に接続され、正極側を構成する第1通電経路611及び第2通電経路612、正極側結合インダクタ615、第1及び第2スイッチング素子SW61、SW62、第1及び第2ダイオードD61、D62、正極側電流センサ618を備える。
 同様に、力率改善回路601は、入力コンデンサ610の他端部側に接続され、負極側を構成する第3通電経路613及び第4通電経路614、負極側結合インダクタ616、第3及び第4スイッチング素子SW63、SW64、第3及び第4ダイオードD63、D64、負極側電流センサ619を備える。
The power factor correction circuit 601 according to the sixth embodiment includes a first terminal 1a and a second terminal 1b connected to the AC power source 602, and an output terminal pair 1c to which the load 3 is connected. This is a circuit for converting the alternating current input to the terminals 1a and 1b into direct current and improving the power factor. The power factor correction circuit 601 according to the sixth embodiment includes an input capacitor 610 having both ends connected to the first and second terminals 1a and 1b, and a smoothing capacitor having both ends connected to the output terminal pair 1c. And an element 617.
The power factor correction circuit 601 is connected to one end of the input capacitor 610, and includes a first energization path 611 and a second energization path 612, a positive-side coupled inductor 615, and first and second switching elements that constitute the positive electrode side. SW61, SW62, first and second diodes D61, D62, and a positive current sensor 618 are provided.
Similarly, the power factor correction circuit 601 is connected to the other end portion side of the input capacitor 610, and includes a third energization path 613 and a fourth energization path 614, a negative electrode side coupled inductor 616, a third and a fourth, which constitute the negative electrode side. Switching elements SW63 and SW64, third and fourth diodes D63 and D64, and a negative current sensor 619 are provided.
 第1及び第2通電経路611、612は並列接続されている。正極側結合インダクタ615は、第1通電経路611に設けられた第1コイル615aと、第2通電経路612に設けられた第2コイル615bとを有し、第1コイル615a及び第2コイル615bは、第1通電経路611及び第2通電経路612に同方向の電流i1、i2が流れるように磁気結合している。第1コイル615a及び第2コイル615bの一端部は、入力コンデンサ610の一端部に接続されている。 The first and second energization paths 611 and 612 are connected in parallel. The positive-side coupled inductor 615 has a first coil 615a provided in the first energization path 611 and a second coil 615b provided in the second energization path 612. The first coil 615a and the second coil 615b are The first current path 611 and the second current path 612 are magnetically coupled so that currents i1 and i2 in the same direction flow. One end portions of the first coil 615 a and the second coil 615 b are connected to one end portion of the input capacitor 610.
 第1スイッチング素子SW61及び第2スイッチング素子SW62の一端部は、出力端子対1cの負極側に接続され、第1スイッチング素子SW61の他端部は第1コイル615aの他端部に接続され、第2スイッチング素子SW62の他端部は第2コイル615bの他端部に接続されている。 One ends of the first switching element SW61 and the second switching element SW62 are connected to the negative electrode side of the output terminal pair 1c, the other end of the first switching element SW61 is connected to the other end of the first coil 615a, and The other end of the two switching element SW62 is connected to the other end of the second coil 615b.
 第1ダイオードD61のアノードは、第1コイル615aの他端部に接続され、第2ダイオードD62のアノードは第2コイル615bの他端部に接続されている。第1及び第2ダイオードD61、D62のカソードは容量素子617の正極側端子に接続されている。 The anode of the first diode D61 is connected to the other end of the first coil 615a, and the anode of the second diode D62 is connected to the other end of the second coil 615b. The cathodes of the first and second diodes D61 and D62 are connected to the positive terminal of the capacitive element 617.
 負極側の回路構成も、正極側と同様であり、第3及び第4通電経路613、614は並列接続されている。負極側結合インダクタ616は、第3通電経路613に設けられた第3コイル616aと、第4通電経路614に設けられた第4コイル616bとを有し、第3コイル616a及び第4コイル616bは、第3通電経路613及び第4通電経路614に同方向の電流i3、i4が流れるように磁気結合している。第3コイル616a及び第4コイル616bの一端部は、入力コンデンサ610の他端部に接続されている。 The circuit configuration on the negative electrode side is the same as that on the positive electrode side, and the third and fourth energization paths 613 and 614 are connected in parallel. The negative-side coupled inductor 616 has a third coil 616a provided in the third energization path 613 and a fourth coil 616b provided in the fourth energization path 614. The third coil 616a and the fourth coil 616b are The third current path 613 and the fourth current path 614 are magnetically coupled so that currents i3 and i4 in the same direction flow. One end portions of the third coil 616 a and the fourth coil 616 b are connected to the other end portion of the input capacitor 610.
 第3スイッチング素子SW63及び第4スイッチング素子SW64の一端部は、出力端子対1cの負極側に接続され、第3スイッチング素子SW63の他端部は第3コイル616aの他端部に接続され、第4スイッチング素子SW64の他端部は第4コイル616bの他端部に接続されている。 One ends of the third switching element SW63 and the fourth switching element SW64 are connected to the negative electrode side of the output terminal pair 1c, the other end of the third switching element SW63 is connected to the other end of the third coil 616a, and The other end of the 4 switching element SW64 is connected to the other end of the fourth coil 616b.
 第3ダイオードD63のアノードは、第3コイル616aの他端部に接続され、第4ダイオードD64のアノードは第4コイル616bの他端部に接続されている。第3及び第4ダイオードD63、D64のカソードは容量素子617の正極側端子に接続されている。 The anode of the third diode D63 is connected to the other end of the third coil 616a, and the anode of the fourth diode D64 is connected to the other end of the fourth coil 616b. The cathodes of the third and fourth diodes D63 and D64 are connected to the positive terminal of the capacitive element 617.
 正極側電流センサ618は、第1通電経路611を流れる電流と、第2通電経路612を流れる電流との差分を検出し、当該差分に相当する信号を制御部620へ出力する。同様に、負極側電流センサ619は、第3通電経路613を流れる電流と、第4通電経路614を流れる電流との差分を検出し、当該差分に相当する信号を制御部620へ出力する。 The positive current sensor 618 detects a difference between the current flowing through the first energization path 611 and the current flowing through the second energization path 612 and outputs a signal corresponding to the difference to the control unit 620. Similarly, the negative electrode side current sensor 619 detects a difference between the current flowing through the third energization path 613 and the current flowing through the fourth energization path 614, and outputs a signal corresponding to the difference to the control unit 620.
 制御部620は、正極側電流センサ618から出力される信号をAD変換することによって、第1コイル615aの電流i1と、第2コイル615bの電流i2との差分に相当する電流差分値Δi=i1-i2を取得する。そして、制御部620は、電流差分値Δiがゼロになるように、第1及び第2スイッチング素子SW61、SW62のオンオフ時間を制御する。同様に、制御部620は、負極側電流センサ619から出力される信号をAD変換することによって、第3コイル616aの電流i3と、第4コイル616bの電流i4との差分に相当する電流差分値Δi=i3-i4を取得する。そして、制御部620は、それぞれ電流差分値Δiがゼロになるように、第3及び第4スイッチング素子SW63、SW64のオンオフ時間を制御する。 The control unit 620 performs AD conversion on the signal output from the positive current sensor 618, whereby a current difference value Δi = i1 corresponding to the difference between the current i1 of the first coil 615a and the current i2 of the second coil 615b. -Get i2. Then, the control unit 620 controls the on / off times of the first and second switching elements SW61 and SW62 so that the current difference value Δi becomes zero. Similarly, the control unit 620 performs AD conversion on the signal output from the negative-side current sensor 619, so that a current difference value corresponding to the difference between the current i3 of the third coil 616a and the current i4 of the fourth coil 616b. Δi = i3−i4 is acquired. Then, the control unit 620 controls the on / off times of the third and fourth switching elements SW63 and SW64 so that the current difference value Δi becomes zero.
 このように構成された力率改善回路601によれば、1個の電流センサ15を用いて正極側結合インダクタ615の第1コイル615a及び第2コイル615bの電流を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。同様に、1個の電流センサ15を用いて負極側結合インダクタ616の第3コイル616a及び第4コイル616bの電流を平衡させ、結合インダクタ13の磁気飽和を防ぐことができる。 According to the power factor correction circuit 601 configured in this way, the current of the first coil 615a and the second coil 615b of the positive-side coupled inductor 615 is balanced by using one current sensor 15, and the magnetic force of the coupled inductor 13 is increased. Saturation can be prevented. Similarly, the current of the third coil 616a and the fourth coil 616b of the negative side coupled inductor 616 can be balanced by using one current sensor 15, and magnetic saturation of the coupled inductor 13 can be prevented.
(実施形態7)
 図10は、実施形態7に係る降圧チョッパ回路の一構成例を示す回路図である。実施形態7に係る降圧チョッパ回路701は、結合インダクタを備えないインターリーブ方式のチョッパ回路であり、電流センサ15及び導線部分11a、12a(図2参照)の配置並びに制御部16の処理手順が実施形態1と異なるため、以下では主にかかる相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 7)
FIG. 10 is a circuit diagram illustrating a configuration example of the step-down chopper circuit according to the seventh embodiment. The step-down chopper circuit 701 according to the seventh embodiment is an interleaved chopper circuit that does not include a coupled inductor, and the arrangement of the current sensor 15 and the conductor portions 11a and 12a (see FIG. 2) and the processing procedure of the control unit 16 are the embodiments. The difference will be mainly described below. Since other configurations and operational effects are the same as those of the first embodiment, the corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態7に係る降圧チョッパ回路701は、実施形態1の結合インダクタ13に代えて、互いに磁気結合していない第1コイル713a及び第2コイル713bを備える。第1コイル713aは第1通電経路11に設けられ、第2コイル713bは第2通電経路12に設けられている。第1及び第2スイッチング素子SW1、SW2、第1及び第2ダイオードD1、D2、容量素子14及び制御部16の構成及び接続関係は実施形態1と同様である。 The step-down chopper circuit 701 according to the seventh embodiment includes a first coil 713a and a second coil 713b that are not magnetically coupled to each other, instead of the coupled inductor 13 of the first embodiment. The first coil 713 a is provided in the first energization path 11, and the second coil 713 b is provided in the second energization path 12. The configurations and connection relationships of the first and second switching elements SW1 and SW2, the first and second diodes D1 and D2, the capacitive element 14, and the control unit 16 are the same as in the first embodiment.
 電流センサ15及び導線部分11a、12a(図2参照)は、実施形態1と同様の構成であるが配置が異なる。実施形態7に係る電流センサ15及び導線部分11a、12aは、第1コイル713a及び第2コイル713bの端部の内、第1及び第2スイッチング素子SW1、SW2が接続されていない端部側に設けられている。つまり、第1コイル713a及び第2コイル713bの一端部に第1及び第2スイッチング素子SW1、SW2が接続され、第1コイル713a及び第2コイル713bの他端部に導線部分11a、12aが形成され、電流センサ15が設けられている。 The current sensor 15 and the conductor portions 11a and 12a (see FIG. 2) have the same configuration as that of the first embodiment, but are different in arrangement. The current sensor 15 and the conductive wire portions 11a and 12a according to the seventh embodiment are on the end portion side of the first coil 713a and the second coil 713b where the first and second switching elements SW1 and SW2 are not connected. Is provided. That is, the first and second switching elements SW1 and SW2 are connected to one end portions of the first coil 713a and the second coil 713b, and the conductive wire portions 11a and 12a are formed at the other end portions of the first coil 713a and the second coil 713b. The current sensor 15 is provided.
 図11は、実施形態7に係る制御部の処理手順を示すフローチャートである。降圧チョッパ回路701の動作を開始した制御部16は、第1スイッチング素子SW1をオン状態にした導通状態と、第2スイッチング素子SW2をオン状態にした導通状態とを、特定のデューティ比で交互に切り替える制御を行う(ステップS711)。 FIG. 11 is a flowchart illustrating a processing procedure of the control unit according to the seventh embodiment. The control unit 16 that has started the operation of the step-down chopper circuit 701 alternately performs a conduction state in which the first switching element SW1 is turned on and a conduction state in which the second switching element SW2 is turned on at a specific duty ratio. Switching control is performed (step S711).
 次いで、制御部16は、スイッチングのデューティ比及びオンオフ周期に基づいて、第1通電経路11のオン期間の中間時点、又は第2通電経路12のオン期間の中間時点を特定し(ステップS712)、当該中間時点で電流センサ15から出力された信号をAD変換することによって、第1コイル713aの電流i1と、第2コイル713bの電流i2との差分を示した電流差分値Δiを取得する(ステップS713)。 Next, the control unit 16 specifies an intermediate time point of the ON period of the first energization path 11 or an intermediate time point of the ON period of the second energization path 12 based on the switching duty ratio and the ON / OFF cycle (step S712). The signal output from the current sensor 15 at the intermediate time is AD converted to obtain a current difference value Δi indicating a difference between the current i1 of the first coil 713a and the current i2 of the second coil 713b (step) S713).
 そして、制御部16は、電流差分値Δiが所定電流差ΔI0未満であるか否かを判定する(ステップS714)。所定電流差ΔI0は、制御部16が予め記憶している値である。所定電流差ΔI0は、降圧チョッパ回路701の各種特性に応じて、所要の課題を解決するために任意に決定することができる。例えば、第1スイッチング素子SW1及び第2スイッチング素子SW2の放熱特性が異なる場合、第1及び第2スイッチング素子SW1、SW2の温度が均一になるように第1通電経路11及び第2通電経路12を流れる電流に所定の偏りを設けると良い。より具体的には、第1スイッチング素子SW1の放熱性が、第2スイッチング素子SW2に比べて低い場合、第1通電経路11の電流を第2通電経路12の電流に比べて低くなるように所定電流差ΔI0を設定すると良い。電流差分値Δiが所定電流差ΔI0未満であると判定した場合(ステップS714:YES)、制御部16は、第1スイッチング素子SW1のオン時間と、第2スイッチング素子SW2のオン時間との差分が増加するように、第1及び第2スイッチング素子SW1、SW2のオン時間を設定する(ステップS715)。 Then, the control unit 16 determines whether or not the current difference value Δi is less than the predetermined current difference ΔI0 (step S714). The predetermined current difference ΔI0 is a value stored in advance by the control unit 16. The predetermined current difference ΔI0 can be arbitrarily determined according to various characteristics of the step-down chopper circuit 701 in order to solve a required problem. For example, when the heat dissipation characteristics of the first switching element SW1 and the second switching element SW2 are different, the first energization path 11 and the second energization path 12 are set so that the temperatures of the first and second switching elements SW1 and SW2 are uniform. A predetermined bias may be provided in the flowing current. More specifically, when the heat dissipation of the first switching element SW1 is lower than that of the second switching element SW2, the predetermined current is set so that the current in the first energizing path 11 is lower than the current in the second energizing path 12. It is preferable to set the current difference ΔI0. When it is determined that the current difference value Δi is less than the predetermined current difference ΔI0 (step S714: YES), the control unit 16 determines that the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2 is The ON times of the first and second switching elements SW1 and SW2 are set so as to increase (step S715).
 ステップS715の処理を終えた場合、又はステップS714において電流差分値Δiが所定電流差ΔI0未満で無いと判定した場合(ステップS714:NO)、制御部16は、電流差分値Δiが所定電流差ΔI0超であるか否かを判定する(ステップS716)。電流差分値Δiが所定電流差ΔI0超であると判定した場合(ステップS716:YES)、制御部16は、第1スイッチング素子SW1のオン時間と、第2スイッチング素子SW2のオン時間との差分が減少するように、第1及び第2スイッチング素子SW1、SW2のオン時間を設定する(ステップS717)。
 ステップS717の処理を終えた場合、又はステップS716において電流差分値Δiが所定電流差超で無いと判定した場合(ステップS716:NO)、制御部16は、降圧チョッパ回路701の動作を停止させる所定条件を満たすか否かを判定する(ステップS718)。停止の所定条件を満たさないと判定した場合(ステップS718:NO)、制御部16は処理をステップS711へ戻す。停止の所定条件を満たすと判定した場合(ステップS718:YES)、制御部16は処理を終える。
When the process of step S715 is completed, or when it is determined in step S714 that the current difference value Δi is not less than the predetermined current difference ΔI0 (step S714: NO), the control unit 16 determines that the current difference value Δi is the predetermined current difference ΔI0. It is determined whether it is over (step S716). When it is determined that the current difference value Δi is greater than the predetermined current difference ΔI0 (step S716: YES), the control unit 16 determines that the difference between the on-time of the first switching element SW1 and the on-time of the second switching element SW2 is The ON times of the first and second switching elements SW1 and SW2 are set so as to decrease (step S717).
When the process of step S717 is completed, or when it is determined in step S716 that the current difference value Δi is not greater than the predetermined current difference (step S716: NO), the control unit 16 performs a predetermined operation to stop the operation of the step-down chopper circuit 701. It is determined whether or not the condition is satisfied (step S718). When it is determined that the predetermined stop condition is not satisfied (step S718: NO), the control unit 16 returns the process to step S711. When it is determined that the predetermined stop condition is satisfied (step S718: YES), the control unit 16 ends the process.
 このように構成された降圧チョッパ回路701によれば、1個の電流センサ15を用いて第1及び第2通電経路11、12を流れる電流の差分を所定電流差ΔI0に制御することができる。例えば、制御部16は、放熱特性が異なる第1スイッチング素子SW1及び第2スイッチング素子SWの温度が均一になるように制御することができる。 According to the step-down chopper circuit 701 configured as described above, the difference between the currents flowing through the first and second energization paths 11 and 12 can be controlled to the predetermined current difference ΔI0 by using one current sensor 15. For example, the control unit 16 can control the temperature of the first switching element SW1 and the second switching element SW having different heat dissipation characteristics to be uniform.
 また、本実施形態7では、電流の差分の検出が行われる導線部分11a、12aがスイッチングノイズの影響が低い箇所に設けられているため、第1コイル713a側を流れる電流と、第2コイル713b側を流れる電流の差分を精度良く検出し、電流の差分が所定電流差になるように制御することができる。 Further, in the seventh embodiment, since the conductive wire portions 11a and 12a where the difference in current is detected are provided at a place where the influence of switching noise is low, the current flowing through the first coil 713a side and the second coil 713b It is possible to accurately detect the difference between the currents flowing through the sides and control the current difference to be a predetermined current difference.
 更に、本実施形態7では、電流センサ15は、第1通電経路11のオン期間の中間時点、又は第2通電経路12のオン期間の中間時点で第1コイル713a及び第2コイル713bを流れる電流の差分を検出する。従って、制御部16は、スイッチングノイズの影響が低い時点で電流の差分が検出することができ、第1コイル13a側を流れる電流と、第2コイル713b側を流れる電流の差分を精度良く検出し、電流の差分を制御することができる。 Further, in the seventh embodiment, the current sensor 15 has a current flowing through the first coil 713a and the second coil 713b at an intermediate time point of the ON period of the first energization path 11 or an intermediate time point of the ON period of the second energization path 12. The difference of is detected. Therefore, the control unit 16 can detect the difference in current when the influence of the switching noise is low, and accurately detect the difference between the current flowing in the first coil 13a side and the current flowing in the second coil 713b side. The current difference can be controlled.
 なお、第1及び第2通電経路11、12を流れる電流の差分が所定電流差ΔI0となるように制御する構成は、実施形態1のみならず、実施形態2、3、4、5、6のいずれにも適用することができる。
 また、電流の差分の検出が行われる導線部分11a、12aを、スイッチングノイズの影響が低い箇所に設ける構成は、実施形態1のみならず、実施形態2、3、4、5、6のいずれにも適用することができる。
 更に、オン期間の中間時点で電流の差分を検出する構成は、実施形態1のみならず、実施形態2、3、4、5、6のいずれにも適用することができる。
Note that the configuration for controlling the difference between the currents flowing through the first and second energization paths 11 and 12 to be the predetermined current difference ΔI0 is not limited to the first embodiment but the second, third, fourth, fifth, and sixth embodiments. It can be applied to both.
Moreover, the structure which provides the conductor part 11a, 12a in which the difference of an electric current is detected in the place where the influence of switching noise is low is not only in Embodiment 1, but in any of Embodiment 2, 3, 4, 5, 6 Can also be applied.
Furthermore, the configuration for detecting the difference in current at the intermediate point in the ON period can be applied not only to the first embodiment but also to any of the second, third, fourth, fifth, and sixth embodiments.
 1、201、301、701 降圧チョッパ回路
 401 昇圧チョッパ回路
 501 昇降圧チョッパ回路
 601 力率改善回路
 1a 第1端子
 1b 第2端子
 1c 出力端子対
 2 直流電源
 3 負荷
 11、411、511、611 第1通電経路
 12、412、512、612 第2通電経路
 11a、12a 導線部分
 13 結合インダクタ
 13a、615a、713a 第1コイル
 13b、615b、713b 第2コイル
 13c コア
 14、414、514、617 容量素子
 15 電流センサ
 15a センサコア
 15b 磁束検出部
 16、416、516、620 制御部
 D1、D41、D51、D61 第1ダイオード
 D2、D42、D52、D62 第2ダイオード
 D63 第3ダイオード
 D64 第4ダイオード
 SW1、SW41、SW51、SW61 第1スイッチング素子
 SW2、SW42、SW52、SW62 第2スイッチング素子
 SW63 第3スイッチング素子
 SW64 第4スイッチング素子
 218 積分回路
 318 フィルタ回路
 602 交流電源
 610 入力コンデンサ
 613 第3通電経路
 614 第4通電経路
 615 正極側結合インダクタ
 616 負極側結合インダクタ
 616a 第3コイル
 616b 第4コイル
 618 正極側電流センサ
 619 負極側電流センサ
 620 制御部
 
1, 201, 301, 701 Step-down chopper circuit 401 Step-up chopper circuit 501 Buck-boost chopper circuit 601 Power factor correction circuit 1a First terminal 1b Second terminal 1c Output terminal pair 2 DC power supply 3 Load 11, 411, 511, 611 First Current path 12, 412, 512, 612 Second current path 11a, 12a Conductor part 13 Coupling inductor 13a, 615a, 713a First coil 13b, 615b, 713b Second coil 13c Core 14, 414, 514, 617 Capacitance element 15 Current Sensor 15a Sensor core 15b Magnetic flux detector 16, 416, 516, 620 Controller D1, D41, D51, D61 First diode D2, D42, D52, D62 Second diode D63 Third diode D64 Fourth diode SW1, SW41, SW51, S 61 1st switching element SW2, SW42, SW52, SW62 2nd switching element SW63 3rd switching element SW64 4th switching element 218 Integration circuit 318 Filter circuit 602 AC power supply 610 Input capacitor 613 3rd electricity supply path 614 4th electricity supply path 615 Positive electrode Side coupled inductor 616 Negative side coupled inductor 616a Third coil 616b Fourth coil 618 Positive side current sensor 619 Negative side current sensor 620 Controller

Claims (10)

  1.  並列接続された第1通電経路及び第2通電経路にそれぞれ設けられた第1コイル及び第2コイルを備え、前記第1通電経路及び第2通電経路を交互にオンオフさせるチョッパ回路において、
     前記第1通電経路及び第2通電経路は、
     部分的に逆平行的に配され、通電方向が互いに逆向きになる導線部分を有し、
     前記第1通電経路及び第2通電経路の前記導線部分を囲繞した磁性体のセンサコアを有する電流センサと、
     該電流センサの検出結果に基づいて、前記第1通電経路及び第2通電経路の通電時間を制御する制御部と
     を備えるチョッパ回路。
    In a chopper circuit comprising a first coil and a second coil provided respectively in a first energization path and a second energization path connected in parallel, and alternately turning on and off the first energization path and the second energization path.
    The first energization path and the second energization path are:
    Partially arranged in antiparallel, and having a conducting wire portion in which the energization directions are opposite to each other,
    A current sensor having a magnetic sensor core surrounding the conductor portion of the first energization path and the second energization path;
    A chopper circuit comprising: a control unit that controls energization time of the first energization path and the second energization path based on a detection result of the current sensor.
  2.  前記第1通電経路及び第2通電経路に同方向の電流が流れるように磁気結合させてなる結合インダクタを備える
     請求項1に記載のチョッパ回路。
    The chopper circuit according to claim 1, further comprising a coupled inductor that is magnetically coupled so that a current in the same direction flows through the first energization path and the second energization path.
  3.  前記制御部は、
     前記第1コイル及び第2コイルを流れる電流を平衡させるように、前記第1通電経路及び第2通電経路の通電時間を制御する
     請求項1又は請求項2に記載のチョッパ回路。
    The controller is
    The chopper circuit according to claim 1, wherein the energization time of the first energization path and the second energization path is controlled so as to balance the currents flowing through the first coil and the second coil.
  4.  前記電流センサは、
     前記第1通電経路を流れる電流と、前記第2通電経路を流れる電流との差分に応じた電圧を有する信号を出力しており、
     更に、
     前記電流センサから出力された信号を積分する積分回路を備え、
     前記制御部は、
     前記積分回路にて積分して得られた積分信号の電圧が所定電位になるように前記第1通電経路及び第2通電経路の通電時間を制御する
     請求項1~請求項3までのいずれか一項に記載のチョッパ回路。
    The current sensor is
    Outputting a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path;
    Furthermore,
    An integration circuit for integrating the signal output from the current sensor;
    The controller is
    The energization time of the first energization path and the second energization path is controlled so that the voltage of the integration signal obtained by integration in the integration circuit becomes a predetermined potential. The chopper circuit according to the item.
  5.  前記電流センサは、
     前記第1通電経路を流れる電流と、前記第2通電経路を流れる電流との差分に応じた電圧を有する信号を出力しており、
     更に、
     前記電流センサから出力された信号を平滑化するフィルタ回路を備え、
     前記制御部は、
     前記フィルタ回路を介して前記電流センサから出力された信号の電圧が所定電位になるように、前記第1通電経路及び第2通電経路の通電時間を制御する
     請求項1~請求項3までのいずれか一項に記載のチョッパ回路。
    The current sensor is
    Outputting a signal having a voltage corresponding to a difference between a current flowing through the first energization path and a current flowing through the second energization path;
    Furthermore,
    A filter circuit for smoothing a signal output from the current sensor;
    The controller is
    The energization time of the first energization path and the second energization path is controlled so that the voltage of the signal output from the current sensor via the filter circuit becomes a predetermined potential. A chopper circuit according to claim 1.
  6.  第1入力部及び第2入力部と、
     一端部が前記第1入力部に接続され、他端部が前記第1コイルの一端部に接続された第1スイッチング素子と、
     一端部が前記第1入力部に接続され、他端部が前記第2コイルの一端部に接続された第2スイッチング素子と、
     アノードが前記第2入力部に接続され、カソードが前記第1コイルの前記一端部に接続された第1ダイオードと、
     アノードが前記第2入力部に接続され、カソードが前記第2コイルの前記一端部に接続された第2ダイオードと、
     一端部が前記第2入力部に接続され、他端部が前記第1コイル及び第2コイルの他端部に接続された容量素子と
     を備える請求項1~請求項5までのいずれか一項に記載のチョッパ回路。
    A first input unit and a second input unit;
    A first switching element having one end connected to the first input unit and the other end connected to one end of the first coil;
    A second switching element having one end connected to the first input unit and the other end connected to one end of the second coil;
    A first diode having an anode connected to the second input and a cathode connected to the one end of the first coil;
    A second diode having an anode connected to the second input and a cathode connected to the one end of the second coil;
    6. A capacitor element having one end connected to the second input unit and the other end connected to the other end of the first coil and the second coil. The chopper circuit described in 1.
  7.  前記第1コイル及び第2コイルの一端部に接続される第1入力部と、
     第2入力部と、
     一端部が前記第2入力部に接続され、他端部が前記第1コイルの他端部に接続された第1スイッチング素子と、
     一端部が前記第2入力部に接続され、他端部が前記第2コイルの他端部に接続された第2スイッチング素子と、
     アノードが前記第1コイルの前記他端部に接続された第1ダイオードと、
     アノードが前記第2コイルの前記他端部に接続された第2ダイオードと、
     一端部が前記第1ダイオード及び前記第2ダイオードのカソードに接続され、他端部が前記第2入力部に接続された容量素子と
     を備える請求項1~請求項5までのいずれか一項に記載のチョッパ回路。
    A first input connected to one end of the first coil and the second coil;
    A second input unit;
    A first switching element having one end connected to the second input unit and the other end connected to the other end of the first coil;
    A second switching element having one end connected to the second input unit and the other end connected to the other end of the second coil;
    A first diode having an anode connected to the other end of the first coil;
    A second diode having an anode connected to the other end of the second coil;
    6. The capacitive element according to claim 1, further comprising: a capacitive element having one end connected to the cathodes of the first diode and the second diode and the other end connected to the second input unit. The chopper circuit described.
  8.  第1入力部と、
     一端部が前記第1入力部に接続され、他端部が前記第1コイルの一端部に接続された第1スイッチング素子と、
     一端部が前記第1入力部に接続され、他端部が前記第2コイルの一端部に接続された第2スイッチング素子と、
     前記第1コイル及び第2コイルの他端部に接続される第2入力部と、
     カソードが前記第1スイッチング素子の他端部に接続された第1ダイオードと、
     カソードが前記第2スイッチング素子の他端部に接続された第2ダイオードと、
     一端部が前記第1ダイオード及び前記第2ダイオードのアノードに接続され、他端部が第2入力部に接続された容量素子と
     を備える請求項1~請求項5までのいずれか一項に記載のチョッパ回路。
    A first input unit;
    A first switching element having one end connected to the first input unit and the other end connected to one end of the first coil;
    A second switching element having one end connected to the first input unit and the other end connected to one end of the second coil;
    A second input connected to the other ends of the first and second coils;
    A first diode having a cathode connected to the other end of the first switching element;
    A second diode having a cathode connected to the other end of the second switching element;
    6. The capacitive element having one end connected to the anodes of the first diode and the second diode and the other end connected to the second input unit. Chopper circuit.
  9.  前記導線部分及び前記電流センサは、
     前記第1コイル及び第2コイルの端部の内、前記第1通電経路及び第2通電経路のオンオフが行われない端部側に設けられている
     請求項1~請求項8までのいずれか一項に記載のチョッパ回路。
    The conductor portion and the current sensor are:
    The first coil and the second coil are provided on an end portion side where the first energization path and the second energization path are not turned on / off, among the ends of the first coil and the second coil. The chopper circuit according to the item.
  10.  前記電流センサは、
     前記第1通電経路のオン期間の中間時点、又は前記第2通電経路のオン期間の中間時点で前記第1コイル及び第2コイルを流れる電流の差分を検出する
     請求項1~請求項9までのいずれか一項に記載のチョッパ回路。
     
    The current sensor is
    The difference between the currents flowing through the first coil and the second coil is detected at an intermediate point in the on period of the first energization path or an intermediate point in the on period of the second energization path. The chopper circuit as described in any one.
PCT/JP2017/003126 2016-03-31 2017-01-30 Chopper circuit WO2017169062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072125 2016-03-31
JP2016072125 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169062A1 true WO2017169062A1 (en) 2017-10-05

Family

ID=59963841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003126 WO2017169062A1 (en) 2016-03-31 2017-01-30 Chopper circuit

Country Status (1)

Country Link
WO (1) WO2017169062A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244614A1 (en) * 2018-06-18 2019-12-26 株式会社ケーヒン Electric power conversion device
CN111341544A (en) * 2020-03-20 2020-06-26 杭州电子科技大学 Fully-coupled magnetic element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502121A (en) * 1973-05-15 1975-01-10
JPH01285866A (en) * 1988-05-12 1989-11-16 Fuji Electric Co Ltd Small current detector
JPH0329865A (en) * 1989-06-28 1991-02-07 Toshiba Corp Exciting current detector of transformer
JPH03191870A (en) * 1989-06-23 1991-08-21 Fuji Electric Co Ltd Method for detecting current for both ac and dc
JP2005168277A (en) * 2003-08-21 2005-06-23 Marvell World Trade Ltd Digital low dropout regulator
JP2010539870A (en) * 2007-09-13 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Multiphase DC voltage converter
WO2013038512A1 (en) * 2011-09-14 2013-03-21 三菱電機株式会社 Multiplex chopper device
JP2014060851A (en) * 2012-09-18 2014-04-03 Toshiba Corp Dc-dc converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502121A (en) * 1973-05-15 1975-01-10
JPH01285866A (en) * 1988-05-12 1989-11-16 Fuji Electric Co Ltd Small current detector
JPH03191870A (en) * 1989-06-23 1991-08-21 Fuji Electric Co Ltd Method for detecting current for both ac and dc
JPH0329865A (en) * 1989-06-28 1991-02-07 Toshiba Corp Exciting current detector of transformer
JP2005168277A (en) * 2003-08-21 2005-06-23 Marvell World Trade Ltd Digital low dropout regulator
JP2010539870A (en) * 2007-09-13 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Multiphase DC voltage converter
WO2013038512A1 (en) * 2011-09-14 2013-03-21 三菱電機株式会社 Multiplex chopper device
JP2014060851A (en) * 2012-09-18 2014-04-03 Toshiba Corp Dc-dc converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244614A1 (en) * 2018-06-18 2019-12-26 株式会社ケーヒン Electric power conversion device
CN112335164A (en) * 2018-06-18 2021-02-05 株式会社京滨 Power conversion device
JPWO2019244614A1 (en) * 2018-06-18 2021-02-15 株式会社ケーヒン Power converter
US11735995B2 (en) 2018-06-18 2023-08-22 Hitachi Astemo, Ltd. Multi-phase power converter with drift current
CN111341544A (en) * 2020-03-20 2020-06-26 杭州电子科技大学 Fully-coupled magnetic element
CN111341544B (en) * 2020-03-20 2022-12-13 杭州电子科技大学 Full-coupling magnetic element

Similar Documents

Publication Publication Date Title
US8681519B2 (en) Variable input voltage PFC circuits, systems and power supplies with phase shifted power rails
JP6041507B2 (en) Interleaved power converter and controller for interleaved power converter
US9959971B1 (en) Inductor and converter having the same
US7977898B2 (en) Current sensing for a multi-phase DC/DC boost converter
JPWO2015136592A1 (en) Current detector and power conversion device
US11239754B2 (en) Bidirectional power converter, electric vehicle, and control method for bidirectional power converter
US10038366B2 (en) Multiphase power factor improvement circuit
US9160238B2 (en) Power converter with current feedback loop
JP2014042433A (en) Bridgeless pfc converter with average current mode control
WO2017217022A1 (en) Multi-phase dc/dc converter, computer program, and control method for multi-phase dc/dc converter
WO2017169062A1 (en) Chopper circuit
US20150280474A1 (en) Device and method for charging an electric energy store from a three-phase ac voltage source
CN114553105A (en) Motor control device and method
JP2010092997A (en) Light-emitting device and lighting system
US8456139B2 (en) Power factor correction circuits, systems and power supplies operable with different input voltages
US8446221B2 (en) Electronic circuit with a linear amplifier assisted by a switch-mode amplifier
JP7105983B2 (en) Double buck chopper circuit
CN110739847A (en) Power converter and motor system
JP4361334B2 (en) DC / DC converter
JP5213626B2 (en) Three-phase power factor improved converter
JPWO2011074154A1 (en) DC / DC converter
JP2017085787A (en) Parallel chopper device
JP2014042432A (en) Bridgeless pfc converter with average current mode control
JP5383522B2 (en) DC power supply
JP6575928B2 (en) Parallel chopper device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773611

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP