JPH01262901A - Method for treating aqueous acidic or alkaline solution - Google Patents
Method for treating aqueous acidic or alkaline solutionInfo
- Publication number
- JPH01262901A JPH01262901A JP8884188A JP8884188A JPH01262901A JP H01262901 A JPH01262901 A JP H01262901A JP 8884188 A JP8884188 A JP 8884188A JP 8884188 A JP8884188 A JP 8884188A JP H01262901 A JPH01262901 A JP H01262901A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- aqueous solution
- steam
- acid
- pure water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 12
- 230000002378 acidificating effect Effects 0.000 title abstract 2
- 239000012670 alkaline solution Substances 0.000 title abstract 2
- 239000012528 membrane Substances 0.000 claims abstract description 48
- 239000007864 aqueous solution Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002253 acid Substances 0.000 claims abstract description 16
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 14
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000012466 permeate Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 abstract description 7
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 4
- 238000009833 condensation Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は酸またはアルカリ水溶液の処理方法に関し、非
揮発性若しくは低揮発性の酸またはアルカリ水溶液の濃
縮、あるいは当よ亥水溶/夜からの純水の分離に用いる
ものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for treating an acid or alkali aqueous solution, for concentrating a non-volatile or low-volatile acid or alkali aqueous solution, or for treating an aqueous solution/alkali solution. It is used to separate pure water.
〈従来の技術〉
非揮発性若しくは低揮発性物質を?8質とする水溶液の
濃縮、または該水溶液からの純水の分離に蒸留法を用い
ることが知られている。<Conventional technology> Non-volatile or low-volatile substances? It is known that a distillation method is used to concentrate an aqueous solution or to separate pure water from the aqueous solution.
〈解決しようとする課題〉
しかしながら、蒸留法では随伴する水滴を極力おさえる
必要があり、濃縮または分離速度を早くすることができ
ないので効率的な処理が困難である。<Problems to be Solved> However, in the distillation method, it is necessary to suppress accompanying water droplets as much as possible, and the concentration or separation rate cannot be increased, making efficient processing difficult.
〈課題を解決するための手段〉
そこで、本願発明の筆頭発明者は、蒸発器による水溶液
の蒸発速度を高速化し、この蒸発に不可避的に随伴する
液滴を蒸気中から分離し、この分離した液滴を7に溶液
に戻して、水溶液を濃縮すると共に純水(茎気の冷却・
凝縮)を得る方法を既に提案した。<Means for Solving the Problems> Therefore, the principal inventor of the present invention increased the evaporation rate of the aqueous solution by the evaporator, separated the droplets that inevitably accompany this evaporation from the vapor, and Return the droplets to the solution at step 7, concentrate the aqueous solution, and add pure water (cooling of the stem air).
We have already proposed a method to obtain condensation.
ところで本発明者等は、上記液滴の分離に、多孔質ポリ
テトラフルオロエチレン膜で代表される疎水性膜を用い
て、種々の溶質を含む水溶液の処理について、鋭意かつ
広範囲に研究した結果、非揮発性若しくは低揮発性の酸
またはアルカリを溶質として含有する水溶液に対しては
、そのほぼ全PH”pl域の水溶液について効率よく、
高速度で濃縮し得ると共に純水を分離し得ることを見出
した。By the way, the present inventors conducted intensive and extensive research on the treatment of aqueous solutions containing various solutes using a hydrophobic membrane, typified by a porous polytetrafluoroethylene membrane, to separate the droplets. For aqueous solutions containing non-volatile or low-volatile acids or alkalis as solutes, it is possible to efficiently
It has been found that it is possible to concentrate at high speed and to separate pure water.
原液から純水を分離、あるいは溶質を濃縮する場合、従
来方法によれば、原液4度により分離速度、濃縮速度が
大きく変動するが、上記の酸またはアルカリ水溶液を、
液滴を随伴する蒸気状態で疎水性膜により処理すれば、
はぼ全P H領域にわたって、はぼ一定速度で分離また
は濃縮できることを見出したのである。When separating pure water from a stock solution or concentrating a solute, according to the conventional method, the separation rate and concentration rate vary greatly depending on the stock solution 4 degrees.
If the droplets are treated with a hydrophobic membrane in the accompanying vapor state,
They discovered that it is possible to separate or concentrate at a nearly constant rate over almost the entire PH range.
本発明は、かかる事実に基づき、酸またはアルカリ水溶
液を、そのほぼ全P Hil域にわたって、一定の高速
度で効率よく濃縮または純水分離できる酸またはアルカ
リ水溶液の処理方法を提供することにあり、溶質として
非揮発性または低揮発性の酸またはアルカリを含有する
水溶液を加熱して液滴の随伴条件下で水蒸気を発生させ
、該水蒸気を、水蒸気は透過させるが、水は透過させな
い疎水性膜の一面側に接触させて、その蒸気分を疎水性
膜の他面側に透過させ、次いで、冷却して凝縮させると
共に上記膜で阻止された液滴を上記水溶液中に戻すこと
を特徴とする方法である。Based on this fact, the present invention provides a method for treating an acid or alkali aqueous solution that can efficiently concentrate or pure water the acid or alkali aqueous solution over almost the entire P Hil range at a constant high rate. A hydrophobic membrane that heats an aqueous solution containing a non-volatile or low-volatility acid or alkali as a solute to generate water vapor under droplet entrainment conditions, and allows the water vapor to pass through, but not water. It is characterized by contacting one side of the hydrophobic membrane, allowing the vapor to permeate through the other side of the hydrophobic membrane, and then cooling and condensing the membrane, and returning the droplets blocked by the membrane to the aqueous solution. It's a method.
本発明により処理する非揮発性又は低揮発;生の酸又は
アルカリの水溶液は、硫酸等の無機酸、酢酸、クエン酸
等の有機酸、アルカリとしては水酸化ナトリウム、水酸
化カリウム等の水溶液である。Non-volatile or low volatile aqueous solutions of raw acids or alkalis to be treated according to the present invention include inorganic acids such as sulfuric acid, organic acids such as acetic acid and citric acid, and alkalis such as sodium hydroxide and potassium hydroxide. be.
疎水性膜には、ポリエチレン、ポリプロピレン。Hydrophobic membranes include polyethylene and polypropylene.
ポリ4−メチルペンテン−1等のポリオレフィン系、ポ
リスルホン、ポリエーテルスルホン等のポリスルホン系
、ポリテトラフルオロエチレン、ボIJ弗化ビニリデン
、エチレン−テトラフルオロエチレン共重合体等の弗素
樹脂系のものを使用できる。また、親水性膜に弗素系あ
るいはシリコーン系の?8水性樹脂を被覆して疎水性機
能を表面に付与したものも使用できる。Use polyolefins such as poly4-methylpentene-1, polysulfones such as polysulfone and polyethersulfone, and fluororesins such as polytetrafluoroethylene, vinylidene fluoride, and ethylene-tetrafluoroethylene copolymer. can. Also, is the hydrophilic membrane fluorine-based or silicone-based? It is also possible to use a material whose surface is coated with an aqueous resin to give it a hydrophobic function.
第1図は本発明において使用する分離システムを示して
いる。FIG. 1 shows the separation system used in the present invention.
本発明により酸又はアルカリ水溶液を処理するには、原
水タンクd内の液を供給ポンプbにより蒸発器Cへ供給
し、高速度で蒸発させる。この場合、発生蒸気には不揮
発成分を含んだ液滴が随伴する。この蒸気は膜デミスタ
−dの一次室に圧入される。また、加熱手段りによりデ
ミスタ−dを加熱して、デミスタ−d内を蒸気温度以上
に保温しである。而るに、蒸気はその気相状態のために
膜2の孔を透過するが、不揮発成分を含んだ液滴は、そ
の膜2の孔を通過しようとしても、膜2の18水性のた
めにその通過は阻止される。従って、液滴は膜を通過し
得すに、−火室側の膜表面で練土され1、ドレイン管1
.により水溶液側(蒸発器Cまたは原水タンクa)に戻
される。fは純水タンクである。而して、膜デミスタ−
dの膜を通通せる蒸気中には、不揮発成分を含んだ液滴
分は含まれておらず、これを凝縮器eで凝縮することに
より、高純度の透過液を得ることができる。また、−次
側の酸またはアルカリ水溶液も、濃縮することができる
。To treat an acid or alkaline aqueous solution according to the present invention, the liquid in the raw water tank d is supplied to the evaporator C by a supply pump b and evaporated at a high speed. In this case, the generated vapor is accompanied by droplets containing nonvolatile components. This vapor is forced into the primary chamber of the membrane demister d. Further, the demister d is heated by the heating means to keep the inside of the demister d warm above the steam temperature. However, although vapor passes through the pores of the membrane 2 due to its gas phase, droplets containing non-volatile components cannot pass through the pores of the membrane 2 due to the aqueous nature of the membrane 2. Its passage is blocked. Therefore, while the droplets pass through the membrane, they are mixed on the surface of the membrane on the firebox side 1 and drain pipe 1.
.. is returned to the aqueous solution side (evaporator C or raw water tank a). f is a pure water tank. Therefore, the membrane demister
The vapor that can pass through the membrane d does not contain droplets containing non-volatile components, and by condensing this in the condenser e, a highly purified permeate can be obtained. Further, the acid or alkaline aqueous solution on the negative side can also be concentrated.
上記膜デミスタ−の型式は特に限定されないが、例えば
、プレート型、中空糸膜型、スパイラル型あるいはカー
トリッジ型のものを使用できる。Although the type of the membrane demister is not particularly limited, for example, a plate type, hollow fiber membrane type, spiral type, or cartridge type can be used.
第2図A〜第2図りはプレート型膜デミスタ−の一実施
例を示している。膜デミスター本体は第2図Aに示すよ
うに、波形を有する支持板1と、その両面に配設された
膜2とからなるユニット3を間隔をおいて、同じ位相を
有するように多数積層してなる所謂積層型膜デミスタ−
であって、各ユニット3間に膜2に挟まれて形成される
蛇行した空隙を供給蒸気通路4とし、それぞれの膜と支
持板間の空隙を透過蒸気通路5とする構成である。FIGS. 2A to 2D illustrate an embodiment of a plate-type membrane demister. As shown in FIG. 2A, the membrane demister main body is constructed by laminating a large number of units 3 consisting of a corrugated support plate 1 and membranes 2 disposed on both sides thereof at intervals so as to have the same phase. The so-called laminated membrane demister
The structure is such that a meandering gap formed between each unit 3 between the membranes 2 is used as a supply steam passage 4, and a gap between each membrane and the support plate is used as a permeation steam passage 5.
かかる積層型膜デミスタ−本体の具体的構造を第2図B
から第2図りに示しである。The specific structure of such a laminated membrane demister main body is shown in Figure 2B.
This is shown in the second diagram.
第2図Bは、膜支持板1の一例の平面図を示し、第2図
Cは、第2図Bにおいてmc−cに沿う断面図を示して
いる0図示した膜支持板1は、その長平方向の中心線に
沿って、平坦な帯部11が形成されており、この帯部は
、透過蒸気の集合路として用いられる。また、帯部の中
央部には平坦な環状部12を有する貫通孔13が穿設さ
れており、この貫通孔13は、透過蒸気流出孔を形成す
る。FIG. 2B shows a plan view of an example of the membrane support plate 1, and FIG. 2C shows a cross-sectional view taken along the line mc-c in FIG. 2B. A flat band 11 is formed along the center line in the longitudinal direction, and this band is used as a collection path for permeated vapor. Further, a through hole 13 having a flat annular portion 12 is bored in the center of the band, and this through hole 13 forms a permeated vapor outflow hole.
更に、膜支持板lの両端部に前記中心線の両側にもそれ
ぞれ平坦な環状部14を有するWiil孔15が穿設さ
れており、この貫通孔15は、供給蒸気流入孔を形成す
る。また、膜支持板1は、その周縁16と上記貫通孔の
周囲の平坦な環状部を除いて、波付は加工等によって波
形17が形成されている。上記貫通孔13及び15のそ
れぞれの周囲の平坦な環状部は、後述するように、ユニ
ット3間にリングスペーサを密着させるために形成され
ている。Further, holes 15 having flat annular portions 14 are bored at both ends of the membrane support plate 1 on both sides of the center line, and these through holes 15 form supply steam inflow holes. Further, the membrane support plate 1 has a corrugated shape 17 formed by processing, etc., except for its peripheral edge 16 and the flat annular portion around the through hole. The flat annular portions around each of the through holes 13 and 15 are formed in order to bring the ring spacer into close contact between the units 3, as will be described later.
第2図りは、このような波板状の膜支持板1の両面に膜
2を配設してなるユニット3の多数を間隔をおいて、同
じ位相にて積層してなる積層型膜デミスタ−の断面図を
示し、それぞれのユニット3は、その一端において、パ
フキング21を介して固定されていると共に、封止され
ており、更に、上記バンキング21に近接する内側の位
置にて、リングスペーサ22に挟まれて、供給蒸気を前
記供給蒸気通路4に導入するための供給蒸気流入孔23
を形成している。同様に、それぞれのユニット3は、そ
の他端においても、パフキング24にて固定、封止され
ていると共に、リングスペーサ25に挟まれて、供給蒸
気を前記供給蒸気通路4から排出するための供給蒸気流
出孔26を形成している。The second diagram shows a laminated membrane demister in which a large number of units 3 each having membranes 2 disposed on both sides of such a corrugated membrane support plate 1 are laminated at intervals and in the same phase. , each unit 3 is fixed and sealed at one end via a puff king 21, and further includes a ring spacer 22 at an inner position close to the banking 21. A supply steam inflow hole 23 for introducing supply steam into the supply steam passage 4 is sandwiched between
is formed. Similarly, the other end of each unit 3 is also fixed and sealed with a puffing 24 and is sandwiched between ring spacers 25 for supplying steam for discharging the supplied steam from the supply steam passage 4. An outflow hole 26 is formed.
透過蒸気取出孔27は、ユニット3の中心位置に形成さ
れている。即ち、ユニットを構成する支持板の中央部に
おいて、リングスペーサ28によって形成されている。The permeated vapor extraction hole 27 is formed at the center of the unit 3. That is, the ring spacer 28 is formed at the center of the support plate constituting the unit.
〈実施例〉 次に本発明の実施例について説明する。<Example> Next, examples of the present invention will be described.
疎水性膜として、平均孔径0.2μm、気孔率80%の
ポリテトラフルオロエチレン膜を用い、膜デミスタ−に
は膜面積230cm”の積層型膜デミスタ−を使用した
。A polytetrafluoroethylene membrane with an average pore diameter of 0.2 μm and a porosity of 80% was used as the hydrophobic membrane, and a laminated membrane demister with a membrane area of 230 cm was used as the membrane demister.
水溶液には、第1表に示すPHの硫酸水溶液並びに力性
ソーダ水溶液を用いた。それぞれの原水溶液について、
取得速度、650〜700kg/m!・hr(単位時間
当り、単位膜面積当りの凝縮水取得重りのほぼ一定速度
のもとて4!縮水を得たところ、第1表に示す通り、酸
またはアルカリの排除率100%の実質上中性の純水を
得ることができた。As the aqueous solution, an aqueous sulfuric acid solution and an aqueous sodium hydroxide solution having pH values shown in Table 1 were used. For each raw aqueous solution,
Acquisition speed: 650-700kg/m!・hr (per unit time, per unit membrane area) When condensed water was obtained at a nearly constant rate of 4! We were able to obtain neutral pure water.
第3図は、上記実施例をも含めた処理結果を示し、水溶
液のPHに関係なく、効率よく純水を分離できることが
わかる。FIG. 3 shows the processing results including those of the above-mentioned examples, and it can be seen that pure water can be efficiently separated regardless of the pH of the aqueous solution.
〈発明の効果〉
上述した通り、本発明に係る酸またはアルカリ水溶液の
処理方法によれば、酸またはアルカリ水)容液からその
水溶液のほぼ全PH領域にわたって、純水を高速度(6
50〜700 kg/ m” ・hr)で分離でき、ま
たは高速度で?W IMできる。従って、酸またはアル
カリ水溶液の高効率の分離または濃縮処理が可能である
と共にその速度がほぼ一定であるために他の工程例えば
純水洗浄工程との連結も容易である。<Effects of the Invention> As described above, according to the method for treating an acid or alkaline aqueous solution according to the present invention, pure water is heated at a high rate (60%) over almost the entire pH range of the aqueous solution from the acid or alkaline water solution.
50 to 700 kg/m"・hr) or high-speed WIM. Therefore, highly efficient separation or concentration treatment of acid or alkaline aqueous solutions is possible, and the speed is almost constant. It is also easy to connect with other processes, such as a pure water washing process.
第 1 表Table 1
第1図は本発明において使用する分離システムを示す説
明図、第2図A、第2図B、第2図C並びに第2図りは
上記分離システムにおける膜デミスタ−を示す説明図、
第3図は本発明による処理方法の水溶液のPHと凝縮水
のPHとの関係を示す図表である。
図において、dは膜デミスタ−1hは加熱手段、2は疎
水性膜である。
ど−一6−一)
r 2/XjAFIG. 1 is an explanatory diagram showing the separation system used in the present invention, FIG. 2 A, FIG. 2 B, FIG. 2 C, and the second diagram are explanatory diagrams showing the membrane demister in the above separation system,
FIG. 3 is a chart showing the relationship between the PH of the aqueous solution and the PH of the condensed water in the treatment method according to the present invention. In the figure, d is a membrane demister, 1h is a heating means, and 2 is a hydrophobic membrane. Do-16-1) r 2/XjA
Claims (1)
ルカリを含有する水溶液を加熱して液滴の随伴下で水蒸
気を発生させ、該水蒸気を、水蒸気は透過させるが、水
は透過させない疎水性膜の一面側に接触させてその蒸気
分を疎水性膜の他面側に透過させ、次いで冷却して凝縮
させると共に上記膜で阻止された液滴を上記水溶液中に
戻すことを特徴とする酸またはアルカリ水溶液の処理方
法。(1) Aqueous solution containing a non-volatile or low-volatile acid or alkali as a solute is heated to generate water vapor accompanied by droplets, and the water vapor is hydrophobic, which allows water vapor to pass through but does not allow water to pass through. The method is characterized by contacting one side of the hydrophobic membrane to allow the vapor to permeate through the other side of the hydrophobic membrane, and then cooling and condensing the liquid while returning the droplets blocked by the membrane to the aqueous solution. Method for treating acid or alkaline aqueous solutions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8884188A JPH01262901A (en) | 1988-04-11 | 1988-04-11 | Method for treating aqueous acidic or alkaline solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8884188A JPH01262901A (en) | 1988-04-11 | 1988-04-11 | Method for treating aqueous acidic or alkaline solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262901A true JPH01262901A (en) | 1989-10-19 |
Family
ID=13954186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8884188A Pending JPH01262901A (en) | 1988-04-11 | 1988-04-11 | Method for treating aqueous acidic or alkaline solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262901A (en) |
-
1988
- 1988-04-11 JP JP8884188A patent/JPH01262901A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4781837A (en) | Method of performing osmetic distillation | |
US4944882A (en) | Hybrid membrane separation systems | |
KR890000168B1 (en) | Temperature-regenerating method for an aqueous solution and apparatus therefor | |
JPS60125203A (en) | Thermo-pervaporation apparatus | |
JP6724124B2 (en) | Membrane device having improved forward osmosis performance and solution separation method using the same | |
KR101524225B1 (en) | Membrane Distillation Module | |
JPH0140641B2 (en) | ||
JPS6362504A (en) | Method for concentrating organic component in aqueous solution containing same | |
JPH04290597A (en) | Water treating equipment | |
JPH01262901A (en) | Method for treating aqueous acidic or alkaline solution | |
JPS63258601A (en) | Concentration of aqueous organic solution | |
Xu et al. | Air-sweep vacuum membrane distillation using fine silicone, rubber, hollow-fiber membranes | |
JP7106125B2 (en) | Concentration system and concentration method | |
US4743378A (en) | Rapid vapor transport through unwetted porous barriers | |
JPH01199602A (en) | Membrane demister | |
JPS63182004A (en) | Aqueous solution concentration system | |
JPS60147201A (en) | Treatment of aqueous solution containing volatile substance | |
JP2898080B2 (en) | Operation method of degassing membrane device | |
JP2020044470A (en) | Concentration system of solvent-containing article | |
JPH0347521A (en) | Separation membrane and usage thereof | |
JPS61199788A (en) | Separation and concentration of fermentation product, and method for continuous fermentation | |
JPS6154206A (en) | Thermopervaporation apparatus | |
JPH0290901A (en) | Treatment of organic solution | |
JPH029418A (en) | Manufacture of non-exothermic solution | |
JPS60147285A (en) | Treatment of aqueous acid or alkali solution |