JPH04290597A - Water treating equipment - Google Patents
Water treating equipmentInfo
- Publication number
- JPH04290597A JPH04290597A JP3054590A JP5459091A JPH04290597A JP H04290597 A JPH04290597 A JP H04290597A JP 3054590 A JP3054590 A JP 3054590A JP 5459091 A JP5459091 A JP 5459091A JP H04290597 A JPH04290597 A JP H04290597A
- Authority
- JP
- Japan
- Prior art keywords
- water
- gas
- water treatment
- crystallizer
- treatment equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 239000012528 membrane Substances 0.000 claims abstract description 36
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 17
- 238000002425 crystallisation Methods 0.000 claims abstract description 8
- 230000008025 crystallization Effects 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000011282 treatment Methods 0.000 claims description 41
- 238000007791 dehumidification Methods 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims 2
- 239000002245 particle Substances 0.000 abstract description 6
- 239000002250 absorbent Substances 0.000 abstract description 5
- 230000002745 absorbent Effects 0.000 abstract description 5
- 238000004821 distillation Methods 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000003657 drainage water Substances 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Filtering Of Dispersed Particles In Gases (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Drying Of Gases (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は生活排水の再生・循環シ
ステムに係り、特に、地上のみならず、宇宙船や宇宙ス
テーションなどの閉鎖空間系でかつ無重力状態下でも用
いられる水処理設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regeneration and circulation system for domestic wastewater, and more particularly to water treatment equipment that can be used not only on land but also in closed space systems such as spacecraft and space stations, and even under zero gravity conditions.
【0002】0002
【従来の技術】従来、地上における排水を浄化し再利用
する水処理設備は、「用水廃水便覧」丸善、139〜1
42頁に示される様に、物理・化学処理(中和、沈澱、
凝集、ふるい分け、沈降、浮遊等)、生物処理(活性汚
泥法、生物酸化池法等)により排水を清水と汚泥に分離
し、さらに清水は溶存物処理(中和、沈降、凝結、泡沫
分離、イオン交換、吸着、膜分離、蒸発、酸化等)を行
うことで、また汚泥は汚泥処理(脱水、乾燥、燃焼)を
行うことで処理する。これらの処理にはいろいろな方法
があるが、脱水操作では遠心分離、濾過分離、自然脱水
が、また、乾燥操作では加熱乾燥法が、さらに、沈降お
よび浮遊分離では重力を用いた密度差による分離が行わ
れている。ここで、沈降分離、脱水操作、乾燥操作に関
する従来の装置構造は、「用水廃水便覧」丸善、177
〜180頁、455〜461頁、492〜496頁や「
化学工学便覧」丸善、441〜450頁に示されている
。[Prior Art] Conventionally, water treatment equipment that purifies and reuses wastewater above ground has been used in "Water and Wastewater Handbook," Maruzen, 139-1.
As shown on page 42, physical and chemical treatments (neutralization, precipitation,
Drainage water is separated into fresh water and sludge through biological treatment (activated sludge method, biological oxidation pond method, etc.) and dissolved matter treatment (neutralization, sedimentation, coagulation, foam separation, etc.). ion exchange, adsorption, membrane separation, evaporation, oxidation, etc.) and sludge treatment (dehydration, drying, combustion). There are various methods for these treatments, including centrifugation, filtration, and natural dehydration for dehydration, heating drying for drying, and separation based on density difference using gravity for sedimentation and floating separation. is being carried out. Here, the conventional equipment structure for sedimentation separation, dewatering operation, and drying operation is described in "Water and Wastewater Handbook", Maruzen, 177.
〜180 pages, 455-461 pages, 492-496 pages and ``
"Chemical Engineering Handbook" Maruzen, pp. 441-450.
【0003】また、宇宙空間における水処理システムと
しては、特開昭62−19299号公報にあるように、
膜を用いた分離法を主体として水処理システムが提案さ
れている。特に、宇宙空間における飲料水の生成には、
相変化させることが必須であることから、上記公報では
、疎水性多孔質膜を用いた膜蒸留法(サーモパーベーパ
レーション法)によるシステムを提案している。[0003] Furthermore, as a water treatment system in outer space, as described in Japanese Patent Application Laid-open No. 1982-19299,
Water treatment systems based mainly on separation methods using membranes have been proposed. In particular, for the production of drinking water in space,
Since phase change is essential, the above publication proposes a system using a membrane distillation method (thermopervaporation method) using a hydrophobic porous membrane.
【0004】0004
【発明が解決しようとする課題】上記従来の地上におけ
る水処理設備では、重力を利用した沈降、沈澱、浮遊操
作が含まれているのに加えて、分離した不純物(固体)
の取り出し方も掻き取り操作で行うなど、宇宙空間の様
な無重力空間での使用には向かない。[Problems to be Solved by the Invention] In the above-mentioned conventional above-ground water treatment equipment, in addition to sedimentation, sedimentation, and floating operations using gravity, separated impurities (solids)
It is not suitable for use in zero-gravity space such as outer space, as the method of taking it out is done by scraping it off.
【0005】また、宇宙空間での使用を目的とした前記
公報に示された如き膜分離中心のシステムでは、膜蒸留
の結果生じた濃縮水の処理について具体的な方法は提示
されておらず、完全な水リサイクルシステムを構成させ
るための該濃縮水からの不純物分離に問題点があった。[0005] Furthermore, in the membrane separation-centered system as shown in the above-mentioned publication, which is intended for use in outer space, no specific method has been proposed for treating the concentrated water produced as a result of membrane distillation. There were problems in separating impurities from the concentrated water to construct a complete water recycling system.
【0006】本発明の目的は、地上のみならず、宇宙空
間の様な無重力状態下においても操作可能で、かつ濃縮
水を不純物と水に完全に分離できる水処理設備を提供す
ることにあり、他の目的は、分離した上記の水をリサイ
クルできる水処理設備を提供することにある。An object of the present invention is to provide water treatment equipment that can be operated not only on the ground but also in zero gravity conditions such as in outer space, and that can completely separate concentrated water into impurities and water. Another object is to provide a water treatment facility capable of recycling the above-mentioned separated water.
【0007】[0007]
【課題を解決するための手段】水処理装置からの濃縮水
を晶析装置にて霧化と共に温ガスに直接接触させて気化
させることにより、該濃縮水中に含まれる不純物を粒子
状固形物としてガス中に浮遊させ、これをフィルタによ
り除去することで、濃縮水中の不純物と水分を完全に分
離する。また、上記の結果として蒸発した水分を含むガ
スは、除湿装置において疎水性多孔質膜を介して又は直
接的に吸収液と接触させることにより該吸収液に水分を
吸収させるか、もしくは、水分を冷却凝縮させて水滴と
した後に疎水性多孔質膜によりガスと水滴を分離させる
ことにより、ガスと水を回収する。回収したガスと水は
、夫々、前記水処理装置と晶析装置へリサイクルされる
。[Means for solving the problem] Impurities contained in the concentrated water are removed as particulate solids by atomizing concentrated water from a water treatment device in a crystallizer and vaporizing it by directly contacting it with hot gas. Impurities and water in concentrated water are completely separated by suspending them in gas and removing them with a filter. In addition, the gas containing moisture that has evaporated as a result of the above can be brought into contact with an absorbing liquid through a hydrophobic porous membrane or directly in a dehumidifying device, so that the absorbing liquid absorbs the moisture, or the moisture can be removed. The gas and water are recovered by cooling and condensing to form water droplets, and then separating the gas and water droplets using a hydrophobic porous membrane. The recovered gas and water are recycled to the water treatment device and crystallizer, respectively.
【0008】[0008]
【作用】本発明における晶析装置では、濃縮水中に含ま
れる不純物と水とを完全に分離するために、濃縮水を霧
化させ、同時に温ガスにより気化させる。この結果、濃
縮水中の不純物は析出して微粒子状態になり、ガスと微
粒子の混合流れが出来る。このガスと微粒子は、フィル
タ等を用いることにより、容易に分離でき、したがって
、濃縮水中の不純物を完全に分離することが可能になる
。[Operation] In the crystallizer of the present invention, in order to completely separate water from impurities contained in the concentrated water, the concentrated water is atomized and at the same time vaporized by hot gas. As a result, impurities in the concentrated water are precipitated and become particulates, creating a mixed flow of gas and particulates. This gas and particulates can be easily separated by using a filter or the like, thus making it possible to completely separate impurities in the concentrated water.
【0009】さらに、前記気化の結果としてガスの中に
含まれる水分の回収は、次の2つの手段のどれかで行わ
れる。1つの手段は、この水分を含むガスを水分を吸収
し易い水溶液(吸収液)と直接接触させるか、又は、ガ
スは通すが液体は通さない性質を有する疎水性多孔質膜
を介して接触させることにより、ガス中の水分を吸収液
中に移動させ、さらに、この結果として濃度の薄くなっ
た吸収液を、温度が低く、吸収液の持つ水蒸気圧よりも
低い水蒸気圧を持つ水と疎水性多孔質膜を介して接触さ
せることにより、吸収液から水に水分を吸収させること
で、100%水分を回収する。もう1つの手段は、細い
チューブの外側を冷却し、内側に前記水分を含むガスを
流すことで、チューブ内側に水分を凝縮させ、水滴とガ
スの混合流を形成させ、疎水性多孔質膜のチューブの内
側にその混合流を導き、ガスのみをチューブの外側に取
り出すことでガス中の水分とガスとを完全に分離するこ
とができる。このガスは晶析装置へ戻し、水は水処理装
置へ戻す。Furthermore, the moisture contained in the gas as a result of the vaporization is recovered by one of the following two means. One method is to bring this moisture-containing gas into direct contact with an aqueous solution (absorbing liquid) that easily absorbs moisture, or through a hydrophobic porous membrane that allows gas to pass through but not liquid. By this, the water in the gas is transferred to the absorbing liquid, and the absorbing liquid, which has become diluted as a result, is hydrophobic with water, which has a low temperature and a water vapor pressure lower than that of the absorbing liquid. 100% water is recovered by allowing water to absorb water from the absorption liquid by contacting it through a porous membrane. Another method is to cool the outside of a thin tube and flow the water-containing gas inside the tube, which causes the water to condense inside the tube and form a mixed flow of water droplets and gas, forming a hydrophobic porous membrane. By guiding the mixed flow inside the tube and extracting only the gas to the outside of the tube, the moisture and gas in the gas can be completely separated. The gas is returned to the crystallizer and the water is returned to the water treatment equipment.
【0010】以上の操作を行うことにより、地上のみな
らず、重力の無い宇宙空間においても完全な水の循環系
を作ることができる。By carrying out the above operations, a complete water circulation system can be created not only on the ground but also in outer space where there is no gravity.
【0011】[0011]
【実施例】図1は、本発明に係る水処理設備の実施例を
示す。本装置は水処理装置101、晶析装置102、除
湿装置103で構成される。晶析装置102はガス加熱
器104、晶析部115、フィルタ111で構成される
。晶析部115はノズル108を設けたセルの形をして
いる。閉鎖空間系からの排水105はまず従来と同様の
水処理装置101に送られる。水処理装置101にて処
理されて発生した濃縮水106は、ガス加熱器104に
て加温されたガス(例えば空気)107とともに晶析部
115においてノズル108にて霧化され水滴109に
なるとともに気化し、不純物は微粒子110となる。
気化した水蒸気を含んで高湿度となったガスと微粒子1
10の混合流れは、フィルタ111により濾過され、微
粒子110のみがフィルタ111に捕捉される。フィル
タ111を通過したガス(水蒸気を含んでいる)112
は除湿装置103に送られる。除湿装置103で分離さ
れた水分114は再度水処理装置101に戻されるか又
はそのまま処理水116として用いられる。また除湿装
置103で分離された乾燥したガス113は再利用され
るべくガス加熱器104に送られる。本実施例によれば
、従来の水処理装置101に晶析装置102と除湿装置
103を取り付けたことにより、水処理装置101で得
られた濃縮水から不純物と水分を完全に分離除去するこ
とが可能となると共に、分離除去した水を再度リサイク
ルすることが可能である。Embodiment FIG. 1 shows an embodiment of water treatment equipment according to the present invention. This device is composed of a water treatment device 101, a crystallizer 102, and a dehumidification device 103. The crystallizer 102 includes a gas heater 104, a crystallizer 115, and a filter 111. The crystallization section 115 is in the form of a cell in which a nozzle 108 is provided. Wastewater 105 from the closed space system is first sent to a conventional water treatment device 101. Concentrated water 106 generated by treatment in the water treatment device 101 is atomized by a nozzle 108 in a crystallization section 115 together with a gas (for example, air) 107 heated by a gas heater 104, and becomes water droplets 109. The impurities are vaporized and become fine particles 110. Highly humid gas containing vaporized water vapor and fine particles 1
The mixed flow of 10 is filtered by filter 111, and only particulates 110 are captured by filter 111. Gas (containing water vapor) 112 that has passed through the filter 111
is sent to the dehumidifier 103. The water 114 separated by the dehumidifying device 103 is returned to the water treatment device 101 or used as treated water 116 as is. Further, the dry gas 113 separated by the dehumidifier 103 is sent to the gas heater 104 to be reused. According to this embodiment, by attaching the crystallizer 102 and the dehumidifier 103 to the conventional water treatment device 101, impurities and water can be completely separated and removed from the concentrated water obtained by the water treatment device 101. In addition to this, it is also possible to recycle the separated and removed water.
【0012】なお、本実施例では晶析装置102と除湿
装置103は濃縮水の処理にしか用いていないが、膜蒸
留と同様に蒸留水の生成部として用いることも可能であ
る。In this embodiment, the crystallizer 102 and the dehumidifier 103 are used only for processing concentrated water, but they can also be used as a distilled water generating section, similar to membrane distillation.
【0013】図2は、図1に示した実施例を、水処理装
置101についてはより詳細に、晶析装置102につい
ては簡略に、図示したものである。水処理装置101は
、フィルタ201、逆浸透膜器202、活性炭器203
、殺菌灯器204、膜蒸留器205から構成されている
。この水処理部101に加えて晶析装置102、除湿装
置103が設けられている。晶析装置102は図1にお
ける晶析装置102と同じである。閉鎖空間からの排水
208はフィルタ201、逆浸透膜器202、活性炭器
203、殺菌灯器204により連続的に処理されること
でシャワー等に使用可能な生活用水209となる。更に
この生成水209の一部210は膜蒸留器205で処理
される。この膜蒸留器205は、疎水性多孔質膜206
の一方の側(原水側)に上記の水210が循環的に流れ
、他方の側には冷却水が流れているものであり、原水側
から他方の側へ水蒸気のみが膜206を透過し、そこで
該水蒸気は冷却水で冷却されて凝縮して純度の良い水2
11(これは飲料水として使用可能)となり、他方、原
水側では不純物濃度が高くなった濃縮水が出来る。FIG. 2 shows the embodiment shown in FIG. 1 in more detail with respect to the water treatment device 101 and in simplified form with respect to the crystallization device 102. The water treatment device 101 includes a filter 201, a reverse osmosis membrane device 202, and an activated carbon device 203.
, a sterilizing lamp 204 , and a membrane distiller 205 . In addition to this water treatment section 101, a crystallizer 102 and a dehumidifier 103 are provided. The crystallizer 102 is the same as the crystallizer 102 in FIG. Drainage water 208 from the closed space is continuously treated by a filter 201, a reverse osmosis membrane device 202, an activated carbon device 203, and a germicidal lamp device 204, thereby becoming domestic water 209 that can be used for showers and the like. Further, a portion 210 of this produced water 209 is treated in a membrane distiller 205. This membrane distiller 205 has a hydrophobic porous membrane 206
The water 210 described above flows cyclically on one side (raw water side), and the cooling water flows on the other side, and only water vapor permeates through the membrane 206 from the raw water side to the other side. There, the water vapor is cooled with cooling water and condensed to produce high-purity water2.
11 (which can be used as drinking water), and on the other hand, concentrated water with a high concentration of impurities is produced on the raw water side.
【0014】上記の水処理装置101においては、逆浸
透膜器202と膜蒸留器205から濃縮水212,21
3が夫々発生する。この濃縮水212,213は晶析装
置102に送られ、不純物の固形物214と高湿度ガス
112に分離される。分離された固形物214(すなわ
ち図1のフィルタ111に捕捉された微粒子110)は
そのまま貯蔵されて適当な時期にフィルタ交換により排
出され、他方、高湿度ガス112はさらに除湿装置10
3に送られて、乾燥ガス113と水114に分離される
。この乾燥ガス113は再利用のため晶析装置102に
戻され、他方、生成した水114は再度逆浸透膜器20
2もしくは膜蒸留器205の原水側に戻されるかもしく
はそのまま処理水116として用いられる。In the water treatment apparatus 101 described above, concentrated water 212, 21 is supplied from the reverse osmosis membrane device 202 and the membrane distiller 205.
3 occur respectively. The concentrated water 212, 213 is sent to the crystallizer 102 and separated into solid impurities 214 and high humidity gas 112. The separated solids 214 (i.e., the particulates 110 captured by the filter 111 in FIG.
3 and is separated into dry gas 113 and water 114. This dry gas 113 is returned to the crystallizer 102 for reuse, while the generated water 114 is returned to the reverse osmosis membrane device 20.
2 or returned to the raw water side of the membrane distiller 205, or used as treated water 116 as is.
【0015】図3は、前記晶析装置102における出側
のフィルタ111の構造の一例を示す断面図である。本
フィルタは高湿度ガスと微粒子が流れる円筒形の流路に
フランジ302,303により円筒形のフィルタエレメ
ント301が固定されている。流れの上流から来る高湿
度ガスと微粒子はフィルタエレメント301によって濾
過され、微粒子はフィルタエレメント301に捕捉され
、高湿度ガスのみがフィルタエレメント301を通過す
る。本フィルタの構成によれば、捕捉された微粒子量が
増大したらフィルタエレメント301のみを交換可能で
ある。なお、本例では円筒形のフィルタエレメントが1
個しか示されていないが、複数個のフィルタエレメント
を取り付ければ、さらに効果は増大する。FIG. 3 is a sectional view showing an example of the structure of the filter 111 on the output side of the crystallizer 102. In this filter, a cylindrical filter element 301 is fixed by flanges 302 and 303 to a cylindrical flow path through which high-humidity gas and particulates flow. The humid gas and particulates coming from upstream of the flow are filtered by the filter element 301, the particulates are captured by the filter element 301, and only the humid gas passes through the filter element 301. According to the configuration of this filter, only the filter element 301 can be replaced if the amount of captured particles increases. In addition, in this example, the cylindrical filter element is 1
Although only one filter element is shown, the effect will be further increased if a plurality of filter elements are attached.
【0016】図4は前記晶析装置102における出側の
フィルタ111の他の例を示す断面図である。本フィル
タは平型のフィルタエレメント401,402,403
,404,405を複数枚重ねたものであり、流れの上
流側のフィルタエレメント401が目詰まりを起こした
ら、フィルタエレメント401を取り除き、次のフィル
タエレメント402を連続的に使用していく。本例によ
れば、複数枚のフィルタエレメントを直列に設置するこ
とで、フィルタエレメントの交換時期を長くできるとと
もに、フィルタエレメントを横に引き出して簡単に交換
することができる。FIG. 4 is a sectional view showing another example of the filter 111 on the output side of the crystallizer 102. This filter has flat filter elements 401, 402, 403.
, 404, and 405, and if the filter element 401 on the upstream side of the flow becomes clogged, the filter element 401 is removed and the next filter element 402 is used continuously. According to this example, by installing a plurality of filter elements in series, the replacement period of the filter elements can be extended, and the filter elements can be easily replaced by being pulled out laterally.
【0017】図5は前記晶析装置102における出側の
フィルタ111の更に他の例を示す。本フィルタのフィ
ルタエレメント501はロール状に巻かれた形をしてお
り、使用中のフィルタエレメント501の部分に微粒子
が詰まったらロールを巻くことにより新しいフィルタエ
レメントの部分に交換することができる。なお、図4お
よび図5に示すようなフィルタエレメントの面が平型の
フィルタでは、フィルタエレメント上に微粒子を固定化
する際、乾燥しきった微粒子では付着性に欠けることか
ら、図5に部分拡大図として示すように、ガスの温度と
流量をコントロールすることで、粘着性のある少し湿っ
た微粒子502を形成させることも必要である。FIG. 5 shows still another example of the filter 111 on the output side of the crystallizer 102. The filter element 501 of this filter is wound into a roll, and if the portion of the filter element 501 in use is clogged with particulates, it can be replaced with a new filter element portion by winding the roll. For filters with flat filter element surfaces as shown in Figures 4 and 5, dried particles lack adhesion when immobilizing fine particles on the filter element, so Figure 5 shows a partially enlarged view. As shown in the figure, it is also necessary to form sticky, slightly moist particles 502 by controlling the temperature and flow rate of the gas.
【0018】図6は前記晶析装置102における構造の
他の例を示す。本例では、前記1つのフィルタ111の
代りに少なくとも2個以上のフィルタ601,602を
並列に設置することで、1つのフィルタ601が詰まっ
た場合にバルブ603により別のフィルタ602に流れ
を切換え、詰まったフィルタ601を交換する間、別の
フィルタ602を用いて装置を連続的に運転可能にした
ものである。さらに、本実施例では、濃縮水106のノ
ズルと温ガス107のノズルを別としているが、図1に
示した様な1つのノズル108の場合と作用は変わりは
無い。FIG. 6 shows another example of the structure of the crystallizer 102. In this example, at least two or more filters 601 and 602 are installed in parallel instead of the one filter 111, so that when one filter 601 becomes clogged, the flow is switched to another filter 602 by a valve 603, While the clogged filter 601 is being replaced, another filter 602 is used to enable continuous operation of the device. Furthermore, in this embodiment, although the nozzle for the concentrated water 106 and the nozzle for the hot gas 107 are separate, the operation is the same as in the case of one nozzle 108 as shown in FIG.
【0019】なお、図3、4、5、6において、フィル
タの交換時期は、フィルタ前後の圧力損失を測定し、一
定値を越えた段階において交換することが望ましい。In FIGS. 3, 4, 5, and 6, it is desirable to replace the filter by measuring the pressure loss before and after the filter and replacing it when the pressure loss exceeds a certain value.
【0020】図7は、前記図1、図2における除湿装置
103の一例をブロック線図で示したものである。本装
置は疎水性多孔質膜705,705を夫々有する2つの
セル701,702とそのセル間に水蒸気を吸収し易い
吸収液706(例えば臭化リチウム水溶液)を循環させ
るポンプ703とを備えている。晶析装置102からの
高湿度ガス112は疎水性多孔質膜705に接しながら
セル701の片側を流れる。セル701の反対側には水
蒸気圧の低い吸収液706が流れており、高湿度ガス中
に含まれる水分は、疎水性多孔質膜705を介して吸収
液706に吸収される。したがって、セル701より出
るガス113は水分が除去された乾燥ガスとなり、再度
晶析部102に送られる。セル701にて水分を吸収し
た吸収液706はポンプ703により他方のセル702
に送られる。セル702の反対側には吸収液706の持
つ水蒸気圧よりも低い水蒸気圧を持つ冷却水708が流
れており、セル702では吸収液706から発生した水
蒸気が冷却水708に吸収されて前記水114となる。
この様な操作を連続的に行うことにより、晶析装置10
2からの高湿度ガス中の水分を除去することができる。
なお、本例では、吸収液706のラインにはポンプ70
3しか設置していないが、セル701からセル702へ
吸収液を送る流路に加熱器、逆にセル702からセル7
01へ吸収液を送る流路に冷却器を設けることにより、
膜705を透過する水蒸気の移動速度を増大させること
ができる。FIG. 7 is a block diagram showing an example of the dehumidifying device 103 shown in FIGS. 1 and 2. In FIG. This device includes two cells 701 and 702 having hydrophobic porous membranes 705 and 705, respectively, and a pump 703 that circulates an absorption liquid 706 (for example, a lithium bromide aqueous solution) that easily absorbs water vapor between the cells. . High humidity gas 112 from crystallizer 102 flows on one side of cell 701 while contacting hydrophobic porous membrane 705 . An absorbent liquid 706 having a low water vapor pressure flows on the opposite side of the cell 701 , and water contained in the high-humidity gas is absorbed into the absorbent liquid 706 via the hydrophobic porous membrane 705 . Therefore, the gas 113 exiting from the cell 701 becomes a dry gas from which moisture has been removed, and is sent to the crystallization section 102 again. The absorbent liquid 706 that has absorbed moisture in the cell 701 is pumped to the other cell 702 by the pump 703.
sent to. Cooling water 708 having a water vapor pressure lower than that of the absorbing liquid 706 flows on the opposite side of the cell 702, and in the cell 702, the water vapor generated from the absorbing liquid 706 is absorbed by the cooling water 708 and becomes the water 114. becomes. By continuously performing such operations, the crystallizer 10
Moisture in the high humidity gas from 2 can be removed. In this example, a pump 70 is installed in the absorption liquid 706 line.
Although only 3 is installed, a heater is installed in the flow path that sends the absorption liquid from cell 701 to cell 702, and conversely, from cell 702 to cell 7.
By providing a cooler in the flow path that sends the absorption liquid to 01,
The rate of water vapor movement through membrane 705 can be increased.
【0021】図8は前記除湿装置103の他の例を示し
たものである。本除湿装置は冷却部801、気液分離部
802とから構成される。晶析装置102からの高湿度
ガス112は、まず冷却部801のチューブ内に送られ
て冷却され、含まれる水分はチューブ内壁に凝縮する。
この凝縮水とガスはガスの流れの作用でそのまま気液分
離部802に送られる。気液分離部802は疎水性多孔
質膜のチューブ804により構成され、ガスのみが疎水
性多孔質膜804を通過することによって水114とガ
ス113が分離される。分離された乾燥ガス113はガ
ス出口805より、また、水114は水出口806より
それぞれ放出される。この様な操作を連続的に行うこと
により、高湿度ガス中の水分を除去することができる。FIG. 8 shows another example of the dehumidifying device 103. This dehumidification device is composed of a cooling section 801 and a gas-liquid separation section 802. The high-humidity gas 112 from the crystallizer 102 is first sent into the tube of the cooling unit 801 and cooled, and the moisture contained therein condenses on the inner wall of the tube. This condensed water and gas are directly sent to the gas-liquid separation section 802 by the action of the gas flow. The gas-liquid separation section 802 is constituted by a tube 804 made of a hydrophobic porous membrane, and only the gas passes through the hydrophobic porous membrane 804, whereby water 114 and gas 113 are separated. The separated dry gas 113 is released from a gas outlet 805, and the water 114 is released from a water outlet 806. By continuously performing such operations, moisture in the high humidity gas can be removed.
【0022】なお、図7、図8に示した装置は晶析装置
からの高湿度ガスの除湿ばかりでなく、宇宙船や宇宙ス
テーション内の空気の除湿にも十分利用することができ
る。The apparatus shown in FIGS. 7 and 8 can be fully utilized not only for dehumidifying high-humidity gas from a crystallizer, but also for dehumidifying air inside a spacecraft or a space station.
【0023】[0023]
【発明の効果】本発明によれば、地上だけでなく、宇宙
空間等の無重力状態下においても、重力を利用すること
なく濃縮水を不純物と水分に完全に分離することができ
、完全なリサイクル系の構成が容易にできる。[Effects of the Invention] According to the present invention, concentrated water can be completely separated into impurities and water without using gravity, not only on the ground but also in zero gravity conditions such as in outer space, resulting in complete recycling. System configuration is easy.
【図1】本発明に係る水処理設備の実施例の構成図[Fig. 1] A configuration diagram of an embodiment of water treatment equipment according to the present invention.
【図
2】上記水処理設備をその水処理装置についてより詳細
に示した構成図[Figure 2] A configuration diagram showing the above water treatment equipment in more detail.
【図3】本発明における晶析装置に用いるフィルタの一
例を示す断面図[Fig. 3] A cross-sectional view showing an example of a filter used in the crystallizer of the present invention.
【図4】同じくフィルタの他の一例を示す断面図[Figure 4] Cross-sectional view showing another example of the same filter
【図5
】同じくフィルタの更に他の例を示す断面図[Figure 5
】Cross-sectional view showing yet another example of the same filter
【図6】本
発明における晶析装置の構造の他の一例を示す図FIG. 6 is a diagram showing another example of the structure of the crystallizer according to the present invention.
【図7】本発明における除湿装置の一例を示す図[Fig. 7] A diagram showing an example of a dehumidification device in the present invention.
【図8
】同じく除湿装置の他の一例を示す図[Figure 8
】A diagram showing another example of the dehumidification device
101…水処理装置
102…晶析装置103…除湿装置
104…ガス加熱器101...Water treatment equipment
102...Crystallizer 103...Dehumidifier
104...Gas heater
Claims (8)
霧化して温ガスと接触させて気化させることにより上記
不純物が粒子状固形物として浮遊している高湿度ガスを
生ぜしめる晶析部と、該晶析部で生じた上記粒子状固形
物を上記高湿度ガスより分離するフィルタと、を有する
晶析装置を含むことを特徴とする水処理設備。Claims: 1. A crystallization unit that atomizes concentrated water containing concentrated impurities and vaporizes the atomized water by contacting it with warm gas to produce a high-humidity gas in which the impurities are suspended as particulate solids; 1. A water treatment facility comprising: a crystallizer having: a filter that separates the particulate solids generated in the crystallization section from the high-humidity gas.
高湿度ガスを水分と乾燥ガスとに分離する除湿装置を備
えたことを特徴とする請求項1記載の水処理設備。2. The water treatment equipment according to claim 1, further comprising a dehumidifier that separates the high humidity gas into moisture and dry gas after separating the particulate solids.
理装置からの濃縮水であり、前記除湿装置で分離された
水分は再度該水処理装置の原水として、また前記除湿装
置で分離された乾燥ガスは前記晶析装置での温ガスとし
てリサイクルする様に構成したことを特徴とする請求項
2記載の水処理設備。3. The concentrated water is concentrated water from a water treatment device other than the crystallizer, and the water separated by the dehumidification device is used again as raw water for the water treatment device and separated by the dehumidification device. 3. The water treatment facility according to claim 2, wherein said dry gas is recycled as warm gas in said crystallizer.
セル中に設けられ、前記濃縮水を前記温ガスと共に噴霧
するノズル、又は、前記濃縮水を噴霧するノズルおよび
該ノズルの近傍にあって前記温ガスを噴射するノズルと
、からなることを特徴とする請求項1,2又は3記載の
水処理設備。4. The crystallization section of the crystallizer includes a cell and a nozzle provided in the cell that sprays the concentrated water together with the warm gas, or a nozzle that sprays the concentrated water and a nozzle of the nozzle. 4. The water treatment equipment according to claim 1, further comprising a nozzle located nearby that injects the warm gas.
も2個以上並列もしくは直列に設置されていることを特
徴とする請求項1,2,3又は4記載の水処理設備。5. The water treatment equipment according to claim 1, wherein at least two or more filters of the crystallizer are installed in parallel or in series.
湿性の水溶液と直接または疎水性多孔質膜を介して接触
させることにより該ガス中の水分を該水溶液に吸収させ
る様に構成されていることを特徴とする請求項2又は3
記載の水処理設備。6. The dehumidifying device is configured to bring the high-humidity gas into contact with a hygroscopic aqueous solution directly or through a hydrophobic porous membrane, thereby causing the aqueous solution to absorb moisture in the gas. Claim 2 or 3 characterized in that
Water treatment equipment as described.
水分を吸収した後の前記水溶液を、該水溶液よりも水蒸
気圧の低い水もしくはガスと直接もしくは疎水性多孔質
膜を介して接触させて該水溶液から水分を除去する様に
構成されていることを特徴とする請求項6記載の水処理
設備。7. The dehumidification device brings the aqueous solution after absorbing moisture in the high-humidity gas into contact with water or gas having a lower water vapor pressure than the aqueous solution, either directly or via a hydrophobic porous membrane. 7. The water treatment equipment according to claim 6, wherein the water treatment equipment is configured to remove water from the aqueous solution.
却して該ガス中の水分を凝縮させる手段と、該凝縮水と
ガスを疎水性多孔質膜を用いて分離する手段とからなる
ことを特徴とする請求項2又は3記載の水処理設備。8. The dehumidification device comprises means for cooling the high-humidity gas to condense moisture in the gas, and means for separating the condensed water and the gas using a hydrophobic porous membrane. The water treatment equipment according to claim 2 or 3, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3054590A JPH04290597A (en) | 1991-03-19 | 1991-03-19 | Water treating equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3054590A JPH04290597A (en) | 1991-03-19 | 1991-03-19 | Water treating equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04290597A true JPH04290597A (en) | 1992-10-15 |
Family
ID=12974941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3054590A Pending JPH04290597A (en) | 1991-03-19 | 1991-03-19 | Water treating equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04290597A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0771232A1 (en) * | 1994-07-18 | 1997-05-07 | The University Of Queensland | Method and apparatus for separating liquid-liquid mixtures |
EP1491506A1 (en) * | 2003-05-28 | 2004-12-29 | Joseph Kuo | Improved membrane distillation method |
WO2008085106A1 (en) * | 2007-01-12 | 2008-07-17 | Scarab Development Ab | Method for purifying water by means of an ro device |
WO2008085104A1 (en) * | 2007-01-12 | 2008-07-17 | Scarab Development Ab | Method for purifying water using low energy consumption |
JP2010119963A (en) * | 2008-11-20 | 2010-06-03 | Mitsubishi Heavy Ind Ltd | Waste water treatment apparatus for space station and method therefor |
JP2010529403A (en) * | 2007-06-04 | 2010-08-26 | ルーダル ホールディング ビー.ヴィー. | System and method for drying water-containing materials |
WO2013065293A1 (en) * | 2011-10-31 | 2013-05-10 | Jfeエンジニアリング株式会社 | Method and device for preparing fresh water |
WO2013133043A1 (en) * | 2012-03-09 | 2013-09-12 | 日東電工株式会社 | Method for separating oil and water, method for processing oil-containing water, method for producing bitumen, and system thereof |
JP2013215686A (en) * | 2012-04-11 | 2013-10-24 | Jfe Engineering Corp | Method and apparatus for treating accompaniment water from winze |
JP2014188468A (en) * | 2013-03-27 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | Water treatment system for space applications |
CN108928989A (en) * | 2015-12-08 | 2018-12-04 | 长泰品原电子科技有限公司 | A kind of purification method of cleaning equipment |
-
1991
- 1991-03-19 JP JP3054590A patent/JPH04290597A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0771232A1 (en) * | 1994-07-18 | 1997-05-07 | The University Of Queensland | Method and apparatus for separating liquid-liquid mixtures |
EP0771232A4 (en) * | 1994-07-18 | 1997-10-08 | Univ Queensland | Method and apparatus for separating liquid-liquid mixtures |
EP1491506A1 (en) * | 2003-05-28 | 2004-12-29 | Joseph Kuo | Improved membrane distillation method |
WO2008085106A1 (en) * | 2007-01-12 | 2008-07-17 | Scarab Development Ab | Method for purifying water by means of an ro device |
WO2008085104A1 (en) * | 2007-01-12 | 2008-07-17 | Scarab Development Ab | Method for purifying water using low energy consumption |
JP2010529403A (en) * | 2007-06-04 | 2010-08-26 | ルーダル ホールディング ビー.ヴィー. | System and method for drying water-containing materials |
JP2010119963A (en) * | 2008-11-20 | 2010-06-03 | Mitsubishi Heavy Ind Ltd | Waste water treatment apparatus for space station and method therefor |
WO2013065293A1 (en) * | 2011-10-31 | 2013-05-10 | Jfeエンジニアリング株式会社 | Method and device for preparing fresh water |
WO2013133043A1 (en) * | 2012-03-09 | 2013-09-12 | 日東電工株式会社 | Method for separating oil and water, method for processing oil-containing water, method for producing bitumen, and system thereof |
JP2013185127A (en) * | 2012-03-09 | 2013-09-19 | Nitto Denko Corp | Method for separating oil and water, method for processing oil-containing water, method for producing bitumen, and system thereof |
JP2013215686A (en) * | 2012-04-11 | 2013-10-24 | Jfe Engineering Corp | Method and apparatus for treating accompaniment water from winze |
JP2014188468A (en) * | 2013-03-27 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | Water treatment system for space applications |
CN108928989A (en) * | 2015-12-08 | 2018-12-04 | 长泰品原电子科技有限公司 | A kind of purification method of cleaning equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4953694A (en) | Distilling apparatus | |
US20110180479A1 (en) | Zero liquid discharge water treatment system and method | |
US6156102A (en) | Method and apparatus for recovering water from air | |
JPS6097086A (en) | Method and device for purifying waste water | |
CN106986486A (en) | High organic effluent treatment plant that contains salt | |
JPH04290597A (en) | Water treating equipment | |
CN104828887B (en) | Make the method and system of waste water evaporated and purified treatment using solar energy combined heated | |
WO2009043413A1 (en) | Process and plant for recovering water from air | |
JP5943924B2 (en) | Osmotic pressure driven membrane process and system, and extraction solute recovery method | |
CN107986365A (en) | A kind of fluoroplastics falling film evaporator that desulfurization wastewater concentration is carried out using fume afterheat | |
JP2010149040A (en) | Organic solvent-containing gas treating system | |
CN110759570A (en) | Treatment method and treatment system for dye intermediate wastewater | |
JP2004190235A (en) | Water purifier using moisture in atmosphere | |
CN208762185U (en) | A kind of energy-saving system suitable for handling desulfurization wastewater | |
WO2020095327A1 (en) | An automated atmospheric water generator for producing high quality water for drinking and biomedical applications. | |
KR20030074098A (en) | A wastewater treatment apparatus | |
KR20130017933A (en) | Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator | |
US5466344A (en) | Method and apparatus for controlling water-based liquid waste | |
CN209396928U (en) | A kind of processing unit of catalytic cracking unit desulfurization wastewater and flue gas thermal coupling | |
CN113105052A (en) | High-salinity wastewater concentration and crystallization system and method | |
JP4709467B2 (en) | Method and apparatus for treating wastewater containing organic chemicals | |
US4158045A (en) | Continuous process for cleaning industrial waste gases containing formaldehyde | |
JP3385388B2 (en) | Treatment method for wastewater containing ammonia nitrogen | |
JPH0630793B2 (en) | Water circulation system | |
US20230407609A1 (en) | Atmospheric water generation systems and methods using electrostatic nucleation of water vapor in air |