JPH01260811A - Formation of soi crystal - Google Patents

Formation of soi crystal

Info

Publication number
JPH01260811A
JPH01260811A JP8820788A JP8820788A JPH01260811A JP H01260811 A JPH01260811 A JP H01260811A JP 8820788 A JP8820788 A JP 8820788A JP 8820788 A JP8820788 A JP 8820788A JP H01260811 A JPH01260811 A JP H01260811A
Authority
JP
Japan
Prior art keywords
energy beam
soi
scanning direction
intensity distribution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8820788A
Other languages
Japanese (ja)
Inventor
Hiromitsu Namita
博光 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8820788A priority Critical patent/JPH01260811A/en
Publication of JPH01260811A publication Critical patent/JPH01260811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an SOI film processing a satisfactory crystalline property, by controlling a temperature gradient in the vicinity of a solid-liquid interface after irradiating an energy beam in such a way that its strength distribution has a plurality of peaks with the respect to the scanning direction of the energy beam. CONSTITUTION:On the occasion of forming an SOI film which is singly crystallized by melting-and-solidifying a poly or amorphous silicon film, an energy beam whose strength distribution has a plurality of peaks is irradiated with respect to the scanning direction of the energy beam. It is possible that the process of irradiating the energy beam is performed either as the whole of a melting process of the amorphous silicon film for solidification or else as the part of the above process as well.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はSOI結晶の形成方法に関し、ざらに詳しくは
ポリシリコン膜あるいはアモルファスシリコン膜の溶融
固化を行うことによりSOI結晶を形成する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming an SOI crystal, and more specifically to a method for forming an SOI crystal by melting and solidifying a polysilicon film or an amorphous silicon film.

[従来の技術] 通常、エネルギービームの強度分布はガウス分布に近く
、したがってポリシリコン膜あるいはアモルファスシリ
コン膜の溶融を行うためのエネルギービームとしてもこ
のようなガウス分布のものが多く用いられている。また
、特殊な処理を施して、ビームの走査方向と直角な方向
に−様な強度分布あるいは双峰状の強度分布をもつもの
なども用いられているが、走査方向にブロードな温度分
布が得られる強度分布を有するビームを用いた例はなく
、また、ビームの照射回数も1回のみでめった。
[Prior Art] Usually, the intensity distribution of an energy beam is close to a Gaussian distribution, and therefore, such a Gaussian distribution is often used as an energy beam for melting a polysilicon film or an amorphous silicon film. In addition, special processing is used to create a -like intensity distribution or a bimodal intensity distribution in the direction perpendicular to the beam scanning direction, but it is possible to obtain a broad temperature distribution in the scanning direction. There is no example of using a beam with an intensity distribution similar to that of the previous method, and the number of beam irradiation was only one time.

[発明が解決しようとする課題] しかしながら、SOI膜の単結晶化においては固液界面
近辺での温度勾配を適切に制御することが良好な結晶性
を有するSOI膜を得るために大切であり、従来より用
いられているビームの走査方向に対しガウス分布の強度
分布を有するエネルギービームでは固液界面近辺での温
度勾配を正確にコントロールすることは困難であった。
[Problems to be Solved by the Invention] However, in the single crystallization of an SOI film, it is important to appropriately control the temperature gradient near the solid-liquid interface in order to obtain an SOI film with good crystallinity. It has been difficult to accurately control the temperature gradient near the solid-liquid interface with conventionally used energy beams that have a Gaussian intensity distribution in the scanning direction of the beam.

また、ビームの照射回数も1回のみであるので、ビーム
照射時の基板温度を変化させることができず、したがっ
て温度勾配を変化させるにはビームの走査速度を変化さ
せるしかなかった。しかし、上記方法で変化できる範囲
はビームのパワー密度との兼合いで狭い範囲に限られる
ので固液界面近辺での温度勾配を任意の範囲で正確にコ
ントロールすることは困難であった。
Further, since the number of times of beam irradiation is only one, it is not possible to change the substrate temperature during beam irradiation, and therefore, the only way to change the temperature gradient is to change the scanning speed of the beam. However, the range that can be changed by the above method is limited to a narrow range due to the power density of the beam, so it has been difficult to accurately control the temperature gradient near the solid-liquid interface within an arbitrary range.

本発明の目的は固液界面近辺での温度勾配を正確にコン
トロールして良好な結晶性を有するSO■膜を得ること
のできるSOI結晶の形成方法を提供することにある。
An object of the present invention is to provide a method for forming an SOI crystal that can accurately control the temperature gradient near the solid-liquid interface to obtain an SO2 film with good crystallinity.

[課題を解決するための手段] 本発明は、ポリシリコン膜あるいはアモルファスシリコ
ン膜の溶融同化を行って単結晶化されたSOI膜を形成
する方法において、エネルギービームの走査方向に対し
て、その強度分布が複数個のピークを有するようなエネ
ルギービームを照射する工程を備えてなることを特徴と
するSOI結晶の形成方法でおる。
[Means for Solving the Problems] The present invention provides a method for forming a single-crystal SOI film by melting and assimilating a polysilicon film or an amorphous silicon film. This method of forming an SOI crystal is characterized by comprising a step of irradiating an energy beam whose distribution has a plurality of peaks.

本発明における、強度分布が複数個のピークを有するよ
うなエネルギービームを照射する工程は、ポリ−あるい
はアモルファスシリコン膜の溶融固化工程の全部として
行ってもよく、あるいはその一部として行ってもよい。
In the present invention, the step of irradiating an energy beam whose intensity distribution has multiple peaks may be performed as the entire process of melting and solidifying the poly- or amorphous silicon film, or may be performed as a part thereof. .

一部として行う場合には、例えば前記所定のエネルギー
ビームの照射に先立って、試料全体を−様な強度のビー
ムで照射する工程を含める場合が挙げられる。
If it is carried out as a part, for example, a step of irradiating the entire sample with a beam having a different intensity may be included prior to irradiating the predetermined energy beam.

[作用] 第2図はエネルギービームの走査方向に対しガウス分布
の強度分布を有する場合のビームの強度分布(a)と、
試料上で得られる発熱分布(b)を示したものである。
[Function] Figure 2 shows the beam intensity distribution (a) when the energy beam has a Gaussian intensity distribution in the scanning direction;
It shows the heat generation distribution (b) obtained on the sample.

この場合の固液界面近辺での温度勾配はビームの走査速
度に主として依存する。
In this case, the temperature gradient near the solid-liquid interface depends mainly on the scanning speed of the beam.

一方、第1図は本発明方法によるエネルギービームの走
査方向に対し複数個のピークをもった強度分布を有する
場合のビームの強度分布(a)と、試料上で得られる発
熱分布(b)を示したものである。この場合、固液界面
近辺での温度勾配はピーク列の数およびピークの高さ(
強度)により自由に制御することができる。
On the other hand, Figure 1 shows the energy beam intensity distribution (a) when the energy beam has an intensity distribution with multiple peaks in the scanning direction according to the method of the present invention, and the heat generation distribution obtained on the sample (b). This is what is shown. In this case, the temperature gradient near the solid-liquid interface is determined by the number of peak series and the peak height (
intensity).

また、上記の複数個の強度ピークを有するビームを走査
する前に、試料全体を−様な強度のビームで加熱してお
いてから、第1図(a)に示すような強度分布のビーム
で試料の溶融固化を行うことにより、さらに広い範囲で
固液界面近辺での温度勾配を変化させることができる。
In addition, before scanning the beam with the above-mentioned multiple intensity peaks, the entire sample is heated with a beam of -like intensity, and then a beam with an intensity distribution as shown in Figure 1 (a) is heated. By melting and solidifying the sample, the temperature gradient near the solid-liquid interface can be changed over a wider range.

[実施例] 以下、本発明の一実施例について詳細に説明する。[Example] Hereinafter, one embodiment of the present invention will be described in detail.

エネルギービームとしてビーム径が50Ij!nで、強
度分布がガウス分布の電子ビームを用い、まずこのビー
ムを試料のポリシリコン膜全体にわたり高速走査させて
、試料全体を加熱した。照射条件は、例えば加速電圧1
0kV、ビーム電流5mA、走査速度10Cm/SeC
とし、10秒間行った。次に、−走査方向に対する強度
分布が第3図に示すように3つの異なったピークを持つ
電子ビームを用いてポリシリコン膜の溶融再結晶化を行
った。ピークの高さ、即ち強度は一番大きいものを10
0%として30%、10%の順とした。ざらに走査方向
での3つのピーク間の距離は0.05mmとした。溶融
再結晶化条件としては加速電圧10kV、ビーム電流3
mA、走査速度2 cm/secとした。なお、第3図
のような強度分布の電子ビームは、電子ビーム装置の偏
向器に振幅およびパルス長の異なるパルスを印加するこ
とにより得られる。
The beam diameter is 50Ij as an energy beam! Using an electron beam with a Gaussian intensity distribution, the beam was first scanned at high speed over the entire polysilicon film of the sample to heat the entire sample. The irradiation conditions are, for example, acceleration voltage 1
0kV, beam current 5mA, scanning speed 10Cm/SeC
The test was carried out for 10 seconds. Next, the polysilicon film was melted and recrystallized using an electron beam whose intensity distribution in the -scanning direction had three different peaks as shown in FIG. The height of the peak, that is, the intensity, is the highest value of 10
0% was set as 30%, then 10%. The distance between the three peaks in the rough scanning direction was 0.05 mm. The melting and recrystallization conditions were an accelerating voltage of 10 kV and a beam current of 3.
mA and a scanning speed of 2 cm/sec. Note that an electron beam having an intensity distribution as shown in FIG. 3 can be obtained by applying pulses having different amplitudes and pulse lengths to a deflector of an electron beam device.

以上の条件でポリシリコン膜の溶融再結晶化を行った結
果、最適な温度勾配が得られ、良好な結晶性を有するS
OI膜を得ることができた。
As a result of melting and recrystallizing the polysilicon film under the above conditions, an optimal temperature gradient was obtained, and S with good crystallinity was obtained.
An OI film could be obtained.

なお、本実施例ではポリシリコン膜の再結晶化を行った
が、この代りにアモルファスシリコン膜でも同様の結果
が得られる。また、走査方向に対するビームの強度分布
として一番大きい強度のピークの片側にのみ複数のピー
クを配置したものを用いたが両側に配置してもよく、電
子ビームの代りにレーザビームを用いてもよい。
In this example, the polysilicon film was recrystallized, but similar results can be obtained by using an amorphous silicon film instead. In addition, although we used a beam intensity distribution in the scanning direction in which multiple peaks were placed only on one side of the largest intensity peak, they may be placed on both sides, and a laser beam may be used instead of an electron beam. good.

[発明の効果] 以上説明したように、本発明のSOI結晶の形成方法に
よれば固液界面近辺の温度勾配を適切にコントロールす
ることができ、その結果、良好な結晶性を有するSOI
膜を得ることができる。したがってこのSOI結晶をデ
バイス形成のための基板として用いることにより、従来
のSOIデバイスに比較し、良好な特性を有するデバイ
スを1昇ることができる。
[Effects of the Invention] As explained above, according to the method for forming SOI crystals of the present invention, the temperature gradient near the solid-liquid interface can be appropriately controlled, and as a result, SOI crystals with good crystallinity can be produced.
membrane can be obtained. Therefore, by using this SOI crystal as a substrate for forming a device, it is possible to create a device with better characteristics than conventional SOI devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いられるエネルギービームの一例の
走査方向に対するビーム強度分布および試料表面の温度
分布を示す図、第2図は従来のSOI結晶の形成方法で
用いられるエネルギービームのビーム強度分布および試
料表面の温度分布を示す図、第3図は本発明の一実施例
で用いられる電子ビームの走査方向に対するビーム強度
分布を示す図である。
Fig. 1 shows the beam intensity distribution in the scanning direction of an example of the energy beam used in the present invention and the temperature distribution on the sample surface, and Fig. 2 shows the beam intensity distribution of the energy beam used in the conventional SOI crystal formation method. FIG. 3 is a diagram showing the temperature distribution on the sample surface, and FIG. 3 is a diagram showing the beam intensity distribution in the scanning direction of the electron beam used in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリシリコン膜あるいはアモルファスシリコン膜
の溶融固化を行って単結晶化されたSOI膜を形成する
方法において、エネルギービームの走査方向に対して、
その強度分布が複数個のピークを有するようなエネルギ
ービームを照射する工程を備えてなることを特徴とする
SOI結晶の形成方法。
(1) In a method of forming a single crystal SOI film by melting and solidifying a polysilicon film or an amorphous silicon film, with respect to the scanning direction of the energy beam,
A method for forming an SOI crystal, comprising the step of irradiating an energy beam whose intensity distribution has a plurality of peaks.
JP8820788A 1988-04-12 1988-04-12 Formation of soi crystal Pending JPH01260811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8820788A JPH01260811A (en) 1988-04-12 1988-04-12 Formation of soi crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8820788A JPH01260811A (en) 1988-04-12 1988-04-12 Formation of soi crystal

Publications (1)

Publication Number Publication Date
JPH01260811A true JPH01260811A (en) 1989-10-18

Family

ID=13936458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8820788A Pending JPH01260811A (en) 1988-04-12 1988-04-12 Formation of soi crystal

Country Status (1)

Country Link
JP (1) JPH01260811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517774B2 (en) 1995-02-02 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517774B2 (en) 1995-02-02 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7939435B2 (en) * 1995-02-02 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method

Similar Documents

Publication Publication Date Title
US7679028B2 (en) Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidification
US6169014B1 (en) Laser crystallization of thin films
US7759230B2 (en) System for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts in overlap regions, and a mask for facilitating such artifact reduction/elimination
EP1181715A1 (en) Method and system for providing a continuous motion sequential lateral solidification
JPH01260811A (en) Formation of soi crystal
JPH0136688B2 (en)
JPH05152313A (en) Method and device for excimer laser annealing
JP2714109B2 (en) Crystal film manufacturing method
JPH04196411A (en) Formation of polycrystalline silicon film
JPH0136970B2 (en)
JPS60153114A (en) Forming method for single crystal semiconductor layer
JPS60191090A (en) Manufacture of semiconductor device
JPH01103824A (en) Laser annealing process
JPH065538A (en) Method for annealing semiconductor layer
JPH0834179B2 (en) Method for forming semiconductor single crystal thin film
JPH0360018A (en) Manufacture of crystalline silicon
JPH02101735A (en) Manufacture of semiconductor single crystal layer
JPS6221789A (en) Recrystallization
JPS6265410A (en) Formation of single crystal thin film
JPH0241899B2 (en)
JPS58116719A (en) Preparation of semiconductor device
JPH027417A (en) Formation of soi film
JPS61171135A (en) Plasma etching device
JPS62250631A (en) Manufacture of semiconductor thin-film crystal layer
JPH04294522A (en) Formation of single crystal semiconductor film