JPH04294522A - Formation of single crystal semiconductor film - Google Patents

Formation of single crystal semiconductor film

Info

Publication number
JPH04294522A
JPH04294522A JP8346591A JP8346591A JPH04294522A JP H04294522 A JPH04294522 A JP H04294522A JP 8346591 A JP8346591 A JP 8346591A JP 8346591 A JP8346591 A JP 8346591A JP H04294522 A JPH04294522 A JP H04294522A
Authority
JP
Japan
Prior art keywords
film
single crystal
silicon film
insulating film
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8346591A
Other languages
Japanese (ja)
Inventor
Shigeru Kanbayashi
神林 茂
Masahito Kenmochi
劒持 雅人
Shinji Onga
恩賀 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8346591A priority Critical patent/JPH04294522A/en
Publication of JPH04294522A publication Critical patent/JPH04294522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality single crystal semiconductor film. CONSTITUTION:This single crystal semiconductor film forming method contains a process for forming an insulating film 21 of silicon dioxide having a plurality of openings 27 at intervals which are five or more times longer than the film thickness of the first silicon dioxide film 17 from the plurality of openings 25 of the film 17 on a single crystal silicon film 19 formed on the film 17 having the openings 25, process for forming a polycrystalline silicon film on the second silicon dioxide film, and process for transforming the polycrystalline silicon into single crystals by irradiating the polycrystalline silicon film with an energy beam.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、単結晶半導体膜の形成
方法に係り、特にエネルギ−ビ−ムにより非単結晶シリ
コンを溶融,再結晶化させて単結晶シリコン膜を形成す
る単結晶シリコン膜の形成方法の改良に関する。
[Industrial Application Field] The present invention relates to a method for forming a single crystal semiconductor film, and in particular to a method for forming a single crystal semiconductor film, in which a single crystal silicon film is formed by melting and recrystallizing non-single crystal silicon using an energy beam. This invention relates to improvements in film formation methods.

【0002】0002

【従来の技術】従来より単結晶シリコン膜の形成方法と
して、シリコン基板上に開口部が設けられた絶縁膜とな
る二酸化シリコン膜を介して堆積された多結晶シリコン
膜にエネルギ−ビ−ムを照射して融解,再結晶化し、シ
リコン基板を種結晶として横方向エピタキシャル結晶成
長を行なわせて単結晶シリコン膜を形成する方法が用い
られている。
[Prior Art] Conventionally, as a method for forming a single crystal silicon film, an energy beam is applied to a polycrystalline silicon film deposited through a silicon dioxide film, which serves as an insulating film, with an opening provided on a silicon substrate. A method is used in which a single crystal silicon film is formed by irradiating, melting, recrystallizing, and performing lateral epitaxial crystal growth using a silicon substrate as a seed crystal.

【0003】ところで対流により多結晶シリコン膜の表
面から放出する熱量は、多結晶シリコン膜からシリコン
基板に流出する熱量に比べて非常に少ない。特にエネル
ギ−ビ−ムとして電子ビ−ムを用いる場合、多結晶シリ
コン膜は真空中で加熱されるで対流により熱流出がなく
なる。
By the way, the amount of heat released from the surface of the polycrystalline silicon film due to convection is very small compared to the amount of heat flowing from the polycrystalline silicon film to the silicon substrate. Particularly when an electron beam is used as the energy beam, the polycrystalline silicon film is heated in a vacuum, and no heat flows out due to convection.

【0004】また、シリコンの熱伝導率は二酸化シリコ
ンのそれより一桁程度大きいので二酸化シリコン膜の開
口部を通じてシリコン基板へ流出する熱量は二酸化シリ
コン膜を介してシリコン基板へ流出する熱量よりはるか
に大きい。その結果、開口部の温度がその周辺部の温度
より下がり、多結晶シリコン膜を均一に加熱し溶融させ
ることが困難になる。
Furthermore, since the thermal conductivity of silicon is about an order of magnitude higher than that of silicon dioxide, the amount of heat that flows into the silicon substrate through the opening in the silicon dioxide film is far greater than the amount of heat that flows into the silicon substrate through the silicon dioxide film. big. As a result, the temperature of the opening becomes lower than the temperature of the surrounding area, making it difficult to uniformly heat and melt the polycrystalline silicon film.

【0005】そこで、図1に示すように、多結晶シリコ
ン膜の熱損失量の均一性を確保するため、二酸化シリコ
ン膜3の膜厚を徐々に薄くしてテ−パをつけた開口部を
形成し多結晶シリコン膜5とシリコン基板1との界面に
熱を供給しやすくすると共に、多結晶シリコン膜5とシ
リコン基板1との接触部分の面積を小さくして種結晶部
2から流出する熱量を抑制する方法(T.Hamasa
ki  etal.,J.Appl.Phys.62(
1987)p.126)が報告されている。
Therefore, as shown in FIG. 1, in order to ensure uniformity in the amount of heat loss in the polycrystalline silicon film, the thickness of the silicon dioxide film 3 is gradually thinned to form a tapered opening. In addition to making it easier to supply heat to the interface between the polycrystalline silicon film 5 and the silicon substrate 1, the area of the contact portion between the polycrystalline silicon film 5 and the silicon substrate 1 is reduced to reduce the amount of heat flowing out from the seed crystal part 2. (T. Hamasa
ki et al. , J. Appl. Phys. 62(
1987) p. 126) has been reported.

【0006】しかしながら、このような複雑な開口部を
有する二酸化シリコン膜3を得るには最低でも3枚のマ
スクを用いる必要があるため、工程数,作製時間,コス
トの点で問題が生じる。
However, in order to obtain the silicon dioxide film 3 having such a complicated opening, it is necessary to use at least three masks, which causes problems in terms of the number of steps, manufacturing time, and cost.

【0007】また、開口部が先に説明したものより広く
なるので素子形成領域が狭くなるという問題もある。
[0007] Furthermore, since the opening is wider than the one described above, there is also the problem that the element forming area becomes narrower.

【0008】更にまた、開口部の面積はリソグラフィ−
技術の限界以上には小さくできないため、開口部の面積
を種結晶部2が溶融するのに最適な大きさにすることは
できるが、開口部の面積はリソグラフィ−技術の限界以
上には小さくできないため、他の部分の多結晶シリコン
膜5が必要以上に加熱されないように開口部の面積を小
さくすることはできない。その結果、多結晶シリコン膜
5の溶融の際に多結晶シリコン膜5中に二酸化シリコン
膜3からの酸素等の不純物が混入して結晶欠陥が生じ膜
質が劣化するという問題があった。また、熱損失量の均
一性を確保するため、多結晶シリコン膜と下層の単結晶
シリコン膜との接触をできるだけ小さくし、開口部の面
積を小さくすると、多結晶シリコン膜が溶融しなくなる
という問題もある。
Furthermore, the area of the opening can be determined by lithography.
Since it cannot be made smaller beyond the limits of technology, it is possible to make the area of the opening an optimal size for melting the seed crystal part 2, but the area of the opening cannot be made smaller than the limits of lithography technology. Therefore, the area of the opening cannot be reduced so that other parts of the polycrystalline silicon film 5 are not heated more than necessary. As a result, when the polycrystalline silicon film 5 is melted, impurities such as oxygen from the silicon dioxide film 3 are mixed into the polycrystalline silicon film 5, causing crystal defects and deteriorating the film quality. In addition, in order to ensure uniformity of heat loss, the contact between the polycrystalline silicon film and the underlying single-crystalline silicon film is made as small as possible, and the area of the opening is reduced, which causes the problem that the polycrystalline silicon film does not melt. There is also.

【0009】また、このような方法を用いて多層の単結
晶シリコン膜を形成するには、図2に示すように、多結
晶シリコン膜5をエネルギ−ビ−ムで加熱して単結晶シ
リコン膜6を形成した後、この単結晶シリコン膜6上に
図1と同様に二酸化シリコン膜7,多結晶シリコン膜9
を形成する。この場合も、種結晶部10を介してシリコ
ン基板1に熱を流出させ、その熱量を多結晶シリコン膜
9と単結晶シリコン膜6との接触面積,開口部の形状に
より調整しているので単層の単結晶シリコン膜の場合と
同様な問題が生じる。
Furthermore, in order to form a multilayer single crystal silicon film using such a method, as shown in FIG. 6, a silicon dioxide film 7 and a polycrystalline silicon film 9 are formed on this single crystal silicon film 6 in the same manner as in FIG.
form. In this case as well, heat flows out to the silicon substrate 1 through the seed crystal part 10, and the amount of heat is adjusted by the contact area between the polycrystalline silicon film 9 and the single crystal silicon film 6 and the shape of the opening. Similar problems arise as in the case of monocrystalline silicon films.

【0010】0010

【発明が解決しようとする課題】上述の如く従来の単結
晶シリコン膜の形成方法では、溶融しているシリコン多
結晶シリコン膜の熱を所定どおりに逃がすのが困難であ
った。その結果、多結晶シリコン膜が溶融しなかったり
、または必要以上に加熱されたりして高品質の単結晶シ
リコン膜を得られないという問題があった。
SUMMARY OF THE INVENTION As described above, in the conventional method of forming a single crystal silicon film, it is difficult to dissipate heat from a molten polycrystalline silicon film in a predetermined manner. As a result, there is a problem in that the polycrystalline silicon film is not melted or is heated more than necessary, making it impossible to obtain a high-quality single-crystalline silicon film.

【0011】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、高品質の単結晶膜を得
ることできる単結晶半導体膜の形成方法を提供すること
にある。
The present invention has been made in consideration of the above circumstances, and its object is to provide a method for forming a single crystal semiconductor film that can obtain a high quality single crystal film.

【0012】0012

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の単結晶半導体膜の形成方法は、複数の開
口部を有する第1の絶縁膜上に形成された単結晶半導体
膜上に、前記第1の絶縁膜の複数の開口部との間隔が前
記第1の絶縁膜の膜厚の5倍以上となる複数の開口部を
有する第2の絶縁膜を形成する工程と、前記第2の絶縁
膜上に非単結晶半導体膜を形成する工程と、エネルギ−
ビ−ムを照射して前記非単結晶半導体膜を単結晶化する
工程とを備えたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for forming a single crystal semiconductor film of the present invention includes a single crystal semiconductor film formed on a first insulating film having a plurality of openings. forming a second insulating film having a plurality of openings whose distance from the plurality of openings of the first insulating film is five times or more the thickness of the first insulating film; A step of forming a non-single crystal semiconductor film on the second insulating film, and an energy
The method is characterized by comprising a step of irradiating the non-single crystal semiconductor film with a beam to single crystallize the non-single crystal semiconductor film.

【0013】また、本発明の他の単結晶半導体膜の形成
方法は、単結晶半導体膜上に絶縁膜を形成する工程と、
前記絶縁膜に開口部の間隔が、前記絶縁膜の膜厚の1倍
以上20倍以下となる複数の開口部を形成する工程と、
前記絶縁膜上に非単結晶半導体膜を形成する工程と、エ
ネルギ−ビ−ムを照射して前記非単結晶半導体膜を単結
晶化する工程とを備えたことを特徴とする。
Another method of forming a single crystal semiconductor film according to the present invention includes the steps of forming an insulating film on the single crystal semiconductor film;
forming a plurality of openings in the insulating film at intervals of 1 to 20 times the thickness of the insulating film;
The method is characterized by comprising a step of forming a non-single crystal semiconductor film on the insulating film, and a step of irradiating the non-single crystal semiconductor film with an energy beam to make the non-single crystal semiconductor film into a single crystal.

【0014】[0014]

【作用】本発明の単結晶半導体膜の形成方法では、エネ
ルギ−ビ−ムで溶融された非単結晶半導体膜は、第2の
絶縁膜上に設けられた開口部を介して熱を逃がす。非単
結晶半導体膜がその開口部を介して流出する熱量は、第
1の絶縁膜の開口部と第2の絶縁膜の開口部との間隔に
依存する。即ち、間隔が狭いほど流出する熱量は多くな
り、間隔が広いほど流出する熱量は少なくなる。このと
き、第1の絶縁膜の開口部と第2の絶縁膜の開口部との
間隔が第2の絶縁膜の膜厚の5倍以上離れていると、第
2の絶縁膜の開口部を介して熱が必要以上に流出するの
防止でき、非単結晶半導体膜を容易に溶融することがで
きる。
In the method for forming a single crystal semiconductor film of the present invention, the non-single crystal semiconductor film melted by the energy beam releases heat through the opening provided on the second insulating film. The amount of heat flowing out of the non-single crystal semiconductor film through its opening depends on the distance between the opening in the first insulating film and the opening in the second insulating film. That is, the narrower the interval, the more heat will flow out, and the wider the interval, the less heat will flow out. At this time, if the distance between the opening in the first insulating film and the opening in the second insulating film is five times or more the thickness of the second insulating film, the opening in the second insulating film is It is possible to prevent heat from flowing out more than necessary through the film, and it is possible to easily melt the non-single crystal semiconductor film.

【0015】なお、種結晶部の形成は、絶縁膜の堆積、
穴開け、非単結晶半導体膜堆積という単純な工程で済み
ので一枚のマスクで単結晶半導体膜を一層積み重ねるこ
とができ、形成工程が簡略する。
[0015] The seed crystal portion is formed by depositing an insulating film,
Since the simple steps of drilling a hole and depositing a non-single crystal semiconductor film are sufficient, one layer of single crystal semiconductor films can be stacked using a single mask, simplifying the formation process.

【0016】また、第2の絶縁膜の開口部の間隔をこの
第2の絶縁膜の膜厚の1倍未満にすると、隣接する開口
部が1つの開口部として機能し、開口部周辺部の温度が
低下し、非単結晶半導体膜の溶融が進まなくなる。また
、開口部の間隔を第2の絶縁膜の膜厚の20倍より大き
くすると、熱が逃げ難くなり非単結晶半導体膜が必要以
上に加熱され、結晶欠陥が生じる。
Furthermore, if the interval between the openings of the second insulating film is made less than one time the thickness of the second insulating film, the adjacent openings will function as one opening, and the area around the opening will be The temperature decreases, and melting of the non-single crystal semiconductor film stops progressing. Furthermore, if the interval between the openings is made larger than 20 times the thickness of the second insulating film, it becomes difficult for heat to escape, and the non-single crystal semiconductor film is heated more than necessary, resulting in crystal defects.

【0017】したがって、第2の絶縁膜の開口部の間隔
をこの第2の絶縁膜の膜厚の1倍以上20倍以下にする
ことで良質な単結晶半導体膜を得ることができる。
[0017] Therefore, by setting the interval between the openings of the second insulating film to 1 to 20 times the thickness of the second insulating film, a high-quality single crystal semiconductor film can be obtained.

【0018】[0018]

【実施例】以下、図面を参照しながら実施例を説明する
Embodiments Hereinafter, embodiments will be described with reference to the drawings.

【0019】図3は本発明の一実施例に係る単結晶シリ
コン膜の形成方法を示す図である。これを形成工程に従
い説明すると、最初、(100)方位の単結晶シリコン
基板11上にCVD法を用いて絶縁膜となる厚さ約2.
0μmの二酸化シリコン膜13を堆積する。次いで種結
晶部を形成するために二酸化シリコン膜13の所望の位
置にテ−パ状の開口部13aを設ける。
FIG. 3 is a diagram showing a method for forming a single crystal silicon film according to an embodiment of the present invention. To explain this according to the formation process, first, a CVD method is used on a (100) oriented single crystal silicon substrate 11 to form an insulating film with a thickness of about 2.5 mm.
A 0 μm silicon dioxide film 13 is deposited. Next, a tapered opening 13a is provided at a desired position in the silicon dioxide film 13 to form a seed crystal portion.

【0020】次に二酸化シリコン膜13上にシラン(S
iH4 )の熱分解を用いたCVD法により厚さ約0.
8μmの多結晶シリコン膜を開口部13aを埋め込むよ
うに堆積した後、エネルギ−ビ−ムでこの多結晶シリコ
ン膜を溶融,再結晶化して単結晶シリコン膜15を形成
する。
Next, silane (S) is applied on the silicon dioxide film 13.
The thickness is about 0.0mm by CVD method using thermal decomposition of iH4).
After a polycrystalline silicon film of 8 .mu.m is deposited to fill the opening 13a, the polycrystalline silicon film is melted and recrystallized using an energy beam to form a single crystal silicon film 15.

【0021】次に単結晶シリコン膜15上にCVD法を
用いて厚さ約2.0μmの二酸化シリコン膜17を堆積
した後、この二酸化シリコン膜17上にフォトレジスト
パタ−ンを形成し、これをマスクにRIE(反応性イオ
ンエッチング)を用いて直径1μm、深さ2μmの円柱
状の開口部25を種結晶部12から10μm離れた位置
に形成する。
Next, a silicon dioxide film 17 having a thickness of about 2.0 μm is deposited on the single crystal silicon film 15 using the CVD method, and then a photoresist pattern is formed on this silicon dioxide film 17. Using RIE (reactive ion etching) as a mask, a cylindrical opening 25 with a diameter of 1 μm and a depth of 2 μm is formed at a position 10 μm away from the seed crystal portion 12.

【0022】次に開口部25が設けられた二酸化シリコ
ン膜17上にCVD法を用いて厚さ約0.8μmの多結
晶シリコン膜を開口部25を埋め込むように堆積した後
、この多結晶シリコン膜にエネルギ−ビ−ムを照射して
単結晶シリコン膜19を形成する。
Next, a polycrystalline silicon film having a thickness of about 0.8 μm is deposited on the silicon dioxide film 17 provided with the opening 25 using the CVD method so as to fill the opening 25, and then this polycrystalline silicon film is deposited using the CVD method so as to fill the opening 25. A single crystal silicon film 19 is formed by irradiating the film with an energy beam.

【0023】次に単結晶シリコン膜19上に厚さ2.0
μmの二酸化シリコン膜21を堆積した後、開口部25
との間隔L2 が10μm(二酸化シリコン膜17,2
1の膜厚tの5倍)の開口部27を形成する。なお、同
一二酸化シリコン膜上における開口部の間隔L1 は開
口部25,27ともに15μm(二酸化シリコン膜17
,21の膜厚tの7.5倍)となるように形成した。次
いでこの開口部27が設けられた二酸化シリコン膜21
上に厚さ約0.8μmの多結晶シリコン膜を開口部27
を埋め込むように形成し、この多結晶シリコン膜にエネ
ルギ−ビ−ムを照射して単結晶シリコン膜23を形成す
る。
Next, a film with a thickness of 2.0 mm is deposited on the single crystal silicon film 19.
After depositing the silicon dioxide film 21 with a thickness of μm, the opening 25
The distance L2 between the silicon dioxide films 17 and 2 is 10 μm.
An opening 27 having a thickness 5 times the film thickness t of 1 is formed. Note that the interval L1 between the openings on the same silicon dioxide film is 15 μm for both the openings 25 and 27 (silicon dioxide film 17
, 21). Next, the silicon dioxide film 21 provided with this opening 27 is
A polycrystalline silicon film with a thickness of about 0.8 μm is placed on top of the opening 27.
A single crystal silicon film 23 is formed by irradiating this polycrystalline silicon film with an energy beam.

【0024】このように開口部25と開口部27との間
隔を二酸化シリコン膜17,21の膜厚tの5倍にする
と、開口部25,27から必要以上の熱が多結晶シリコ
ン膜15,23から逃げるのを防止できる。更に、同一
二酸化シリコン膜上の開口部の間隔をその二酸化シリコ
ン膜の膜厚の7.5倍にすることで開口部同士の間の熱
の流れと上下のシリコン膜の熱の流とが適当な関係にな
るので温度制御を良好に行うことができ、良質な単結晶
シリコン膜を得ることができた。即ち、熱が各開口部に
沿ってのみ流れるようにすることができた。
If the distance between the openings 25 and 27 is made five times the film thickness t of the silicon dioxide films 17 and 21 as described above, more heat than necessary is transferred from the openings 25 and 27 to the polycrystalline silicon films 15 and 27. It can prevent you from running away from 23. Furthermore, by making the spacing between the openings on the same silicon dioxide film 7.5 times the film thickness of the silicon dioxide film, the heat flow between the openings and the upper and lower silicon films can be adjusted appropriately. Because of this relationship, temperature control could be performed well and a high quality single crystal silicon film could be obtained. That is, heat could be made to flow only along each opening.

【0025】以下、同様な工程を繰り返すことで必要枚
数の単結晶シリコン膜を得ることができる。
[0025] Thereafter, by repeating the same steps, the required number of single crystal silicon films can be obtained.

【0026】図4は本発明の他の実施例に係る単結晶シ
リコン膜の形成方法を示す図である。また、図5は図4
に示されている試料基板を上方から見たものである。
FIG. 4 is a diagram showing a method of forming a single crystal silicon film according to another embodiment of the present invention. Also, Figure 5 is Figure 4
This is a top view of the sample substrate shown in .

【0027】先ず、半導体基板29上の素子分離用絶縁
膜31で区分された素子形成領域にソ−ス・ドレイン3
3を形成した後、ゲ−ト電極35,厚さ約0.5μmの
ゲ−ト絶縁膜37を形成する。更に層間絶縁膜38を形
成する。
First, a source/drain 3 is formed in an element formation region divided by an element isolation insulating film 31 on a semiconductor substrate 29.
3, a gate electrode 35 and a gate insulating film 37 having a thickness of about 0.5 μm are formed. Furthermore, an interlayer insulating film 38 is formed.

【0028】次に層間絶縁膜38に直径1μmの円柱状
の開口部を形成した後、層間絶縁膜38上に厚さ約0.
8μmの多結晶シリコン膜を前記開口部を埋め込むよう
に堆積し、所定の形状にエッチングする。なお、層間絶
縁膜38の開口部の間隔L1 が層間絶縁膜38の膜厚
の1倍以上20倍以下になるようにした。次いで後述す
る走査方法を用いて電子ビ−ムを、図中、43で示され
るように、層間絶縁膜38の開口部周辺部に限定して照
射して多結晶シリコン膜を溶融,再結晶化して単結晶シ
リコン膜39を形成する。
Next, after forming a cylindrical opening with a diameter of 1 .mu.m in the interlayer insulating film 38, a cylindrical opening with a thickness of about 0.0 mm is formed on the interlayer insulating film 38.
A polycrystalline silicon film of 8 μm is deposited to fill the opening and etched into a predetermined shape. Note that the interval L1 between the openings of the interlayer insulating film 38 was set to be 1 to 20 times the thickness of the interlayer insulating film 38. Next, using a scanning method to be described later, an electron beam is irradiated only to the area around the opening of the interlayer insulating film 38, as indicated by 43 in the figure, to melt and recrystallize the polycrystalline silicon film. A single crystal silicon film 39 is then formed.

【0029】次に単結晶シリコン膜39が形成された層
間絶縁膜38上に厚さ約1.5μmの絶縁膜40を堆積
した後、この絶縁膜40に直径1μmの円柱状の開口部
を形成する。なお、絶縁膜40の開口部の間隔は絶縁膜
40の膜厚の1倍以上20倍以下になるようにし、且つ
層間絶縁膜38の開口部との間隔L2がこの絶縁膜40
の膜厚の5倍以上になるようにした。
Next, an insulating film 40 with a thickness of about 1.5 μm is deposited on the interlayer insulating film 38 on which the single crystal silicon film 39 has been formed, and then a cylindrical opening with a diameter of 1 μm is formed in this insulating film 40. do. Note that the distance between the openings of the insulating film 40 is set to be between 1 and 20 times the thickness of the insulating film 40, and the distance L2 between the openings of the interlayer insulating film 38 is set so that the distance between the openings of the insulating film 40
The film thickness was set to be five times or more than the film thickness of .

【0030】次に絶縁膜40上に厚さ約0.8μmの多
結晶シリコン膜を前記開口部を埋め込むように形成した
後、図中、45で示されるように、素子を形成する領域
に電子ビ−ムを走査して単結晶シリコン膜41を形成す
る。
Next, a polycrystalline silicon film with a thickness of about 0.8 μm is formed on the insulating film 40 so as to fill the opening, and then electrons are deposited in the region where the element will be formed, as shown by 45 in the figure. A single crystal silicon film 41 is formed by scanning the beam.

【0031】以下、同様な工程を繰り返すことで必要枚
数の単結晶シリコン膜を得ることができる。
[0031] Thereafter, by repeating the same steps, the required number of single crystal silicon films can be obtained.

【0032】次に図6を用いて本実施例における電子ビ
−ムの走査方法を説明する。
Next, the electron beam scanning method in this embodiment will be explained using FIG.

【0033】これはT.Hamasaki  et  
al.,J.Appl.Phys.59(1986)2
971.に報告されているもので、スポット状の電子ビ
ームを高速偏向させて照射面積を制御する方法である。
This is T. Hamasaki et
al. , J. Appl. Phys. 59 (1986) 2
971. This is a method that controls the irradiation area by deflecting a spot-shaped electron beam at high speed.

【0034】ビ−ム光源47から出射した半値幅150
μmのスポットビ−ム49を発振器51で板間電圧が制
御される偏向板53により、X方向に偏向して線状化し
た電子ビ−ム55を生成する。このとき、図7に示すよ
うに、周波数36MHzの正弦波59を周波数100k
Hzの変調波61で振幅変調をした板間電圧を偏向板5
3に印加する。また、電子ビ−ムのX方向の長さが約5
mmとなるべく制御した。
Half width 150 emitted from beam light source 47
A spot beam 49 of .mu.m is deflected in the X direction by a deflection plate 53 whose plate-to-plate voltage is controlled by an oscillator 51 to generate a linearized electron beam 55. At this time, as shown in FIG. 7, the sine wave 59 with a frequency of 36 MHz is
The plate-to-plate voltage is amplitude-modulated with a Hz modulated wave 61 and is applied to the deflection plate 5.
3. Also, the length of the electron beam in the X direction is approximately 5
It was controlled as much as possible.

【0035】次にビ−ム加速電圧10kV,ビ−ム電流
32mAの条件で電子ビ−ム55を例えばコイル等から
なる磁場発生器(不図示)で発生した磁場により速度1
00mm/sでY方向(X方向に垂直な方向)に走査し
試料基板57を加熱し、再結晶化を行なう。
Next, under the conditions of a beam acceleration voltage of 10 kV and a beam current of 32 mA, the electron beam 55 is accelerated at a speed of 1 by a magnetic field generated by a magnetic field generator (not shown) comprising, for example, a coil.
The sample substrate 57 is heated by scanning in the Y direction (direction perpendicular to the X direction) at 00 mm/s to perform recrystallization.

【0036】図8は本実施例の方法を用いて図4に示し
た単結晶シリコン膜41となる上部多結晶シリコン膜を
再結晶化したときの種結晶部(絶縁膜の開口部)からの
距離と上部多結晶シリコン膜の熱履歴の最高温度,単結
晶シリコン膜39の熱履歴の最高温度との関係を示す図
である。図中、実線63は単結晶シリコン膜39の最高
温度,実線67は上部多結晶シリコン膜の最高温度をあ
らわしている。
FIG. 8 shows a graph showing the flow from the seed crystal portion (opening in the insulating film) when the upper polycrystalline silicon film, which becomes the single crystal silicon film 41 shown in FIG. 4, is recrystallized using the method of this embodiment. 3 is a diagram showing the relationship between the distance, the maximum temperature of the thermal history of the upper polycrystalline silicon film, and the maximum temperature of the thermal history of the single crystal silicon film 39. FIG. In the figure, a solid line 63 represents the maximum temperature of the single crystal silicon film 39, and a solid line 67 represents the maximum temperature of the upper polycrystalline silicon film.

【0037】なお、比較のために図2に示した従来の方
法を用いて単結晶シリコン膜9となる上部多結晶シリコ
ン膜を再結晶化したときのシリコン膜の熱履歴の最高温
度についても調べた。図8中、破線65は単結晶シリコ
ン膜6の最高温度,破線69は上部多結晶シリコン膜の
最高温度を示している。
For comparison, we also investigated the maximum temperature of the thermal history of the silicon film when the upper polycrystalline silicon film, which will become the single crystal silicon film 9, was recrystallized using the conventional method shown in FIG. Ta. In FIG. 8, a broken line 65 indicates the maximum temperature of the single crystal silicon film 6, and a broken line 69 indicates the maximum temperature of the upper polycrystalline silicon film.

【0038】この図から分かるように、従来の方法では
単結晶化される上部多結晶シリコン膜は種結晶部で熱が
下方の膜等に奪われるため、そこでの最高温度はシリコ
ンの融点温度(1414℃)以下になり、種結晶部から
離れたところでは単結晶化を進める際にビ−ムエネルギ
−で予熱されるためオ−バ−ヒ−トする。また、単結晶
シリコン膜6は種結晶部を介して上部多結晶シリコン膜
の熱が流入するので種結晶部での最高温度はシリコンの
融点を越えている。これは膜質の劣化を引き起こす原因
となる。
As can be seen from this figure, in the conventional method, the upper polycrystalline silicon film that is made into a single crystal loses heat to the lower film etc. at the seed crystal part, so the maximum temperature there is equal to the melting point temperature of silicon ( 1414 DEG C.), and areas away from the seed crystal part are overheated because they are preheated by beam energy during single crystallization. Further, since the heat of the upper polycrystalline silicon film flows into the single crystal silicon film 6 through the seed crystal portion, the maximum temperature at the seed crystal portion exceeds the melting point of silicon. This causes deterioration of film quality.

【0039】一方、本実施例の場合、上述した関係に開
口部を形成しているため、種結晶部が溶融するのに最適
な照射エネルギ−密度を有する電子ビ−ムを照射しても
上部多結晶シリコン膜は種結晶部で熱が下方の膜等に奪
われることもないし、素子を形成する領域がオ−バ−ヒ
−トすることもないので上部多結晶シリコン膜の最高温
度は略一定になる。同様な理由で単結晶シリコン膜39
も1000℃以下に保たれている。
On the other hand, in the case of this embodiment, since the opening is formed in the above-mentioned relationship, even if the seed crystal part is irradiated with an electron beam having an optimum irradiation energy density for melting, the upper The maximum temperature of the upper polycrystalline silicon film is approximately 100% because the seed crystal part of the polycrystalline silicon film does not lose heat to the lower film, etc., and the region where the element is formed does not overheat. becomes constant. For the same reason, single crystal silicon film 39
The temperature is also kept below 1000℃.

【0040】図9は上述した方法で形成した単結晶シリ
コン膜中の酸素濃度と溶融しているシリコン膜の温度と
の関係を示す測定結果である。なお、酸素濃度はSIM
S分析法を用いて測定し、温度は光温度計を用いて測定
した。
FIG. 9 shows measurement results showing the relationship between the oxygen concentration in the single crystal silicon film formed by the method described above and the temperature of the molten silicon film. In addition, the oxygen concentration is SIM
The temperature was measured using a photothermometer.

【0041】単結晶シリコン膜中に酸素が混入したのは
、その下に形成された絶縁膜である二酸化シリコン膜の
酸素が拡散したからだと考えられる。
[0041] The reason why oxygen got mixed into the single-crystal silicon film is thought to be because oxygen diffused into the silicon dioxide film, which is an insulating film formed therebelow.

【0042】この図から分かるようにシリコン膜の温度
がシリコンの融点(1414℃)より150℃程オ−バ
−ヒ−トしただけで酸素混入量が4倍になっている。し
たがって本実施例の方法を用いてオーバーヒートを防止
すれば酸素の混入量が十分小さい単結晶シリコン膜を得
ることができる。
As can be seen from this figure, when the temperature of the silicon film exceeds the melting point of silicon (1414.degree. C.) by only about 150.degree. C., the amount of oxygen mixed in increases four times. Therefore, if overheating is prevented using the method of this embodiment, a single crystal silicon film with a sufficiently small amount of oxygen mixed in can be obtained.

【0043】また、このようにして得られた上方の単結
晶シリコン膜を用いてn型のMOSトランジスタを形成
しその移動度を調べたところ、その値は550cm2 
/V・sとなり良好な結果が得られた。一方、従来の方
法を用いて形成したn型のMOSトランジスタの移動度
の値は、酸素混入などの影響で320cm2 /V・s
程度にしかならなかった。
[0043] Furthermore, when an n-type MOS transistor was formed using the upper single crystal silicon film obtained in this way and its mobility was investigated, the value was 550 cm2.
/V·s, and a good result was obtained. On the other hand, the mobility value of an n-type MOS transistor formed using the conventional method is 320 cm2 /V・s due to the influence of oxygen contamination.
It was only a moderate amount.

【0044】また、第2図に示したような従来法で得ら
れた下方の単結晶シリコン膜に素子を形成した場合も、
しきい値の変化など特性の劣化がみられたが、本実施例
で得られた下方の単結晶シリコン膜を用いた場合にはそ
のような特性劣化がみられなかった。
Furthermore, when an element is formed on the lower single-crystal silicon film obtained by the conventional method as shown in FIG.
Although deterioration of characteristics such as a change in threshold value was observed, such deterioration of characteristics was not observed when the lower single crystal silicon film obtained in this example was used.

【0045】なお、本発明は上述した実施例に限定され
るものではない。上記実施例では多結晶シリコン膜の場
合について説明したが、多結晶シリコン膜の代わりにア
モルファスシリコン膜を用いても同様の効果が得られる
Note that the present invention is not limited to the embodiments described above. In the above embodiment, the case of using a polycrystalline silicon film has been described, but similar effects can be obtained even if an amorphous silicon film is used instead of the polycrystalline silicon film.

【0046】また、開口部の形状を円柱としたが、他の
形状、例えば、多角形にしても同様な効果が得られる。 その他、本発明の要旨を逸脱しない範囲で、種々変形し
て実施できる。
Furthermore, although the shape of the opening is cylindrical, similar effects can be obtained by using other shapes, such as polygons. In addition, various modifications can be made without departing from the gist of the present invention.

【0047】[0047]

【発明の効果】以上述べたように本発明の単結晶半導体
膜の形成方法によれば、開口部を介して適量の熱を非単
結晶膜から逃がすことができるので高品質な単結晶膜を
得ることができる。
As described above, according to the method for forming a single crystal semiconductor film of the present invention, an appropriate amount of heat can be released from a non-single crystal film through the opening, so that a high quality single crystal film can be formed. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】従来の単層の単結晶シリコン膜の形成方法を説
明するための図。
FIG. 1 is a diagram for explaining a conventional method for forming a single-layer single-crystal silicon film.

【図2】従来の多層の単結晶シリコン膜の形成方法を説
明するための図。
FIG. 2 is a diagram for explaining a conventional method for forming a multilayer single crystal silicon film.

【図3】本発明の一実施例に係る単結晶シリコン膜の形
成方法を説明するための図。
FIG. 3 is a diagram for explaining a method for forming a single crystal silicon film according to an embodiment of the present invention.

【図4】本発明の他の実施例に係る単結晶シリコン膜の
形成方法を説明するための図。
FIG. 4 is a diagram for explaining a method for forming a single crystal silicon film according to another embodiment of the present invention.

【図5】図4に示されている試料基板を上方から見た図
FIG. 5 is a top view of the sample substrate shown in FIG. 4;

【図6】電子ビ−ムの走査方法の一例を示す図。FIG. 6 is a diagram showing an example of an electron beam scanning method.

【図7】電子ビ−ムの偏向に用いる変調波を示す図。FIG. 7 is a diagram showing a modulated wave used for deflecting an electron beam.

【図8】上部多結晶シリコン膜を再結晶化したときの種
結晶部からの距離と各シリコン膜の熱履歴の最高温度と
の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the distance from the seed crystal portion and the maximum temperature of the thermal history of each silicon film when recrystallizing the upper polycrystalline silicon film.

【図9】単結晶シリコン膜中の酸素濃度と溶融している
シリコン膜の温度との関係を示す図。
FIG. 9 is a diagram showing the relationship between the oxygen concentration in a single crystal silicon film and the temperature of the melted silicon film.

【符号の説明】[Explanation of symbols]

1…シリコン基板、2…種結晶部,3…二酸化シリコン
膜、5…多結晶シリコン膜、6…単結晶シリコン膜、7
…二酸化シリコン膜、9…多結晶シリコン膜、10…種
結晶部、11…シリコン基板、13…二酸化シリコン膜
、15…単結晶シリコン膜、17…二酸化シリコン膜、
19…単結晶シリコン膜、21…二酸化シリコン膜、2
3…単結晶シリコン膜、25,27…開口部、29…半
導体基板、31…素子分離用絶縁膜、33…ソ−ス・ド
レイン、35…ゲ−ト電極、37…ゲ−ト絶縁膜、38
…層間絶縁膜、39…単結晶シリコン膜、41…単結晶
シリコン膜、43,45…電子ビ−ムの走査方向、47
…ビ−ム光源、49…スポットビ−ム、51…発振器、
53…偏向板、55…電子ビ−ム、57…試料基板、5
9…正弦波、61…変調波、63,65,67,69…
温度曲線。
DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Seed crystal part, 3...Silicon dioxide film, 5...Polycrystalline silicon film, 6...Single crystal silicon film, 7
... silicon dioxide film, 9 ... polycrystalline silicon film, 10 ... seed crystal part, 11 ... silicon substrate, 13 ... silicon dioxide film, 15 ... single crystal silicon film, 17 ... silicon dioxide film,
19... Single crystal silicon film, 21... Silicon dioxide film, 2
3... Single crystal silicon film, 25, 27... Opening, 29... Semiconductor substrate, 31... Insulating film for element isolation, 33... Source/drain, 35... Gate electrode, 37... Gate insulating film, 38
...Interlayer insulating film, 39... Single crystal silicon film, 41... Single crystal silicon film, 43, 45... Scanning direction of electron beam, 47
...beam light source, 49...spot beam, 51...oscillator,
53... Deflection plate, 55... Electron beam, 57... Sample substrate, 5
9...Sine wave, 61...Modulated wave, 63, 65, 67, 69...
temperature curve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の開口部を有する第1の絶縁膜上に形
成された単結晶半導体膜上に、前記第1の絶縁膜の複数
の開口部との間隔が前記第1の絶縁膜の膜厚の5倍以上
となる複数の開口部を有する第2の絶縁膜を形成する工
程と、前記第2の絶縁膜上に非単結晶半導体膜を形成す
る工程と、エネルギ−ビ−ムを照射して前記非単結晶半
導体膜を単結晶化する工程と、を有することを特徴とす
る半導体単結晶膜の製造方法。
1. A single crystal semiconductor film formed on a first insulating film having a plurality of openings, the first insulating film having a distance from the plurality of openings in the first insulating film. A step of forming a second insulating film having a plurality of openings having a thickness of five times or more the film thickness, a step of forming a non-single crystal semiconductor film on the second insulating film, and an energy beam A method for manufacturing a semiconductor single crystal film, comprising the step of single crystallizing the non-single crystal semiconductor film by irradiation.
【請求項2】単結晶半導体膜上に絶縁膜を形成する工程
と、前記絶縁膜に開口部の間隔が前記絶縁膜の膜厚の1
倍以上20倍以下となる複数の開口部を形成する工程と
、前記絶縁膜上に非単結晶半導体膜を形成する工程と、
エネルギ−ビ−ムを照射して前記非単結晶半導体膜を単
結晶化する工程と、を有することを特徴とする半導体単
結晶膜の製造方法。
2. A step of forming an insulating film on a single-crystal semiconductor film, wherein the distance between openings in the insulating film is 1 of the thickness of the insulating film.
a step of forming a plurality of openings whose size is greater than or equal to 20 times, and a step of forming a non-single crystal semiconductor film on the insulating film;
A method for manufacturing a semiconductor single crystal film, comprising the step of irradiating the non-single crystal semiconductor film with an energy beam to single crystallize the non-single crystal semiconductor film.
JP8346591A 1991-03-22 1991-03-22 Formation of single crystal semiconductor film Pending JPH04294522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8346591A JPH04294522A (en) 1991-03-22 1991-03-22 Formation of single crystal semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8346591A JPH04294522A (en) 1991-03-22 1991-03-22 Formation of single crystal semiconductor film

Publications (1)

Publication Number Publication Date
JPH04294522A true JPH04294522A (en) 1992-10-19

Family

ID=13803219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8346591A Pending JPH04294522A (en) 1991-03-22 1991-03-22 Formation of single crystal semiconductor film

Country Status (1)

Country Link
JP (1) JPH04294522A (en)

Similar Documents

Publication Publication Date Title
US4855014A (en) Method for manufacturing semiconductor devices
US5294556A (en) Method for fabricating an SOI device in alignment with a device region formed in a semiconductor substrate
US4784723A (en) Method for producing a single-crystalline layer
JP5000609B2 (en) Crystallization method
JPS6115319A (en) Manufacture of semiconductor device
JPH04294522A (en) Formation of single crystal semiconductor film
KR101329352B1 (en) Method for manufacturing of semiconductor device
JPH0136972B2 (en)
JPS60180112A (en) Manufacture of single crystal semiconductor device
JPH0361335B2 (en)
KR100293263B1 (en) Manufacturing Method of Thin Film Transistor
JPH0810669B2 (en) Method of forming SOI film
JPS58180019A (en) Semiconductor base body and its manufacture
JPH04294523A (en) Manufacture of semiconductor device
JPH0368532B2 (en)
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JP2500315B2 (en) Method for manufacturing semiconductor single crystal layer
JPH0779078B2 (en) Method for single crystallizing semiconductor layer
JPH0779082B2 (en) Method for manufacturing semiconductor single crystal layer
JPS62206817A (en) Semiconductor device
KR20070096865A (en) Semiconductor element, semiconductor device, and method of manufacturing the same
JPH01162322A (en) Manufacture of semiconductor single crystal layer
KR20080084449A (en) Thin film transistor, the fabricating method of thin film transistor, organic light emitting display device and the fabricating method of organic light emitting display device
JPS59121826A (en) Fabrication of semiconductor single crystal film
JPS61136219A (en) Formation of single crystal si film