JPH01259524A - Vapor phase epitaxy method of compound semiconductor - Google Patents
Vapor phase epitaxy method of compound semiconductorInfo
- Publication number
- JPH01259524A JPH01259524A JP8755388A JP8755388A JPH01259524A JP H01259524 A JPH01259524 A JP H01259524A JP 8755388 A JP8755388 A JP 8755388A JP 8755388 A JP8755388 A JP 8755388A JP H01259524 A JPH01259524 A JP H01259524A
- Authority
- JP
- Japan
- Prior art keywords
- group
- raw material
- vapor phase
- compound semiconductor
- arsine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 150000001875 compounds Chemical class 0.000 title claims abstract description 13
- 238000000927 vapour-phase epitaxy Methods 0.000 title abstract 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000002994 raw material Substances 0.000 claims abstract description 20
- 238000001947 vapour-phase growth Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000010408 film Substances 0.000 abstract description 5
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 4
- 239000012808 vapor phase Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005979 thermal decomposition reaction Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- HTDIUWINAKAPER-UHFFFAOYSA-N trimethylarsine Chemical compound C[As](C)C HTDIUWINAKAPER-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WWVNWQJKWKSDQM-UHFFFAOYSA-N triethylarsane Chemical compound CC[As](CC)CC WWVNWQJKWKSDQM-UHFFFAOYSA-N 0.000 description 2
- PEYLMUGWODRKPS-UHFFFAOYSA-N tripropylarsane Chemical compound CCC[As](CCC)CCC PEYLMUGWODRKPS-UHFFFAOYSA-N 0.000 description 2
- 101100215641 Aeromonas salmonicida ash3 gene Proteins 0.000 description 1
- 101100002917 Caenorhabditis elegans ash-2 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- -1 GaAs compound Chemical class 0.000 description 1
- 101100023111 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfc1 gene Proteins 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- WLQSSCFYCXIQDZ-UHFFFAOYSA-N arsanyl Chemical compound [AsH2] WLQSSCFYCXIQDZ-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は■族原料としてトリアルキルアルシンを用いる
■−■族化合物半導体の熱分解気相成長法の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a method for pyrolytic vapor phase growth of group ■-■ compound semiconductors using trialkylarsine as a group ■ raw material.
近年、■−V族化合物半導体は半導体レーザー、FET
、LED等種々のデバイス用に開発が進められている。In recent years, ■-V group compound semiconductors have been used in semiconductor lasers and FETs.
Development is progressing for various devices such as , LED, etc.
これらのデバイス用化合物半導体エピタキシャル結晶は
クロライド法、ハイドライド法、MB2法(分子線エピ
タキシャル成長法)、LPE法(液相エピタキシャル成
長法)、MO−CVD法(有機金属熱分解気相成長法)
により製作されており、特にMO−CVD法は新しい量
産法として注目を集めている。These device-use compound semiconductor epitaxial crystals are produced using the chloride method, hydride method, MB2 method (molecular beam epitaxial growth method), LPE method (liquid phase epitaxial growth method), and MO-CVD method (metal-organic pyrolysis vapor phase growth method).
In particular, the MO-CVD method is attracting attention as a new mass production method.
この方法は■族元素であるAsソースとしてアルシン(
AsH3)が使用されている。一般にAsHiガスは圧
力容器に圧縮充填して使用に供されるが、近年その使用
量が増大したため、八sH!の安全な取扱い、特に漏洩
時の危険性に対する対策が重要な課題になっている。This method uses arsine (
AsH3) is used. Generally, AsHi gas is compressed and filled into a pressure vessel for use, but as the amount of AsHi gas used has increased in recent years, 8sH! Safe handling, especially countermeasures against the risk of leakage, has become an important issue.
AsH,分子のHを全てアルキル基に置換したトリアル
キルアルシン(RJs)のうちトリメチルアルシン((
CHs)s^3〕、トリエチルアルシン((CzL)
sAs )はその急性毒性が低いことが見出されており
、さらにトリアルキルアルシンの多(は常温でン良体で
あり、漏れてもその平衡蒸気圧相当量の影響ですみ、A
sHsガスより安全面で優れていることから、トリアル
キルアルシンをA3H3の代替原料として用いる検討が
なされている9例えば、トリメチルガリウム((CJs
) sGa ) 、 (C1,) sAs とを組み合
わせてGaAsエピタキシャル薄膜を得る検討がなされ
ている。AsH, trimethylarsine ((
CHs)s^3], triethylarsine ((CzL)
sAs) has been found to have low acute toxicity, and furthermore, trialkylarsine (sAs) is a non-toxic substance at room temperature, and even if it leaks, it will only be affected by an amount equivalent to its equilibrium vapor pressure.
Because trialkylarsine is safer than sHs gas, the use of trialkylarsine as an alternative raw material for A3H3 is being considered.9 For example, trimethylgallium ((CJs
) sGa ) and (C1,) sAs have been studied to obtain a GaAs epitaxial thin film.
しかしながら、得られる膜の純度は^s11.を用いる
場合よりも劣るという欠点がある。この原因の一つとし
て、特に^Sに結合しているアルキル基の炭素がGaA
s結晶中に残留してしまうことが原因であることが確か
められ、解決すべき問題となっていた。However, the purity of the obtained membrane is ^s11. It has the disadvantage that it is inferior to using . One of the reasons for this is that the carbon of the alkyl group bonded to ^S is GaA
It was confirmed that the cause was that the s-crystal remained in the s-crystal, and this was a problem that needed to be solved.
一方、A s If sの11の一部分をアルキル基に
置き換えた(CzHs)zAsll、(CzHs)八s
II 、等のジアルキルアルンン、モノアルキルアル
シンをA s 113代替原料として用いる検討が行わ
れており、残留不′4@物が減少した比較的良好な膜が
得られている。しかしながら、このような部分アルキル
化アルシンは、アルキル化剤を過剰に用いて得ることが
できる全置換型、すなわちR3Asと異なり、純度良く
合成することが非常に困難であり、たとえ金属性不純物
を通常の半導体試薬並みに減らせたとしても、反応生成
物としてはR+lAs1li−a (n =0.1,2
.3)の混合物となり、合成コスト上昇の原因となる精
蒸留を繰返し行っても分離困難なことが多い。このこと
は原料を気相で供給する成長法においては重大であり、
混合物としての蒸気圧を制御できないことを意味し、反
応の供給を規定できないという不都合を生じる。さらに
、部分アルキル化アルシンはその毒性が猛毒のAsH2
に近づく危惧もある上にAsHsが混入る可能性を考慮
すると、合成や使用上特段の安全対策が不可欠であると
いう欠点があった。On the other hand, (CzHs)zAsll, (CzHs)8s in which part of 11 of A s If s is replaced with an alkyl group
The use of dialkyl arsines and monoalkyl arsines such as II, etc. as substitute raw materials for As 113 has been investigated, and relatively good films with reduced residual impurities have been obtained. However, unlike fully substituted arsine, that is, R3As, which can be obtained by using an excess amount of an alkylating agent, it is very difficult to synthesize such partially alkylated arsine with high purity, even if metallic impurities are usually removed. Even if the amount is reduced to the same level as the semiconductor reagent, the reaction product will be R+lAs1li-a (n = 0.1,2
.. 3), which is often difficult to separate even if repeated distillation is performed, which causes an increase in synthesis costs. This is important in growth methods that supply raw materials in the vapor phase.
This means that the vapor pressure of the mixture cannot be controlled, resulting in the inconvenience that the feed for the reaction cannot be regulated. Furthermore, partially alkylated arsine is highly toxic as AsH2.
In addition, considering the possibility that AsHs may be mixed in, there is a drawback that special safety measures are indispensable during synthesis and use.
本発明の目的は上記の欠点を改良したGaAs化合物半
導体の気相成長法を提供することにある。An object of the present invention is to provide a method for vapor phase growth of GaAs compound semiconductors that improves the above-mentioned drawbacks.
すなわち、本発明は、V族原料としてトリアルキルアル
シンを用いる■−■族化合物半導体の熱分解気相成長法
において、アルシンを添加することを特徴とする気相成
長方法を提供することにある。That is, an object of the present invention is to provide a vapor phase growth method characterized in that arsine is added in a pyrolytic vapor phase growth method of group (1)-(2) compound semiconductors using trialkylarsine as a group V raw material.
本発明は上記の実情に鑑み鋭意検討の結果、V族原料の
アルキルアルシンにアルシン(AsH3)を添加するこ
とにより、得られる化合物半導体気相成長薄膜の純度が
大幅に改良され、かつ安全性も向上できることを見出し
たものである。The present invention has been developed as a result of intensive studies in view of the above circumstances. By adding arsine (AsH3) to alkylarsine, which is a Group V raw material, the purity of the obtained compound semiconductor vapor phase grown thin film is significantly improved, and safety is also improved. This is something we have discovered that can be improved.
以下、本発明について詳述する。The present invention will be explained in detail below.
本発明に使用の第■族原料としては通常、トリメチルガ
リウム、トリエチルガリウム等のアルキルガリウムを使
用し、第V族原料としてトリメチルアルシン、トリエチ
ルアルシン、トリーn−プロピルアルシン、トリーミー
プロピルアルシン等のトリアルキルアルシンが使用され
る。また、本発明においては上記のトリアルキルアルシ
ンに加えてアルシン(AsHs)を添加することが必要
である。As the Group I raw materials used in the present invention, alkyl galliums such as trimethyl gallium and triethyl gallium are usually used, and as Group V raw materials, trimethylarsine, triethyl arsine, tri-n-propylarsine, and tri-n-propylarsine are usually used. Alkylarsines are used. Further, in the present invention, it is necessary to add arsine (AsHs) in addition to the above-mentioned trialkylarsine.
添加する^5113の量はトリアルキルアルシンの5〜
50モル%が好ましく、10〜40モル%がより好まし
い。5モルχ未満では添加の効果が顕著でなく、500
モルχ超えると安全性の面から不適当であり、また効果
も飽和傾向にあり、余り向上しないので好ましくない。The amount of ^5113 to be added is 5 to 5 of the trialkylarsine.
50 mol% is preferable, and 10 to 40 mol% is more preferable. At less than 5 mol χ, the effect of addition is not significant;
Exceeding the mole χ is undesirable from the viewpoint of safety, and the effect tends to be saturated and not much improved.
第1図は本発明を実施するための熱分解気相成長装置の
一例の概略図である。以下図を用いて本発明を具体的に
説明する。FIG. 1 is a schematic diagram of an example of a pyrolysis vapor phase growth apparatus for carrying out the present invention. The present invention will be specifically explained below using the drawings.
マスフローコントローラー(以下?IFC) 1がらの
水素ガスでバブラー2に容れられたトリアルキルガリウ
ム等の第■族原料をバブルさせて蒸発させる。蒸発する
トリアルキルガリウム量はバブラー2の温度、MFC1
の水素量とMFC3で前取って決められた量に調節され
、反応器lOに導入される。Mass Flow Controller (IFC) 1 Bubbles and evaporates the group Ⅰ raw materials such as trialkyl gallium contained in the bubbler 2 with hydrogen gas. The amount of trialkyl gallium that evaporates depends on the temperature of bubbler 2 and MFC1.
The amount of hydrogen is adjusted to a predetermined amount using MFC3 and introduced into the reactor IO.
通常、トリアルキルガリウム原料がトリメチルガリウム
の場合、to−’〜10−’mol/+winの範囲で
ある。Usually, when the trialkyl gallium raw material is trimethyl gallium, the range is from to-' to 10-' mol/+win.
一方、MFC4から水素ガスでバブラー5に容れられた
第V族原料であるトリメチルアルシン等のトリアルキル
アルシンをバブリングして蒸発させ、同様にMFC6を
通って反応器lOに導入される0通常、アルキルアルシ
ン/トリアルキルガリウムモル比は5〜200の範囲が
一般的である。また、アルシン(A s Hs )は通
常ボンベ7よりMFC8を通って反応器lOに導入され
る。さらにキャリヤーの水素ガスはMFC9を通って反
応器1oに導入され原料と混合される。器内には高周波
誘導加熱が可能なグラファイト支持台(サセプター)1
2が設置され、高周波誘導加熱コイル11により500
〜soo ’cに加熱され、その上にGaAs基板13
が載置されておリ、前記の導入された反応ガスは混合さ
れた後、基板付近で熱分解し、基板13上に化合物半導
体薄膜としてエピタキシャル成長する。反応後のガスは
排気口14から排出される。On the other hand, trialkylarsine such as trimethylarsine, which is a group V raw material, contained in the bubbler 5 is bubbled with hydrogen gas from the MFC 4 to evaporate it, and similarly, the alkyl alkyl The arsine/trialkyl gallium molar ratio is generally in the range of 5 to 200. Also, arsine (A s Hs ) is normally introduced from the cylinder 7 through the MFC 8 into the reactor IO. Further, the carrier hydrogen gas is introduced into the reactor 1o through the MFC 9 and mixed with the raw material. Inside the vessel is a graphite support stand (susceptor) 1 that can perform high-frequency induction heating.
2 is installed, and the high frequency induction heating coil 11 generates 500
~ soo 'c, and a GaAs substrate 13 is placed on top of it.
is placed on the substrate 13, and the introduced reaction gases are mixed and then thermally decomposed near the substrate, and are epitaxially grown as a compound semiconductor thin film on the substrate 13. The gas after the reaction is exhausted from the exhaust port 14.
本発明においては第■族原料であるトリアルキルアルシ
ンに少量のアルシン(Ashs)を添加することにより
、不純物、特に炭素不純物の少ない良好な化合物半導体
気相エピタキシャル欣を製造することができ、また従来
のアルシンのみを使用した方法に比較して安全性の面で
大幅に改良されており、工業的にみて有利な方法である
。In the present invention, by adding a small amount of arsine (Ashs) to trialkylarsine, which is a Group Ⅰ raw material, it is possible to produce a good compound semiconductor vapor phase epitaxial layer containing few impurities, especially carbon impurities. This method is greatly improved in terms of safety compared to the method using only arsine, and is an advantageous method from an industrial perspective.
以下、実施例及び比較例により本発明をより具体的に説
明するが、本発明はこれらにより限定されるものではな
い。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例1〜3、比較例1
第1図に示した装置によりGaAs基板温度650 ’
CでGaAsの成長を行った。 (CH3)zAsと(
CHs)3Gaをそれぞれバブラー2.5でバブリング
用水素ガスに飽和させ、FM(: 3.6を通して反応
器10に導入した。なお、(CH3> s^S、(C1
ls)3Ga各原料の供給量はPMCI、4.3.6お
よびバブラー2.5の温度を厳密に調節することにより
、それぞれ2.28 X 10−’mol/5hin
、 5.71 X 10−’+gol/l1inとし、
これらのガスをAsJボンベ7からFIFCBを通って
導入されたAsLと混合し、更にFMC9を通って導入
されたキャリヤー水素ガス(2,717Ilin> で
希釈した。八s II 、Jガスの供給量はCCHs)
sAsの10モル%となるように調節した。反応中央部
に高周波誘導加熱できるグラファイト性支持台12があ
り、この上に(100)面GaAs単結晶基板13を置
き、成長温度650°Cに加熱し、前記導入原料ガスを
吹きつけてエピタキシャル成長を実施した。1時間の成
長時間で約3μmの膜厚まで成長した。更に、AsHz
ガスの量を(C113)3A!+の5モル%、40モル
%に変更した以外は上記と同様な条件でエピタキシャル
成長を実施した。また、比較のため、ASH3ガスを使
用しない以外は実施例と同様にエピタキシャル成長を実
施した。Examples 1 to 3, Comparative Example 1 GaAs substrate temperature was 650' using the apparatus shown in FIG.
GaAs was grown at C. (CH3)zAs and (
CHs)3Ga was saturated with hydrogen gas for bubbling using bubbler 2.5 and introduced into reactor 10 through FM(:3.6. Note that (CH3>s^S, (C1
ls) 3Ga The supply amount of each raw material is 2.28 x 10-'mol/5hin by strictly controlling the temperature of PMCI, 4.3.6, and bubbler 2.5.
, 5.71 X 10-'+gol/l1in,
These gases were mixed with AsL introduced from AsJ cylinder 7 through FIFCB and further diluted with carrier hydrogen gas (2,717Ilin>) introduced through FMC9. CCHs)
The content was adjusted to 10 mol% of sAs. At the center of the reaction is a graphite support 12 capable of high-frequency induction heating, on which a (100)-plane GaAs single crystal substrate 13 is placed, heated to a growth temperature of 650°C, and epitaxially grown by blowing the introduced raw material gas. carried out. The film was grown to a thickness of about 3 μm in a growth time of 1 hour. Furthermore, AsHz
The amount of gas is (C113) 3A! Epitaxial growth was carried out under the same conditions as above except that 5 mol % and 40 mol % of + were changed. For comparison, epitaxial growth was performed in the same manner as in the example except that ASH3 gas was not used.
得られたエピタキシャル成長膜をホトルミネッセンス測
定装置で測定した結果を第2図に示す。The results of measuring the obtained epitaxially grown film using a photoluminescence measuring device are shown in FIG.
何れの実施例とも、波長0.75μ個近傍のバンド端発
光が強く認められ純度が向上していることが判った。更
に不純物炭素起因の0.83μmピークのバンド端発光
に対する相対強度が比較例のものより顕著に減少してい
ることからも炭素不純物が減少していることが判った。In all of the examples, band edge light emission around a wavelength of 0.75 microns was strongly observed, indicating that the purity was improved. Furthermore, it was also found that the carbon impurities were reduced because the relative intensity of the band edge emission of the 0.83 μm peak due to impurity carbon was significantly reduced compared to that of the comparative example.
第1図は本発明を実施するのに使用される気相成長装置
の一例の概略図であり、第2図は実施例、比較例で得ら
れたエピタキシャル成長膜のホトルミネンセンススペク
トルを示す図である。
10・・−・−反応器、12−・グラファイト支持台、
13・・−GaAs基板
ヨ皮 、長C入m〕
第 2−図
手続補正書(自発)
昭和63年8月Z日
1、事件の表示
昭和63年特許願 第087553号
2、発明の名称
化合物半導体の気相成長方法
3、補正をする者
事件との関係 特許出願人 ゛
住所 大阪市東区北浜5丁目15番地
名称 (209)住友化学工業株式会社代表者 森
英 雄
4、代理人
住所 大阪市東区北浜5丁目15番地
明細書の「発明の詳細な説明」の欄
6、補正の内容
(1)明細書第2頁19行’ ((CJs)3Ga )
Jを’ [(CHs)sGa) Jに訂正する。
(2)同第3頁第10行r(CzHs)ASHdをr(
Cl3)AsHzJに訂正する。
(3)同第7頁第19行r(CHs)*ASJを’ (
CzHs) 3AS Jに訂正する。
(4)同第8真東2.9および16行の’ (CHl)
aAs Jをそれぞれ’ (C2H4) zAs J
に訂正する。
(5)同第9頁第3行r0.75μm」をr O,82
μm」に訂正する。
以 上FIG. 1 is a schematic diagram of an example of a vapor phase growth apparatus used to carry out the present invention, and FIG. 2 is a diagram showing photoluminescence spectra of epitaxially grown films obtained in Examples and Comparative Examples. It is. 10...--Reactor, 12--Graphite support stand,
13...-GaAs substrate, length C included] Figure 2 - Procedural amendment (spontaneous) August Z, 1988 1, Indication of the case 1987 Patent Application No. 087553 2, Name of the invention Compound Semiconductor vapor phase growth method 3, relationship with the amended case Patent applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (209) Sumitomo Chemical Co., Ltd. Representative Hideo Mori 4 Agent address Higashi, Osaka 5-15 Kitahama, Ward Contents of amendment in column 6 of "Detailed explanation of the invention" of the specification (1) Page 2 of the specification, line 19' ((CJs) 3Ga)
Correct J to ' [(CHs)sGa) J. (2) Page 3, line 10 r(CzHs)ASHd to r(
Cl3) Correct to AsHzJ. (3) Page 7, line 19 r(CHs)*ASJ' (
CzHs) Correct to 3AS J. (4) Line 8 due east 2.9 and 16' (CHl)
aAs J respectively' (C2H4) zAs J
Correct to. (5) "r0.75μm" on page 9, line 3, rO, 82
Corrected to "μm". that's all
Claims (1)
V族化合物半導体の熱分解気相成長法において、アルシ
ンを添加することを特徴とする気相成長方法。III- using trialkylarsine as a group V raw material
A pyrolytic vapor phase growth method for group V compound semiconductors, characterized in that arsine is added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8755388A JPH01259524A (en) | 1988-04-08 | 1988-04-08 | Vapor phase epitaxy method of compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8755388A JPH01259524A (en) | 1988-04-08 | 1988-04-08 | Vapor phase epitaxy method of compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01259524A true JPH01259524A (en) | 1989-10-17 |
Family
ID=13918179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8755388A Pending JPH01259524A (en) | 1988-04-08 | 1988-04-08 | Vapor phase epitaxy method of compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01259524A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991014280A1 (en) * | 1990-03-14 | 1991-09-19 | Fujitsu Limited | Process for growing semiconductor crystal |
JPH03222323A (en) * | 1990-01-26 | 1991-10-01 | Fujitsu Ltd | Formation of high resistant semiconductor layer |
-
1988
- 1988-04-08 JP JP8755388A patent/JPH01259524A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03222323A (en) * | 1990-01-26 | 1991-10-01 | Fujitsu Ltd | Formation of high resistant semiconductor layer |
WO1991014280A1 (en) * | 1990-03-14 | 1991-09-19 | Fujitsu Limited | Process for growing semiconductor crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miehr et al. | The first monomeric, volatile bis‐azide single‐source precursor to Gallium nitride thin films | |
JPH0280572A (en) | Arsine, antimony and phosphine substituent | |
US4935381A (en) | Process for growing GaAs epitaxial layers | |
JPH01259524A (en) | Vapor phase epitaxy method of compound semiconductor | |
US5098857A (en) | Method of making semi-insulating gallium arsenide by oxygen doping in metal-organic vapor phase epitaxy | |
JPH0321516B2 (en) | ||
JPH01272111A (en) | Vapor growth of compound semiconductor | |
US4999223A (en) | Chemical vapor deposition and chemicals with diarsines and polyarsines | |
Zhou et al. | Gas-phase parasitic reactions and Al incorporation efficiency in light radiation heating, low-pressure metal–organic chemical vapor deposition of AlGaN | |
JPS63500757A (en) | Method and apparatus for chemical vapor deposition of 3-5 type semiconductor using organometallic source and elemental pnictide source | |
JPS63227007A (en) | Vapor growth method | |
JPH0388324A (en) | Method for forming compound semiconductor thin film | |
JPS59164697A (en) | Vapor growth method | |
JPH01224295A (en) | Gas source molecular beam crystal growing apparatus | |
JPS6021518A (en) | Vapor growth method of iii-v group compound semiconductor | |
JPH01261818A (en) | Method of vapor growth of high-resistance algaas mixed crystal | |
JPH04315420A (en) | Organic metallic molecular beam epitaxial growth method and device | |
JP2700210B2 (en) | Vapor phase epitaxial growth of compound semiconductors | |
JPH07240373A (en) | Vapor growing method of iii-v group compound semiconductor | |
JPH01103996A (en) | Vapor growth method for compound semiconductor | |
JPH0567576A (en) | Manufacture of compound semiconductor crystal | |
JPH0562902A (en) | Vapor growth method for compound semiconductor crystal layer | |
JP2924072B2 (en) | Organometallic molecular beam epitaxial growth method and apparatus | |
JPH11329976A (en) | Iii group nitride crystal growing device | |
JPH01141899A (en) | Vapor growth method for iii-v compound semiconductor |